12/12/2019 Waterbear is Back, Uses API Hooking to Evade Security Product Detection - TrendLabs Security Intelligence Blog

e Trend Micro
¢ About TrendLabs Security Intelligence Blog

L] o
L] @
-9

. SECURITY
@) 1REND. AT GENCE Bog

SECURITY NEWS DIRECT FROM THREAT DEFENSE EXPERTS

Search:

Go to... a

e Home
o Categories

Home » Malware » Waterbear is Back, Uses API Hooking to Evade Security Product Detection

Waterbear is Back, Uses API Hooking to Evade Security Product Detection

e Posted on:December 11,2019 at 5:04 am
e Posted in:Malware
e Author:

Trend Micro

By Vickie Su, Anita Hsieh, and Dove Chiu

Waterbear, which has been around for several years, is a campaign that uses modular malware capable of including additional functions remotely. It is associated with
the cyberespionage group BlackTech, which mainly targets technology companies and government agencies in East Asia (specifically Taiwan, and in some instances,
Japan and Hong Kong) and is responsible for some infamous campaigns such as PLEAD and Shrouded Crossbow. In previous campaigns, we’ve seen Waterbear
primarily being used for lateral movement, decrypting and triggering payloads with its loader component. In most cases, the payloads are backdoors that are able to
receive and load additional modules. However, in one of its recent campaigns, we’ve discovered a piece of Waterbear payload with a brand-new purpose: hiding its
network behaviors from a specific security product by API hooking techniques. In our analysis, we have discovered that the security vendor is APAC-based, which is
consistent with BlackTech’s targeted countries.

Knowing which specific APIs to hook might mean that the attackers are familiar with how certain security products gather information on their clients’ endpoints and
networks. And since the API hooking shellcode adopts a generic approach, a similar code snippet might be used to target other products in the future and make
Waterbear harder to detect.

A closer look at Waterbear

Waterbear employs a modular approach to its malware. It utilizes a DLL loader to decrypt and execute an RC4-encrypted payload. Typically, the payload is the first-
stage backdoor which receives and loads other executables from external attackers. These first-stage backdoors can be divided into two types: First, to connect to a
command-and-control (C&C) server, and second, to listen in on a specific port. Sometimes, the hardcoded file paths of the encrypted payloads are not under Windows
native directories (e.g., under security products or third-party libraries’ directories), which may indicate that the attackers might have prior knowledge of their targets’
environments. It is also possible that the attackers use Waterbear as a secondary payload to help maintain presence after gaining some levels of access to the targets’
systems. The evidence is that Waterbear frequently uses internal IPs as its own C&C servers (for

instance, b9f3a3b9452a396¢3balce4a644dd2b7f494905e¢820e7b1c6dca2fdcce069361 uses an internal IP address of 10[.]0[.]0[.]211 as its C&C server).

The typical Waterbear infection chain

https://blog.trendmicro.com/trendlabs-security-intelligence/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection/ 1/9

https://www.trendmicro.com/
https://blog.trendmicro.com/trendlabs-security-intelligence/about-us/
https://twitter.com/trendmicrorsrch
http://www.facebook.com/trendmicro
http://www.linkedin.com/company/trend-micro
http://www.youtube.com/user/TrendMicroInc
http://feeds.trendmicro.com/Anti-MalwareBlog
https://blog.trendmicro.com/trendlabs-security-intelligence/
http://blog.trendmicro.com/trendlabs-security-intelligence/
https://blog.trendmicro.com/trendlabs-security-intelligence/
https://blog.trendmicro.com/trendlabs-security-intelligence/category/malware/
https://blog.trendmicro.com/trendlabs-security-intelligence/2019/12/
https://blog.trendmicro.com/trendlabs-security-intelligence/category/malware/
https://blog.trendmicro.com/trendlabs-security-intelligence/author/trend-micro/
https://blog.trendmicro.com/trendlabs-security-intelligence/following-trail-blacktech-cyber-espionage-campaigns/

12/12/2019 Waterbear is Back, Uses API Hooking to Evade Security Product Detection - TrendLabs Security Intelligence Blog

Legitimate EXE Modified DLL
Key: tolol 1 Decryption
The absolute : OL ?Ol :D : function:
r path to payload RC4 algorithm
Load a
modified DLL e
Load the
Waterbear loader
Encr}mted
Loader payloa Shellcode svchost.exe
|Blo—|=le—
® Phantom DLL (3 (4] — |©
hijacking Find Decrypt Inject into
payload payload a process
(XX] &
<

G Connect to C&C and listen to
specific port

L

Figure 1. A typical Waterbear infection chain

A Waterbear infection starts from a malicious DLL loader, as shown in Figure 1. We have seen two techniques of DLL loader triggering. One is modifying a
legitimate server application to import and load the malicious DLL loader, while the second technique is performing phantom DLL hijacking and DLL side loading.
Some Windows services try to load external DLLs with hardcoded DLL names or paths during boot-up. However, if the DLL is a legacy DLL (i.e., one that is no
longer supported by Windows) or a third-party DLL (i.e., one that is not part of the original Windows system DLLs), attackers can give their malicious DLL a
hardcoded DLL name and place it under one of the searched directories during the DLL loading process. After the malicious DLL is loaded, it will gain the same
permission level as the service that loads it.

During our recent Waterbear investigation, we discovered that the DLL loader loaded two payloads. The payloads performed functionalities we have never seen in
other Waterbear campaigns. The first payload injects code into a specific security product to hide the campaign’s backdoor. The second payload is a typical Waterbear
first-stage backdoor, which we will attempt to dissect first based on a specific case we observed during our analysis.

Waterbear’s first-stage backdoor

We saw a Waterbear loader named “‘ociw32.dll” inside one of the folders in the % PATH % environmental variable. This DLL name is hardcoded inside
“mtxoci.dll” which is loaded by the MSDTC service during boot-up. “mtxoci.dll” first tries to query the registry key
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft MSDTC\MTxOCI” to see if the value “OracleOciLib” exists. If so, it retrieves the data inside it and
loads the corresponding library. If the value doesn’t exist, “mtxoci.dll” tries to load “ociw32.dll” instead. During our investigation, we noticed that the value
“OracleOciLib” was deleted from the victim’s machine, as shown in Figure 2. Hence, the malicious loader “ociw32.dIl”” was loaded and successfully executed on
the host.

_iofx
BRE REE WAV FBORSG) WRE REE) WSRT) HOSEWR) REH
8- Jy MSBuild Al) (- . Intemet Account Manager ~|[==® EE] <
- | MSDE (B ER7E) @ | Infernet Domains ab| (Fx(E REG_SZ (BEFIIE)
5| MSDTC o5 OreckeOcilib _REG 5Z ocidll - | Intemet Explorer 26| OracleSqlLib REG_SZ SQLLib80.AL
KtuRm ab|OrecleSqllib REG_SZ SQLLIbGO.AL By MMC 25| OrscleXeLib REG_SZ *a80.d1l
MTOCI | abjomeleXalib REG_SZ el 411 Feh- g Mobils
] Security Ul M5Build
Setup @ | MSDE
B0 Trucing =4 MSDTC
¥ADLL J
©-), MSF =
‘ Ty T 2
[E@REHKEY_LOCAL_MACHINESOFTWAREMicrosofMSDTCRMTHOCT 7
s
[+
MSMQ
@ | MSSOLServes
B NapServer =l

[EHKEY_LOCAL_MACHINE\SOFT WARE\Microsofth{SD TCM Tx0CL

Figure 2. The deleted value “OracleOciLib” on the victim’s host

Note: The image on the left shows how the DLL on a normal machine normally looks. The image on the right showcases how the DLL on a victim’s machine
appears. Because there is no “OracleOciLib” value, it loads the hardcoded DLL “‘ociw32.d11” instead, which triggers the malicious Waterbear DLL loader.

After the Waterbear DLL loader is executed, it searches for a hardcoded path and tries to decrypt the corresponding payload, which is a piece of encrypted shellcode.
The decryption algorithm is RC4, which takes the hardcoded path to form the decryption key. If the decrypted payload is valid, it picks a specific existing Windows
Service — LanmanServer, which is run by svchost.exe — and injects the decrypted shellcode into the legitimate service. In most cases, the payload is a first-stage

backdoor, and its main purpose is to retrieve second-stage payloads — either by connecting to a C&C server or opening a port to wait for external connections and
load incoming executables.

Configuration of the first-stage backdoor

Waterbear’s first-stage backdoor configuration contains the information required for the proper execution of and communication with external entities.

o Offset 0x00, Size 0x10: Encryption / decryption key for the functions
o Offset 0x10, Size 0x04: 0xOBB8 (reserved)

https://blog.trendmicro.com/trendlabs-security-intelligence/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection/ 2/9

https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/Figure-1-01-v3.jpg
http://blog.trendmicro.com/trendlabs-security-intelligence/attack-gains-foothold-against-east-asian-government-through-auto-start/
https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/FIG-2.png

12/12/2019 Waterbear is Back, Uses API Hooking to Evade Security Product Detection - TrendLabs Security Intelligence Blog

o Offset 0x14, Size 0x10: Version (e.g.,0.13,0.14,0.16, and so on)

o Offset 0x24, Size 0x10: Mutex or reserved bytes

Offset 0x34, Size 0x78: C&C server address which is XOR-encrypted by key OxFF. If the backdoor is intended to listen in on a specific port, this section will
be filled with 0x00.

Offset 0xAC, Size 0x02: Port

Offset OXAE, Size 0x5A: Reserved bytes

Table: The function address table of the payload. The block is initially filled with 0x00 and will be propagated during runtime.
Table: The sizes of functions

Table: The API address table. The block is initially filled with 0x00 and will be filled with loaded API addresses during runtime.
Table: The API hashes for dynamic API loading

A list of DLL names and the number of APIs to be loaded

Key 23 5C 62 SA C2 80 SE 64 15 FD 35 4E D4 60 69 FC #\bZA1"d.y5NO"iii
. B8 0B 00 00 30 2E 31 33 00 00 00 00 00 00 00 OO ,...0.13........
Version oo 00 00 00 20 00 00 00 00 00 00 00 00 00 00 0O

MIUTEX Bp FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
XOR (OxFF): FF EFE FF FF FF FF FF FE FF FF FF EF FF FF FF FF
Cc2

Port FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF
Heserved FF FF FF FF FF FF FF FF FF FF FF FF El 9700 00
00 00 00O 0O 0O OO OO OO OO OO0 OO0 OO OO OO OO OO0
00 00 00 0O 0O OO OO OO0 0O OO0 00 OO OO0 00 OO0 OO0
00 00 0O 0O 0O OO 0D OO0 2F 73 07 43 8D 73 25 49
76 2E 73 7B 13 D2 &6C 18 B4 E0 CC DB ED 92 08 A0
00 00 00 00 UER.CSIL ..

Function
address

ool] i

..i...9...R..

. H...1...6...—..
Size of every W o
function S.. B
Q...¢...E ...

3.

API L
address po oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00
L Erati

®=a5TE™ " . I201IN.1
2ii.|-3..;ISE.FsE
CJFQUINE; GCY#G’ +
ir. . *I-0Ip1tHHve
¥ héd poHij_i.=h
km. Jgin]pil 1050
9. covEypE. "pl¥%
1{[Sn. /TioUhing

API
hashing

Figure 3. The first-stage backdoor’s configuration structure

Anti-memory scanning of shellcode payload

In order to avoid in-memory scanning during runtime, the payload encrypts all of the function blocks before executing the actual malicious routine. Afterwards,
whenever it needs to use a function, it will decrypt the function, execute it, and encrypt the function back again, as can be seen in Figure 4. If a function will not be

https://blog.trendmicro.com/trendlabs-security-intelligence/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection/ 3/9

https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/Figure-3-01-v2.jpg

12/12/2019 Waterbear is Back, Uses API Hooking to Evade Security Product Detection - TrendLabs Security Intelligence Blog

used on the rest of the execution, it will be scrambled by another mess-up function, as illustrated in Figure 6. The mess-up function muddles up the bytes with
random values and makes the input blocks unrecoverable. The purpose of this is to further avoid being detected by a certain cybersecurity solution.

Emov r8d,dword ptr ds:[rbx+1F4] ; number
mov rdx,qword ptr ds:[rbx+150] ; func address
mov rox,rbx ; key
€all gword ptr ds:[rbx+1Cs8] ; decryption
mov r8d,esi
mov rdx,rdi
MoV rox,rbx

WEEN gword ptr ds:[rbx+150] ; call decrypted func
mov r8d,dword ptr ds:[rbx+1F4] ; number
mov rdx,qword ptr ds:[rbx+150] ; func address
mov rcx,rbx ; key
€3l gword ptr ds:[rbx+1C8] ; encryption
mov r8d,dword ptr ds:[rbx+22C]
mov rdx,qword ptr ds:[rbx+1C0] ; rbx+1C0:"b
mov rox,rbx
€&l gword ptr ds:[rbx+1C8]
mov rox,rbx
€2l gword ptr ds:[rbx+1co]

Figure 4. The decryption-execution-encryption flow in the shellcode execution routine

mov rbx,qword ptr ss:firsp 1]
mov rsi,qword ptr ss:|frsp+32)
add rsp,z0
pop rdi
ret
45:33C9 xor r3d,rsd
4C:BEDZ mov rio,rdx
4C:8EDD mov rii,rcx
45:3BC1 cmp r&8d,rod
v T& 23 jbe Tanguage.dat_dump_x&4.140006020
41:8BC1 mov eax,rad
41:FFC1 inc rad
29 cdqg
B3E2 OF and edx,F
03Cc2 add eax,edx
B3ED OF and eax,F
ZBC2 sub eax,edx
4B8:63C8 movsxd rcx,eax
42:8A0419 mov al,byte ptr ds: [rox+rii]
41:3002 xor byte ptr ds:[rio0],al
439:1FFC2 inc rio
45:3BCS cmp rod,rsad
~ 72 DD jb language.dat_dump_x&4.140005FFD
F3:C3 ret

Figure 5. The function for the function block encryption and decryption

Tanguage. dat_dump_x6&4.0000000140004FAG
mov qword ptr ss:[rsp+8],rbx
mov gword ptr ss:[rsp+10],rbp
mov gword ptr ss:[rsp+18],rsi
push rdi
sub rsp,20
mov rsi,rcx
Or ecx,ecx
mowsxd rdi,rsd
mov rbp,rdx
call qword ptr ds:[rsi+2Cs8] ; msvcrt.time
mov rbx,rax
meEall gword ptr ds:[rsi+2a0] ; kernel32.GetTickCount
imul ebx,eax
mov ecx,ebx
call gword ptr ds:[rsi+zCo] ; msvecrt.srand
xor ebx,ebx
cmp rdi,rbx
jle language.dat_dump_x&4.14000501C

Tanguage. dat_dump_x&4. 0000000140004FEG
call gword ptr ds:[rsi+2D0] ; msvcrt.rand
mov riid,eax

mov_eax, 30808081

imul riid

add edx,riid

sar edx,7

mov ecx,edx

shr ecx,1F

add edx,ecx

imul edx,edx,FF

sub riid,edx

inc riib

inc rbx
cmp rbx,rdi
j1 Tanguage.dat_dump_x&4.140004FEG

mov byte ptr ds:[rbx+rbp],riib ; mofidy the byte of the used function

mov rbx,gword ptr rsp+30]
mov rbp,gword ptr rsp+3&]
mov rsi,gword ptr ss:[rsp+40]
add rsp,z20

pop rdi

ret

Figure 6. The payload’s mess-up function

Same Waterbear, different story

During our investigation, we found a peculiar incident that stands out from most of the Waterbear infections we’ve previously seen. This time, the DLL loader loaded

two payloads — the first payload performed functionalities we have not seen before: It injected codes into a specific security product to do API hooking in order to
hide the backdoor from the product. Meanwhile, the second payload is a typical Waterbear first-stage backdoor.

https://blog.trendmicro.com/trendlabs-security-intelligence/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection/

4/9

https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/FIG-4.png
https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/FIG-5.png
https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/FIG-6.png

12/12/2019 Waterbear is Back, Uses API Hooking to Evade Security Product Detection - TrendLabs Security Intelligence Blog

Find first Decrypt Inject into Find security Inject second
payload payload process product process shellcode
2] o o

Phantom _B
DLL hijacking —
o % =
Encrypted Shellcode 1 schost.exe Shellcode 2 Security
payload product EXE
Encrypted et hoﬁlf;‘il"
payload Shellcode 3 svchost.exe saclic pod 9
Legitimate EXE Loader
: i
o o o (1]
Find second Decrypt Inject into Connect
payload payload process to C&C

Figure 7. An unusual Waterbear infection chain

Both payloads were encrypted and stored on the victim’s disk and were injected into the same service, which was, in this case, LanmanServer. We have observed that
the loader tried to read the payloads from the files, decrypted them, and performed thread injections with the following conditions:

1. If the first payload could not be found on the disk, the loader would be terminated without loading the second one.

2. If the first payload was successfully decrypted and injected into the service, the second piece would also be loaded and injected regardless of what happened to
the first thread.

3. In the first injected thread, if the necessary executable from the security product was not found, the thread would be terminated without performing other
malicious routines. Note that only the thread would be terminated, but the service would still be running.

Regardless if the API hooking was performed or otherwise, the second backdoor would still be executed after having been successfully loaded.

API hooking to evade detection

In order to hide the behaviors of the first-stage backdoor (which is the second payload), the first payload uses API hooking techniques to avoid being detected by a
specific security product and to make an interference in the result of the function execution. It hooks two different APIs, namely “ZwOpenProcess” and
“GetExtendedTcpTable”, to hide its specific processes. The payload only modifies the functions in the memory of the security product process, hence the original
system DLL files remain unchanged.

The payload is composed of a two-stage shellcode. The first-stage shellcode finds a specific security product’s process with a hardcoded name and injects the second-
stage shellcode into that process. The second-stage shellcode then performs API hooking inside the targeted process.

Hiding process identifiers (PIDs)

The process identifiers or PIDs to be hidden are stored in the shared memory “Global\<computer_name>.” If the shared memory doesn’t exist, it takes the PID
embedded by the first-stage shellcode. In this case, the intention of the malicious code is to hide Waterbear’s backdoor activities from the security product.
Therefore, the first-stage shellcode takes the PID of the Windows Service — which the first-stage shellcode and the succeeding backdoor both inject into — hides the
target process, and embeds that PID into the second-stage shellcode.

D0000000002F0D01 FF93 98020(€all qword ptr ds:[rbx+298] GetCurrentProcessId RBX 00000000003322F0
D0000000002FOD07 BE 1F000FO(mov esi,FO0LF RCX 00000000000F00LF
00000000002F0DOC 4C:8D8424 |Tea r8, qword ptr ss:[Ersp+B0[RDX 0000000000000000
D0000000002F0D14 8BCE mov e(x,esi

REF 0000000000000005
RSP 00000000002EF7D8

ncT nnNOnNNNNNNNENNT K

'C'C'C'C'C'OC'C'C'7FC'Dla

33D2 xor edx,edx
8903 mov dword ptr ds:[rbx],eax

Figure 8. Code that injects current PID into the second-stage shellcode
Hooking “ZwOpenProcess” in ntdll.dll

The purpose of hooking “ZwOpenProcess” is to protect the specific process from being accessed by the security product. Whenever “ZwOpenProcess” is called,
the injected code will first check if the opened process hits any PIDs in the protected process ID list. If yes, it modifies the process ID, which should open on another
Windows Service PID.

First, it builds the hooked function and writes the function at the end of “ntdll.dll”’. This function includes two parts, as shown in Figure 9:
1. The PID checking procedure. It recursively checks if the PID to be opened by “ZwOpenProcess” is in the list of the protected process IDs. If yes, it replaces

the PID to be opened with another Windows Service PID that has been written by the Waterbear loader in the beginning.
2. After the PID checking procedure, it executes the original “ZwOpenProcess” and returns the result.

77555868 52 push edx
7755586C 51 push ecx
7755586D 884424 18 mov eax,dword ptr ss:|[lespi18] The PID that the API wants to open
7755587]_ B9 10DB5300 mov ecx,53DB10 The targeted PID that needs to be hidden
77555876 8811 mov edx dword ptr ds:[ecx]
77555878 85D2 test edx,edx
7755587A « 74 0D je ntdl1.77555889
7755587C 83C1 04 add ecx,4
755587F 3910 cmp dword ptr ds:[eax],edx Compares if the PID should be hidden
77555881 ~ 75 F3 jne ntdl1.77555876 . i .
77555883 C700 00000000 mov dword ptr ds:[eax],0 If so, it replaces the PID in argv with
77555889 59 pop egx another PID
77 A _
r7e22ean %8 23000000 i lhieforgiepu=l e Zwipeniioces=g
77555890 33C9 XOr ecx,ecx
77555892 805424 04 lea edx,dword ptr ss:|fespi4]
77555896 64:FF15 C0000000 |€&ll dword ptr Hl:[CO]
7755589D B3Cc4 04 add esp,4
775558A0 c2 1000 ret 10

https://blog.trendmicro.com/trendlabs-security-intelligence/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection/ 5/9

https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/API-Hooking-01.jpg
https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/fig8new.png
https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/Figure-8-01.jpg

12/12/2019 Waterbear is Back, Uses API Hooking to Evade Security Product Detection - TrendLabs Security Intelligence Blog

Figure 9. The function hook of “ZwOpenProcess” to check and modify the output of the function

Secondly, it writes “push <ADDRESS> ret” at the beginning of the original “ZwOpenProcess” address. Hence, when “ZwOpenProcess” is called, the modified
version of “ZwOpenProcess” will be executed.

7748FC10 68 68585577
7748FC15 c3

push ntd11.77555868
ret

NtOpenProcess

Figure 10. “ZwOpenProcess” after modification

The API hooking on “ZwOpenProcess” will only be triggered if “%temp %\KERNELBASE.dII” exists on the host. It is possible that this check is designed
according to the nature of the security product it targets.

“GetExtendedTcpTable” and “GetRTTAndHopCount” hooks in iphlpapi.dil

The second part of API hooking hooks on “GetExtendedTcpTable.” “GetExtendedTcpTable” is used for retrieving a table that contains a list of TCP endpoints
available to the application, and it is frequently used in some network-related commands, such as netstat. The purpose of the hook is to remove TCP endpoint records
of certain PIDs. In order to achieve that, it modifies two functions: “GetExtendedTcpTable” and “GetRTTAndHopCount.” The second function,
“GetRTTAndHopCount,” acts as the place to put the injected hooking code.

“GetExtendedTcpTable” only writes a jump to “GetRTTAndHopCount” in the beginning of the function. Only the first 5 bytes of the code of the API
“GetExtendedTcpTable” are changed, as shown in Figure 11.

74BB1A%A|* E9 DIEBFFEF |JMP TPHLPAPI.GetRTTAndHopCount

Figure 11. Only 5 bytes changed in the “GetExtendedTcpTable”

The rest of the routine is all placed in “GetRTTAndHopCount.” In the first part of the code, it pushes [“GetRTTAndHopCount”+0x3E] as the return address and
then executes the first four instructions of the original “GetExtendedTcpTable” function (which has already been replaced by the jump instruction in Figure 11).
After that, it jumps to “GetExtendedTcpTable” to execute the function normally and to catch its return values. The code is shown in Figure 12.

60 pushad “GetRTTAndHopCount?”
BB4424 24 mov eax,dword ptr ss:|[fesp+24]
8B4C24 30 mov ecx,dword ptr ss:fespi30]
50 push eax
51 push ecx
89 18000000 mov ecx,18
29CC sub esp,ecx
807424 44 Tea esi,dword ptr ss:|[esp+44]
B9E7 mov edi,esp
FC cld
F3:ad r'e|i| movsh
E8 00000000 €all iphlpapi.74370382 call $0
5B pop ebx
83EB 20 sub ebx,20
8043 3E lea eax,dword ptr ds:[ebx:+3E] Push the following function hook’s addr as return addr
50 push eax
8BFF mov edi,edi The original beginning of “GetExtendedTcpTable”
55 push ebp
BBEC mov ebp,esp
6A 02 push 2
a0 nop
90 nop
90 nop
90 nop
90 nop
90 nop
90 nop
90 nop
90 nop
~ FFA3 B2000000 jmp dword ptr ds:[ebx+B2] jmp to “GetExtendedTcpTable” + 7

Figure 12. The first part of injected code in “GetRTTAndHopCount,” which executes “GetExtendedTcpTable” and returns back to the next instruction
After “GetExtendedTcpTable” is executed and the process returns back to the second part of the code, it iteratively checks every record in the returned Tcp table. If

any record contains the PID Waterbear wants to hide, it will remove the corresponding record, modify the record number inside the table, and continue to check the
succeeding records. In the end, it returns the modified table.

https://blog.trendmicro.com/trendlabs-security-intelligence/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection/ 6/9

https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/fig10new.png
https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/fig11new.png
https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/Figure-11-01.jpg

12/12/2019
743703A0

“4““0 IAB
743703AF
743703 Ba
'\"CI

74370389
74370388
3703c1
743703C3

743703C5| ~

743703C
743703CA

743703CC| ~

743703CE

74370301 ~

743703D3
3703D4
3703DA

7437030D| -

743703DF
3703E0
3703E1
743703E3
743703E5
743703E8
743703EB
743703EC
743703EE
743703EF
743703F0
743703F2
743703F7
743703F9
743703FA
3703FD
74370400
74370403
370405
370406
7437040A
74370408
7437040C
37040D
74370411

Waterbear is Back, Uses API Hooking to Evade Security Product Detection - TrendLabs Security Intelligence Blog

833c24 02
75 60
85C0

75 5C

20

8B6C24 08
8B4D 00
8B5424 08
83C2 04
31F6

8BE3 BLOOOOOO
8800

85C0

74 39
8B7A 14
39C7

74 11
83FE 0A
7D 2D

46

8B83 B60O0000OO
8B0O4B0O

EB E4

B9 18000000
F3:AA

59

83Ea 18
FF4D 00
83c2 18
EZ B4

58

894424 2C
54

5A

61

8B4424 (04
c2 1800

cmp dword ptr ss:[fespl,?

jne diphlpapi.74370406

test eax,eax

jne iphlpapi.74370406

push eax

mov ebp,dword ptr ss:[fespiE]
mov ecx,dward ptr ss:[ebp]
mov edx,dword ptr ss:[esp+8]
add edx,4

xor esi,esi

mov eax,dword ptr ds:
mov eax,dword ptr ds:
test eax,eax

je iphlpapi.74370400
mov edi,dword ptr ds:
cmp edi,eax

je 1ph1pap1 743703DF
cmp esi,

jae 1ph1pap1 74370400
inc esi

mov eax,dword ptr ds:[ebx+B6]

[ebx+B6]
[eax]

[edx+14]

mov eax,dword ptr ds:[eax+tesi 4]
jmp iphlpapi.743703C3

push ecx

dec ecx

mov edi,edx

mov esi,edx

add esi,18

imul ecx,ecx,18

cld

rep movsh

pop ecx

push ecx

XOr eax,eax

mov ecx,18

rep stosb

pop ecx

sub edx,18

dec dword ptr ss:[febp]
add edx,18

loop diphlpapi.743703B9
pop eax

mov dword ptr ss:lesp+2C],eax
pop edx

pop edx

popad

mov eax,dword ptr ss:[fespid]
FEE 18

Loops through the results to
check every PID

If the PID matches, it jumps to
the removal part

Removes the hit record

Reduces the record number in
the returned structure

Returns the modified table

Figure 13. The first part of injected code in “GetRTTAndHopCount,” which executes “GetExtendedTcpTable” and returns back to the next instruction

Rather than directly disabling these two functions, this method of using API hooking makes noticing malicious behaviors more difficult, especially since both
functions still work and return results normally. Although in this case, the affected process is specified in the first-stage shellcode, the API hooking logic is quite
generic that the same piece of shellcode can be used to hook other vendors’ products.

Conclusion

This is the first time we’ve seen Waterbear attempting to hide its backdoor activities. By the hardcoded product name, we infer that the attackers are knowledgeable

of the victims’ environment and which security product(s) they use. The attackers might also be familiar with how security products gather information on their

clients’ endpoints and networks, so that they know which APIs to hook. Since the API hooking shellcode adopts a generic approach, the similar code snippet might

be used to target other products in the future and make the activities of Waterbear harder to detect.

Tactic Technique
Execution through Module Load
Execution
Execution through API
Persistence
Hooking
Privilege Process Injection
Escalation
Hooking
Defense . .
Evasion Binary Padding

Disabling Security Tools

ID Description

through the shellcode

Dynamically loads the DLLs

T1106
Dynamically loads the APIs
through the shellcode
T1179
Hooks security product’s
commonly used APIs
T1055 'In jects the decrypts payload
— into svchost.exe process
T1179
Hooks security products’
commonly used APIs
T1009 Adds junk data to evade anti-
—— virusscan
Targets a specific security
T1089 product’s process for injection

purposes

https://blog.trendmicro.com/trendlabs-security-intelligence/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection/

79

https://blog.trendmicro.com/trendlabs-security-intelligence/files/2019/12/Figure12-01.jpg
https://attack.mitre.org/techniques/T1129/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1179/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1179/
https://attack.mitre.org/techniques/T1009/
https://attack.mitre.org/techniques/T1089/

12/12/2019 Waterbear is Back, Uses API Hooking to Evade Security Product Detection - TrendLabs Security Intelligence Blog
Deobfuscate/Decode Files or T1140 Uses TROJ_WATERBEAR to
Information decrypt encrypted payload

Targets specific software in the

Execution Guardrails T1480 e .
victim's environment

Uses modified legitimate DLL

DLL Side-Loading to load the malicious DLL

Process Injection T1055 Injects the decrypted payload

—— into svchost.exe process
Exfiltration Exfiltration Over Command and T1041 Possibly sends collected data to

Control Channel — attackers via C&C channel

Indicators of Compromise (IoCs)

SHA256 Detection Name

649675baef92381ffcdfad42e8959015e83c1ablc7bbfd64635ce5f6f65efd651 BKDR_WATERBEAR.ZTGF
3909e837f3a96736947e387a84bb57¢57974db9b77fb1d8fa5d808a89f9a401b TROJ_WATERBEAR.ZTGD
fcfdd079b5861c0192e559¢80e8f393b16bad19186066a21aab0294327ea%¢58 TROJ_WATERBEAR.ZTGJ
3f26a971e¢393d7f6ce7bf4416abdbfaldef843a0cf74d8b7bb841ca90f5¢9ed9 TROJ_WATERBEAR.ZTGH
abb91dfd95d11a232375d6b5cdf94b0f7afb9683fb7af3eS0bcecdb2bd6cb035 TROJ_WATERBEAR.ZTGH
bda6812¢3bbba3c885584d234be353b0a2d1blcbd29161deab0ef8814acle8el TROJ_WATERBEAR.ZTGI
53402b662679f0bfd08de3abb064930af40ff6c9ec95469ce8489f65796e36c3 TROJ_WATERBEAR.ZTGH
f9f6bc637f59ef843bc939cb6be5000da5b9277b972904bf84586ea0al7a6000 TROJ_WATERBEAR.ZTGI
3442c076¢8824d5da065616063a6520ee1d9385d327779b5465292ac978dec26 BKDR_WATERBEAR.ZTGD
7858171120792e5c¢98cfa75ccde7cbad9e62a2aeb32ed62322aae0a80a50flea TROJ64_WATERBEAR.ZTGI
acb2abc7fb44c2fdealb65706d 1e8b4cObfb20e4bd4dcee5b95b346a60c6bd31 BKDR_WATERBEARENC.ZTGF
b9f3a3b9452a396¢3ba0ce4a644dd2b7f494905e820e7b1c6dca2fdcce069361 BKDR64_WATERBEAR.ZTGD
7¢0d2782a33debb65b488893705¢71a001ea06c4eb4fe88571639ed71ac85cdd BKDR_WATERBEARENC.ZTGH
¢7¢7b2270767aaa2d66018894a7425ba6192730b4fe2130d290cd46af5ccOb7b BKDR_WATERBEARENC.ZTGI
7532fe7al6bal db4d5e8d47de04b292d94882920cb672¢89248d07e77ddd0138 BKDR_WATERBEARENC.ZTGI
dea5c564c9d961ccf2ed535139fbfcadf1727373504£2972ac92acfaf21da831 BKDR_WATERBEARENC.ZTGI
05d0ab2fbeb7e0ba7547afb013d307d32588704daac9c12002a690e5c1cde3ad BKDR64_WATERBEARENC.ZTGJ
39668008deb49a9b9a033fd0 1e0ea7c5243ad958afd82f79¢1665fb73c7cfadf BKDR_WATERBEARENC.ZTGD

Say NO to ransomware.

Trend Micro has blocked over 100 million threats and counting

ENTERPRISE » SMALL BUSINESS » HOME »
Tags: API HookingBlackTechWaterbear
0 Comments TrendLabs © Login
Q Recommend Sort by Best
Start the discussion...
LOG IN WITH OR SIGN UP WITH DIsaus (2)

Name

Be the first to comment.

4 Subscribe Q Add Disqus to your siteAdd DisqusAdd

Featured Stories

https://blog.trendmicro.com/trendlabs-security-intelligence/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection/

8/9

https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1480/
https://attack.mitre.org/techniques/T1073/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1041
http://www.trendmicro.com/us/security-intelligence/enterprise-ransomware/index.html
http://www.trendmicro.com/us/security-intelligence/small-business-ransomware/index.html
http://www.trendmicro.com/us/home/consumer-ransomware/index.html
https://blog.trendmicro.com/trendlabs-security-intelligence/tag/api-hooking/
https://blog.trendmicro.com/trendlabs-security-intelligence/tag/blacktech/
https://blog.trendmicro.com/trendlabs-security-intelligence/tag/waterbear/
https://disqus.com/
https://disqus.com/home/forums/trendlabs/
https://disqus.com/home/inbox/
https://publishers.disqus.com/engage?utm_source=trendlabs&utm_medium=Disqus-Footer

12/12/2019 Waterbear is Back, Uses API Hooking to Evade Security Product Detection - TrendLabs Security Intelligence Blog

systemd Vulnerability I.eads to Denial of Service on Linux
gkG Filecoder: Self-Replicating, Document-Encrypting Ransomware

A Closer Look at North Korea’s Internet
From Cybercrime to Cyberpropaganda

o o o o o
=
=
aq
]
=
=
1]
@}
<
=
DD
=3
—
[+
(I
N
Co
o
o>
=
—
=
=
>
1
o>
=
>
1))
«
2
(«
=
=8
les]
=
uq
.
=
(€]
=
=
=
(«}
—
~
c
=
=
<

Security Predictions for 2019

¢ Our security predictions for 2019 are based on our experts’ analysis of the progress of current and emerging technologies, user behavior, and market trends, and
their impact on the threat landscape. We have categorized them according to the main areas that are likely to be affected, given the sprawling nature of the
technological and sociopolitical changes under consideration.
Read our security_predictions for 2019.

Business Process Compromise

o Attackers are starting to invest in long-term operations that target specific processes enterprises rely on. They scout for vulnerable practices, susceptible
systems and operational loopholes that they can leverage or abuse. To learn more, read our Security 101: Business Process Compromise.

Recent Posts

Waterbear is Back, Uses API Hooking to Evade Security Product Detection

December Patch Tuesday: Vulnerabilities in Windows components, RDP, and PowerPoint Get Fixes
Obfuscation Tools Found in the Capesand Exploit Kit Possibly Used in “KurdishCoder” Campaign

Mobile Cyberespionage Campaign Distributed Through CallerSpy Mounts Initial Phase of a Targeted Attack
Operation ENDTRADE: Finding Multi-Stage Backdoors that TICK

Popular Posts

Mac Backdoor Linked to Lazarus Targets Korean Users

New Magecart Attack Delivered Through Compromised Advertising Supply Chain

September Patch Tuesday Bears More Remote Desktop Vulnerability Fixes and Two Zero-Days

Microsoft November 2019 Patch Tuesday Reveals 74 Patches Before Major Windows Update

Banking Trojan DRIDEX Uses Macros for Infection

Stay Updated

Email Subscription

Your email here

Subscribe

Home and Home Office
IFor Business

ISecurity Intelligence
Lbout Trend Micro

e Asia Pacific Region (APAC): Australia / New Zealand, H1[#, H4c, o 3t1 =5, &
¢ Latin America Region (LAR): Brasil, México
¢ North America Region (NABU): United States, Canada

o Privacy Statement
¢ Legal Policies

o Copyright © 2019 Trend Micro Incorporated. All rights reserved.

https://blog.trendmicro.com/trendlabs-security-intelligence/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection/ 9/9

https://blog.trendmicro.com/trendlabs-security-intelligence/systemd-vulnerability-leads-to-denial-of-service-on-linux/
https://blog.trendmicro.com/trendlabs-security-intelligence/qkg-filecoder-self-replicating-document-encrypting-ransomware/
https://blog.trendmicro.com/trendlabs-security-intelligence/mitigating-cve-2017-5689-intel-management-engine-vulnerability/
https://blog.trendmicro.com/trendlabs-security-intelligence/a-closer-look-at-north-koreas-internet/
https://blog.trendmicro.com/trendlabs-security-intelligence/from-cybercrime-to-cyberpropaganda/
https://www.trendmicro.com/vinfo/us/security/research-and-analysis/predictions/2019
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/security-101-business-process-compromise
https://blog.trendmicro.com/trendlabs-security-intelligence/waterbear-is-back-uses-api-hooking-to-evade-security-product-detection/
https://blog.trendmicro.com/trendlabs-security-intelligence/december-patch-tuesday-vulnerabilities-in-windows-components-rdp-and-powerpoint-get-fixes/
https://blog.trendmicro.com/trendlabs-security-intelligence/obfuscation-tools-found-in-the-capesand-exploit-kit-possibly-used-in-kurdishcoder-campaign/
https://blog.trendmicro.com/trendlabs-security-intelligence/mobile-cyberespionage-campaign-distributed-through-callerspy-mounts-initial-phase-of-a-targeted-attack/
https://blog.trendmicro.com/trendlabs-security-intelligence/operation-endtrade-finding-multi-stage-backdoors-that-tick/
https://blog.trendmicro.com/trendlabs-security-intelligence/mac-backdoor-linked-to-lazarus-targets-korean-users/
https://blog.trendmicro.com/trendlabs-security-intelligence/new-magecart-attack-delivered-through-compromised-advertising-supply-chain/
https://blog.trendmicro.com/trendlabs-security-intelligence/september-patch-tuesday-bears-more-remote-desktop-vulnerability-fixes-and-two-zero-days/
https://blog.trendmicro.com/trendlabs-security-intelligence/microsoft-november-2019-patch-tuesday-reveals-74-patches-before-major-windows-update/
https://blog.trendmicro.com/trendlabs-security-intelligence/banking-trojan-dridex-uses-macros-for-infection/
http://www.trendmicro.com/us/home/index.html
http://www.trendmicro.com/us/business/index.html
http://www.trendmicro.com/us/security-intelligence/index.html
http://www.trendmicro.com/us/about-us/index.html
http://www.trendmicro.com.au/au/home/index.html
http://www.trendmicro.co.nz/nz/home/index.html
http://cn.trendmicro.com/cn/home/index.html
http://jp.trendmicro.com/jp/home/index.html
http://www.trendmicro.co.kr/index.html
http://tw.trendmicro.com/tw/home/index.html
http://br.trendmicro.com/br/home/index.html
http://la.trendmicro.com/la/home/index.html
http://www.trendmicro.com/us/index.html
http://ca.trendmicro.com/ca/home/index.html
http://www.trendmicro.fr/
http://www.trendmicro.de/
http://www.trendmicro.it/
http://www.trendmicro.com.ru/
http://www.trendmicro.es/
http://www.trendmicro.co.uk/
http://www.trendmicro.com/us/about-us/legal-policies/privacy-statement/index.html
http://www.trendmicro.com/us/about-us/legal-policies/index.html

