
1/8

October 27, 2021

Wslink: Unique and undocumented malicious loader that
runs as a server

welivesecurity.com/2021/10/27/wslink-unique-undocumented-malicious-loader-runs-server

ESET researchers have discovered a unique and previously undescribed loader for Windows

binaries that, unlike other such loaders, runs as a server and executes received modules in

memory. We have named this new malware Wslink after one of its DLLs.

We have seen only a few hits in our telemetry in the past two years, with detections in

Central Europe, North America, and the Middle East. The initial compromise vector is not

known; most of the samples are packed with MPRESS and some parts of the code are

virtualized. Unfortunately, so far we have been unable to obtain any of the modules it is

supposed to receive. There are no code, functionality or operational similarities that suggest

this is likely to be a tool from a known threat actor group.

The following sections contain analysis of the loader and our own implementation of its

client, which was initially made to experiment with detection methods. This client’s source

code might be of interest to beginners in malware analysis – it shows how one can reuse and

interact with existing functions of previously analyzed malware. The very analysis could also

serve as an informative resource documenting this threat for blue teamers.

Technical analysis

Wslink runs as a service and listens on all network interfaces on the port specified in the

ServicePort registry value of the service’s Parameters key. The preceding component that

registers the Wslink service is not known. Figure 1 depicts the code accepting incoming

connections to that port.

https://www.welivesecurity.com/2021/10/27/wslink-unique-undocumented-malicious-loader-runs-server/


2/8

Figure 1. Hex-Rays decompilation of the loop accepting incoming connections

Accepting a connection is followed by an RSA handshake with a hardcoded 2048-bit public

key to securely exchange both the key and IV to be used for 256-bit AES in CBC mode (see

Figure 2). The encrypted module is subsequently received with a unique identifier –

signature – and an additional key for its decryption.

Interestingly, the most recently received encrypted module with its signature is stored

globally, making it available to all clients. One can save traffic this way – transmit only the

key if the signature of the module to be loaded matches the previous one.

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-1.-Hex-Rays-decompilation-of-the-loop-accepting-incoming-connections.jpg


3/8

Figure 2. Hex-Rays decompilation of receiving the module and its signature

As seen in Figure 3, the decrypted module, which is a regular PE file, is loaded into memory

using the MemoryModule library and its first export is finally executed. The functions for

communication, socket, key and IV are passed in a parameter to the export, enabling the

module to exchange messages over the already established connection.

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-2.-Hex-Rays-decompilation-of-receiving-the-module-and-its-signature.jpg
https://github.com/fancycode/MemoryModule


4/8

Figure 3. Hex-Rays decompilation of code executing the received module in memory

Implementation of the client

Our own implementation of a Wslink client, described below, simply establishes a

connection with a modified Wslink server and sends a module that is then decrypted and

executed. As our client cannot know the private key matching the public key in any given

Wslink server instance, we produced our own key pair and modified the server executable

with the public key from that pair and used the private key in our Wslink client

implementation.

This client enabled us to reproduce Wslink’s communication and search for unique

patterns; it additionally confirmed our findings, because we could mimic its behavior.

Initially some functions for sending/receiving messages are obtained from the original

sample (see Figure 4) – we can use them right away and do not have to reimplement them

later.

Figure 4. The code for loading functions from a Wslink’s sample

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-3.-Hex-Rays-decompilation-of-code-executing-the-received-module-in-memory.jpg
https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-4.-The-code-for-loading-functions-from-a-Wslink%E2%80%99s-sample.jpg


5/8

Subsequently, our client reads the private RSA key to be used from a file and a connection to

the specified IP and port is established. It is expected that an instance of Wslink already

listens on the supplied address and port. Naturally, its embedded public key must also be

replaced with one whose private key is known.

Our client and the Wslink server continue by performing the handshake that exchanges the

key and IV to be used for AES encryption. This consists of three steps, as seen in Figure 5:

sending a client hello, receiving the symmetric key with IV, and sending them back to verify

successful decryption. From reversing the Wslink binary we learned that the only constraint

of the hello message, apart from size 240 bytes, is that the second byte must be zero, so we

just set it to all zeroes.

Figure 5. Our client’s code for the RSA handshake

The final part is sending the module. As one can see in Figure 6, it consists of a few simple

steps:

receiving the signature of the previously loaded module – we decided not to do

anything with it in our implementation, as it was not important for us

sending a hardcoded signature of the module

reading the module from a file, encrypting it (see Figure 7) and sending it

sending the encryption key of the module

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-5.-Our-client%E2%80%99s-code-for-the-RSA-handshake.jpg


6/8

Figure 6. Our client’s code for sending the module

Figure 7. Our client’s code for loading and encrypting the module

The full source code for our client is available in our WslinkClient GitHub repository. Note

that the code still requires a significant amount of work to be usable for malicious purposes

and creating another loader from scratch would be easier.

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-6.-Our-client%E2%80%99s-code-for-sending-the-module.jpg
https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-7.-Our-client%E2%80%99s-code-for-loading-and-encrypting-the-module.jpg
https://github.com/eset/wslink-client


7/8

Conclusion

Wslink is a simple yet remarkable loader that, unlike those we usually see, runs as a server

and executes received modules in memory.

Interestingly, the modules reuse the loader’s functions for communication, keys and

sockets; hence they do not have to initiate new outbound connections. Wslink additionally

features a well-developed cryptographic protocol to protect the exchanged data.

IoCs

Samples

SHA-1 ESET detection name

01257C3669179F754489F92947FBE0B57AEAE573 Win64/TrojanDownloader.Wslink

E6F36C66729A151F4F60F54012F242736BA24862

39C4DE564352D7B6390BFD50B28AA9461C93FB32

MITRE ATT&CK techniques

This table was built using version 9 of the ATT&CK framework.

Tactic ID Name Description

Enterprise T1587.001 Develop Capabilities:
Malware

Wslink is a custom PE loader.

Execution T1129 Shared Modules Wslink loads and executes
DLLs in memory.

T1569.002 System Services:
Service Execution

Wslink runs as a service.

Obfuscated
Files or
Information

T1027.002 Obfuscated Files or
Information: Software
Packing

Wslink is packed with
MPRESS and its code might
be virtualized.

Command and
Control

T1573.001 Encrypted Channel:
Symmetric
Cryptography

Wslink encrypts traffic with
AES.

T1573.002 Encrypted Channel:
Asymmetric
Cryptography

Wslink exchanges a symmetric
key with RSA.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/techniques/T1587/001/
https://attack.mitre.org/techniques/T1129/
https://attack.mitre.org/techniques/T1569/002/
https://attack.mitre.org/techniques/T1027/002/
https://attack.mitre.org/techniques/T1573/001/
https://attack.mitre.org/techniques/T1573/002/


8/8

 

 


