

ESTABLISHING THE TIGERRAT AND

TIGERDOWNLOADER MALWARE FAMILIES

Author: Markel Picado Ortiz December 2021

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 2

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3

INTRODUCTION 4

PACKER ANALYSIS 6

MALWARE FAMILIES AND VARIANTS 11

TIGERDOWNLOADER VARIANTS 14

TIGERRAT VARIANTS 17

CONCLUSIONS 21

APPENDIX 22

ABOUT THREATRAY 30

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 3

EXECUTIVE SUMMARY

Recent research by Malwarebytes (April 2021), Kaspersky (June 2021) and the Korean CERT
(September 2021), reports about attacks on South Korean entities, employing new techniques and
malware not previously identified.

The initial report by Malwarebytes attributes the attack to the Lazarus group. Kaspersky refines the
attribution to the Andariel APT, a subgroup of Lazarus. Korea CERT (KrCERT) reports a new attack
and calls the malware tools seen in this attack TigerDownloader and TigerRAT. The KrCERT report
provides a thorough and detailed, indicator-based analysis of the relationship between their
malware samples and those previously analyzed by Kaspersky and Malwarebytes. They also employ
a proprietary attribution technology to further relate the attacks.

In this report, we focus on the malware tooling from the previously reported attacks. We provide new
evidence to attribute these tools to the same downloader and RAT families. We will refer to these
families as TigerDownloader and TigerRAT respectively. We've chosen these names in recognition
of KrCERT's important work where the names were first introduced to refer to the malware tools they
studied in that same work.

We systematically study code reuse as well as functional commonalities between all the samples
used in different stages of the previously reported attacks (i.e., packers, downloaders, and RAT
payloads). We have also found that while the tools fall into the mentioned families, there are different
variants of the tools which have been deployed in the reported attacks. For the RAT payloads, we
have found three versions with distinct capabilities. For the downloaders we have found two
versions, one with and the other without persistence capabilities.

Apart from these findings, we contribute novel insights and speculations to the existing body of
knowledge toward a clearer mapping of the techniques and tools used by this threat actor. Finally,
we are making our unpacking and config extraction scripts as well as raw data available to the
community (https://github.com/threatray/tigerrat) to facilitate further research and defense
capabilities.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 4

INTRODUCTION

WHAT IS THE ANDARIEL APT GROUP?

Andariel group is a state-sponsored threat actor. It is a subgroup of the Lazarus cybercrime group,
considered one of the most sophisticated North Korean threat actors to which threat researchers
have attributed many attacks from 2009 to 2021. The Andariel group is mostly targeting South
Korean entities focusing mainly on financial gain and cyber espionage. This group is known to
employ custom tools and new techniques to increase the effectiveness of its attacks.

PREVIOUS RESEARCH

April 19, 2021: Malwarebytes has reported a recent attack targeting South Korea using a malicious
Word document. The Malwarebytes report describes the attack and attributes it to the Lazarus
group. Malwarebytes discovered a novel downloader component used in the attack. -
https://blog.malwarebytes.com/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-
within-bmp-file-to-drop-its-rat/

June 15, 2021: Kaspersky released a blog post about the same attack, mentioning the
Malwarebytes report, saying they detected the Word document in April. Kaspersky refines the
attribution to the Andariel APT group, a subgroup of Lazarus. Kaspersky’s analysis is based on
operational similarities found between the current and past attacks of the Andariel APT group. They
also identify novel downloaders and RAT payloads. In addition, they find a new ransomware
deployed by the RAT. – https://securelist.com/andariel-evolves-to-target-south-korea-with-
ransomware/102811/

September, 2021: KrCERT reports on an operation they call "ByteTiger", a campaign targeting
South Korean entities which they have attributed to the Andariel APT group. This report analyses in
detail a multistage attack with two unknown pieces of code which they call TigerDownloader and
TigerRAT. They link the new attack to the samples previously disclosed by Malwarebytes and
Kaspersky using some proprietary tooling. Linkage is apparently done through similarities / re-use
of code, rich headers, section hashes and C2 infrastructure, yet no further details are shared in the
report.
https://www.krcert.or.kr/filedownload.do?attach_file_seq=3277&attach_file_id=EpF3277.pdf

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 5

The attack chains in all the reported cases have some structural similarities (see Figure 1). In all three
reports a downloader malware has been observed. Kaspersky and KrCERT have additionally seen a
third-stage RAT components. Concerning the access methods, malicious documents have been
used in the cases reported by Malwarebytes and Kaspersky, whereas a compromised website was
used in the KrCERT case.

Figure 1: Similarities and differences between the attack chains reported by Malwarebytes,
Kaspersky and KrCERT.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 6

PACKER ANALYSIS
In this section we will first establish that the packed binaries share common code that originates from
the unpacking algorithm. Then we show that there is a common packing scheme underlying all the
packed samples at our disposal. Our findings thus provide strong evidence that the binaries are
related by the same packer. Should the packer be under exclusive control of the attacker (which we
don’t know) then our findings would allow attribution of all the binaries to the same actor.

SHARED CODE IN PACKED SAMPLES

To quickly understand if the packed samples are related, we performed an automated code reuse
analysis at the function level. The results forming that analysis are shown in Figure 2. In the table, the
numbers in the “function reuse” column measure the number of samples in which a function occurs.
As an example, the function at the address 0x140002b70 (first row) appears in 27 out of 27 the
packed samples. That is, this is a function that occurs in all packed samples.

Figure 2: Function reuse across the 27 packed binaries which we have analyzed.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 7

There are several other functions (i.e., 0x140001bf0, 0x140002030, 0x140002860) that appear in 27
or 26 samples. From the table, we can establish that the packed samples are clearly related. All of
them have two functions in common and there are various subsets of the samples that feature
substantial code reuse.

In a nutshell, the automated function reuse analysis gives us a quick understanding about the
relations of the packed samples. As we shall see next, it also directs our manual analysis efforts.

Based on the analysis, we suspected that the samples share a few functions for the effective
unpacking, while some of the remaining functions are used to avoid detections by antivirus, Yara and
related pattern-based detection technologies. We then took a closer look at these stable functions
and could confirm that they do, indeed, contain packing functionality. The results of this analysis are
shown in Figure 3.

Packed hash Function address Function reuse Functionality

0996a8e5ec1a41645309... 140002b70 (27/27) map_decrypted_payload()

0996a8e5ec1a41645309... 140001bf0 (27/27) anti_analysis_check()

0996a8e5ec1a41645309... 140002030 (26/27) do_unpacking()

0996a8e5ec1a41645309... 140002860 (26/27) dynamic_winapi_resolution()

0996a8e5ec1a41645309... 140002360 (12/27) main_program()

0996a8e5ec1a41645309... 140002a30 (14/27) relocate_mapped_payload()

Figure 3: Functionality found in the most stable functions.

We could also confirm the presence of junk code to avoid detection technologies. Figure 4 shows
the same function decrypt_payload() in two different samples. We can see junk functions like
GetFontUnicodeRanges(), GetSysColorBrush() and CreateBitMap() which are called but whose
return values are not being used. In the figure, the effective unpacking code, which in this case is the
XOR decryption algorithm, is contained within the green boxes shown.

We have found this junk-code strategy in all the packed code and throughout many functions.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 8

Figure 4: Junk code in packer code to avoid anti-virus and Yara detections.

In summary, we have seen so far that the packed samples are related by a common packer code.
The code-wise differences between the packed samples is mainly due to the presence of junk code.

COMMON PACKING SCHEME

The packer is a simple loader, which decrypts and maps the payload into memory. The decryption
scheme is a simple XOR using a 16-byte key. This has been established in previous research.

Additionally, we found that all packer variants follow the same common packing scheme, whereas
the variants of the scheme are determined by two parameters. One parameter is whether or not the
packed payload is Base64 encoded, the other is where the packed payload is stored within a PE file.

The variations concerning encoding of the payload are illustrated in Figure 5.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 9

Figure 5: Above, Base64 encoding of encrypted payload; below, encrypted payload without encoding.

Concerning the location of the packed code, we have observed that there are three locations within
a PE file where the packed payload is stored. The locations are depicted in Figure 6.

Figure 6: Variations of packed code locations in a PE file. Left to right, packed code in PE overlay, in the PE
resource section, or in a dedicated PE section which is named OTC in this example.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 10

For the third variant using a dedicated section, we observed the following section names: “KDATA,”
"OTC,” “OTS,” “OTT,” and “data.” We could not identify the significance, if any, underlying these
names.

Our findings are summarized in Figure 7, which shows the packing scheme common to all packed
downloader and RAT variants we analyzed.

Figure 7: Packing scheme common to all samples.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 11

MALWARE FAMILIES AND VARIANTS
In this section, we will establish through code reuse analysis that all the unpacked binaries fall into a
downloader or RAT family. We are calling these families the TigerDownloader and TigerRAT
malware family. These names were introduced in the KrCERT report to refer to the downloader and
RAT components in their investigation.

To get a quick understanding of the unpacked binaries, we have performed a combined cluster and
code-reuse analysis. This analysis allows us to automatically identify malware families and malware
variants within a family. The goal of this analysis is to gain a quick understanding of the relationship
between binaries and to direct analysts to the relevant samples for further manual analysis to
eventually understand the attacker’s tooling and capabilities.

The results of the cluster and code-reuse analysis are shown in Figure 8. The figure confirms that the
unpacked binaries either fall into the TigerDownloader (blue) or TigerRAT (orange) family. Moreover,
we see that each family has three variants (shown as large circles). We have used a cluster threshold
of 97.5%, meaning that binaries which are at least 97.5% similar fall into the same cluster. The clusters
in the graph consist of the so-called “cluster representatives” (large circles) and samples (small
circles) directly connected to a cluster representative. The underlying idea is that the samples within
a cluster are essentially identical and thus well represented by the cluster representative.

Figure 8: Cluster and code-reuse analysis of the unpacked samples with their abbreviated hashes.

We note that the choice of the cluster threshold has an obvious impact on the variants: A high
threshold will reveal minor and more variants, while a low one reveals fewer and only major variants.

We draw the following conclusions from the graphs:

• There is no code reuse between the TigerDownloader and the TigerRAT family. We recall
from the packer analysis that although the families are code-wise distinct, they are packed
using the same packing scheme.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 12

• Within the downloader family, there are three variants: one x86 and two x64 variants. The
two x64 variants are very closely related (i.e., 97% code reuse) and thus are likely variants
with minor differences.

• Within the RAT family, we have a similar situation with three variants: one x86 and two x64.
However, the two x64 variants only share 55% of their code and thus seem to be substantial
RAT variants.

The relations between the x64 and x86 binaries are lower, which is expected due to compiler and
CPU architecture differences, but relevant code reuse can still be found.

The table in Figure 9 shows the detailed composition of the clusters from the previous graphs. We
also notice that some (hash-wise) unique packed samples result in (hash-wise) identical unpacked
sample, reducing the effective diversity of the samples under consideration.

Figure 9: Detailed cluster information.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 13

In the following sections we will analyze the downloader and RAT variants in more detail, limiting
our analysis to the cluster representatives. This ability to reduce analysis to cluster representatives
is key for the directed and efficient analysis and tracking of malware variants. The choice of cluster
representatives and their names used in the following analysis are shown in Figure 10.

Cluster Stage Sample Name Hash

0 RAT (x64)
3rd stage

RAT-Kaspersky-
x64

bbddcb280af742ce10842b18b9d71206
32cc042a8fe42eed90fc4bc94f2d71ac

1 RAT (x64)
3rd stage

RAT-KrCERT-x64 32f6b229913d68daad937cc72a57aa452
91a9d623109ed48938815aa7b6005c

2 Downloader (x64)
2nd stage

Downloader-
Malwarebytes-x64

1177105e51fa02f9977bd435f9066123ac
e32b991ed54912ece8f3d4fbeeade4

3 Downloader (x64)
2nd stage

Downloader-
Kaspersky-x64

588cdbd3ee3594525eb62fa7bab148f6d
7ab000737fc0c311a5588dc96794acc

4 Downloader (x86)
2nd stage

Downloader-
Kaspersky-x86

49a13bf0aa53990771b7b7a7ab31d6805
ed1b547e7d9f114e8e26a98f6fbee28

5 RAT (x86)
3rd stage

RAT-Kaspersky-
x86

464eaa82103f6f479e0d62dd48d2dab8e
ce300458136c03165d20915ee658067

Figure 10: Cluster representatives used in the subsequent analysis.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 14

TIGERDOWNLOADER VARIANTS
In this section, we take a closer look at the two downloader variants: Downloader-Malwarebytes-x64
and Downloader-Kaspersky-x64. From the cluster and code reuse analysis (see Figure 8) we know
that they share 97% of code and thus are minor variants of the TigerDownloader family.

Using the binary diffing capabilities of our analysis toolchain, we see in Figure 11 that the samples
are largely made up of the same functions, except for one unique function (the one with the address
0x140001230) in the Kaspersky (Downloader-Kaspersky-x64) sample.

Figure 11: Function level diff between Downloader-Kaspersky-x64 and Downloader-Malwarebytes-x64.

Analyzing the downloader sample from Kaspersky (see Figure 12), we see that the unknown function
(0x140001230) is called from the main function of the downloader.

Figure 12: Left, Downloader-Kaspersky-x64; right, Downloader-Malwarebytes-x64.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 15

It turns out that this function is used to achieve persistence. The technique being used is
straightforward and consists of creating a link in the current user startup folder to make sure that the
downloader is started upon reboot of a victim machine (see Figures 13 and 14).

Figure 13: Function which creates a shortcut for persistence.

Figure 14: Shortcut to persistent executable.

Finally, we note that we haven’t found any persistence techniques in the Downloader-Malwarebytes-
x64 sample. The reason is likely to minimize indicators being left on victim machines.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 16

POSSIBLE CONNECTIONS TO THE KRCERT TIGERDOWNLOADER

Unfortunately, the downloader sample (f0ff67d4d34fe34d52a44b3515c44950) from the KrCERT
report is not available publicly, thus we could not include it into our analysis. To nevertheless
examine possible relations between KrCERT and the Malwarebytes and Kaspersky downloaders, we
attempted to connect them purely based on the artifacts and behaviors publicly reported by KrCERT.

Let’s start with a negative result. KrCERT reports a couple of C2 commands which they have found
in their downloader (see Figure 15). We couldn’t find any of the “Tiger10X” identifiers in the
downloaders at our disposal. Neither were we able to find any other identifiers which could be
possible C2 commands.

Identifier Action

Tiger101 Send victim info

Tiger102 Receive command

Tiger103 File upload

Figure 15: TigerDownloader C2 commands reported by KrCERT.

On the other hand, we have found various aspects reported by KrCERT that are also present in the
other downloaders:

• The packer in the KrCERT reports fits into the packer scheme which we have established
above.

• KrCERT reports that the communication is encoded using Base64, which we have also
observed in our samples.

• The 3rd stages (RATs) which are downloaded by the 2nd stages (downloaders) all belong to
the same TigerRAT family (as we shall establish in the following section).

In a nutshell, the observations above suggest that the KrCERT Downloader might be related to the
downloaders observed by Malwarebytes and Kaspersky. However, this is speculative because we
lack hard evidence since we don’t have access to the KrCERT sample.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 17

TIGERRAT VARIANTS
We recall from the code reuse and cluster analysis (see Figure 8) that we could connect all RATs to
the same TigerRAT family through code-reuse analysis. We have also seen that there are RAT variants
that differ more substantially than the downloader variants. For instance, the variants RAT-Kaspersky-
x64 and RAT-KrCERT-x64 share only about 50% of their code.

In this section, we take a closer look at the RAT variants. We present strong new evidence on the
functional and design levels that further attributes the RAT variants at our disposal to the same
TigerRAT malware family. We also show that variants mainly differ in terms of the C2 commands they
implement.

For this analysis, we’ll focus on the representatives RAT-Kaspersky-x64, RAT-KrCERT-x64 and RAT-
Kaspersky-x86 which we established earlier (see Figure 10).

COMMANDS AND CAPABILITIES PER VARIANT

Let’s look at the C2 commands which we have found in the different variants. Figure 16 shows all the
C2 commands that we have observed in at least one of the three RAT variants. The absence of the
commands with the ids 0x08 and 0x09 lead us to speculate that there are yet unknown samples in
the wild which do include these commands.

Command ID

SelfDelete 0x01

SystemInfo 0x02

Shell 0x03

FileManager 0x04

Keylogger 0x05

SocksTunnel 0x06

ScreenCapture 0x07

PortForwarder 0x0a

Figure 16: Summary of all C2 commands which are available in at least one of the three RAT variants.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 18

Next, we’re looking at the C2 commands which are supported by the different variants (see Figure
17).

RAT variant Commands

RAT-Kaspersky-x86 FileManager, ScreenCapture, SelfDelete, Shell

RAT-Kaspersky-x64 FileManager, Keylogger, ScreenCapture, SelfDelete, Shell,
SocksTunnel, SystemInfo

RAT-KrCERT-x64 FileManager, Keylogger, PortForwarder, ScreenCapture,
SelfDelete, Shell, SocksTunnel, SystemInfo

Figure 17: C2 commands found in the different RAT variants.

We see that the three variants which we have automatically identified using cluster analysis are
indeed three functionally distinct variants. Apart from these variations in C2 capabilities, the core
code of the variants is largely identical. Thus, it is essentially the C2 commands that define the
three variants. We also observe that the four commands “FileManager,” “ScreenCapture,”
“SelfDelete” and “Shell” are common to all variants.

A COMMON INTERFACE FOR C2 COMMANDS

We have found an interface that is common to all three variants, as follows:

struct t_Module_GenericCommandInterface
{
 t_GenericCommand *Command;
 _DWORD id; // Command id
 t_MainStructure *MainStructure;
 _BYTE unk_data[0x10];
 _BYTE initialized;
};

struct t_GenericCommand
{
 void (*init)(t_Module_GenericCommandInterface *a1);
 void (*execute)(t_Module_GenericCommandInterface *a1);
 void (*enable)(t_Module_GenericCommandInterface *a1);
 void (*disable)(t_Module_GenericCommandInterface *a1);
 void *enabled;
};

The interface provides an abstraction that is implemented by all C2 commands found in the RATs.
This common interface establishes a strong relation between the variants within their core C2
functionalities.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 19

NEW C2 PROTOCOL VARIANT IN RAT-KRCERT-X64

The C2 protocol is essentially identical across all variants. The exception is a minor protocol change
which we spotted in the RAT-KrCERT-x64 variant. The change concerns the registration of the
malware with the C2 and consists of an extra check located in the TCP module, which is responsible
for all communication with the C2:

struct t_TCP
{
 void (*constructor)(t_Module_TCP *a1);
 void (*set_cncs)(t_Module_TCP *a1);
 void (*connect_to_cnc)(t_Module_TCP *a1);
 void (*check_response_from_cnc)(t_Module_TCP *a1);
 void (*listen_to_new_commands)(t_Module_TCP *a1);
 void (*close_socket)(t_Module_TCP *a1);
 void (*send_data)(t_Module_TCP *a1, t_EncData *a2, int a3);
 void (*process_recv_command)(t_Module_TCP *a1);
 void (*enable_commands)(t_Module_TCP *a1);
 void *var_1;
};

struct t_TCP_Variant_KrCERT-x64
{
 void (*constructor)(t_Module_TCP *a1);
 void (*set_cncs)(t_Module_TCP *a1);
 void (*connect_to_cnc)(t_Module_TCP *a1);
 void (*check_response_from_cnc)(t_Module_TCP *a1);
 void (*new_check_from_cnc_response)(t_Module_TCP *a1); // new in RAT-KrCERT-x64 variant
 void (*listen_to_new_commands)(t_Module_TCP *a1);
 void (*close_socket)(t_Module_TCP *a1);
 void (*send_data)(t_Module_TCP *a1, t_EncData *a2, int a3);
 void (*process_recv_command)(t_Module_TCP *a1);
 void (*enable_commands)(t_Module_TCP *a1);
 void *var_1;
};

In Figure 18, the red rectangle contains the new protocol check which was added to the RAT-KrCERT-
x64 variant.

Figure 18: Left, other variants; right, RAT-KrCERT-x64 variant.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 20

The new function essentially sends a 17-byte length chunk to the C2. We have not analyzed what
data is sent, but it looks like it could be related to a bot identifier or something similar. Once the
data is sent, it checks that the C2 returns the string "n0gyPPx" (see Figure 19).

Figure 19: C2 protocol check for "n0gyPPx."

In addition to this protocol change, we have also observed a change in the HTTP header that is sent
at the beginning of the communication in the very first request by the RAT-KrCERT-x64 variant (see
Figure 20).

RAT variant HTTP header

RAT-KrCERT-x64 HTTP 1.1 /index.php?member=sbi2009 SSL3.3.7

RAT-KrCERT-x64, RAT-Kaspersky-x86 HTTP 1.1 /member.php SSL3.4

Figure 20: HTTP header variants.

Based on this protocol analysis, we believe that RAT-KrCERT-x64 is a slightly newer version of the
RAT which is at the same time clearly related to the other versions.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 21

CONCLUSIONS
Our analysis revealed new evidence and insights enabling us to attribute the previously reported
Andariel APT binaries by Malwarebytes, Kaspersky and KrCERT to two new malware families. We call
these the TigerDownloader and TigerRAT families, using names originally introduced by KrCERT.
We have also seen that all the binaries are related by the same packing scheme. Our results are
based on both automated code-reuse analysis and manual analysis of the malware tooling reported
in the previous reports.

To facilitate further research and defense capabilities, we are sharing our unpacking and config-
extraction scripts as well as data with the community (https://github.com/threatray/tigerrat).

The analysis in this report is based on the malware samples at our disposal at the time of writing.
During our analysis, we found indicators suggesting that additional, not yet publicly known, variants
may exist. Since threat analysis and attribution is data driven and evolving work, additional samples
may complete our current findings or lead to new findings. We invite you to contact us with
additional information, particularly if you can share suspected or confirmed TigerDownloader or
TigerRAT binaries.

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 22

APPENDIX

ALLEGED COMPILATION DATES

We have looked at the compilation timestamps of the packed samples and concluded that they are
randomly chosen. For instance, some timestamps are in the future (e.g., “2024/06/09”) and others
many years in the past (e.g., “1996/10/17”).

On the other hand, we have found that the compilation dates of the unpacked samples appear
reasonable and likely correspond to the effective compilation dates. In fact, the unpacked
compilation timestamp is always before the first seen date. In many cases, it is 1 to 2 days before the
first seen date which makes sense due to the time delay between the infection/detection and
reporting/submission to platforms like VirusTotal. Also, none of the dates are in the future or
unrealistically old. While these still could be false flags, it is reasonable to assume that the
compilation dates of the unpacked samples correspond to their effective production date. We also
see that most of the 3rd stage (TigerRAT) samples were detected before the 2nd stage
(TigerDownloader) samples. This could indicate that until a host becomes infected by the 3rd stage,
the 2nd stage samples are not detected. It could also be due to the fact that 2nd stage samples are
stealthier and have fewer features/functions. The raw data is shown in the table below.

Packed hash Unpacked
hash

Arch. Stage Compilation
time

(packed
sample)

Compilation
time

(unpacked
sample)

First seen
(packed)

First seen
(unpacked)

f4765f7b089d
99b1cdcebf3a
d7ba7e3e23c
e411deab29b
7afd782b233
52e698f

5c2f339362d0
cd8e5a8e310
5c9c5697108
7bea2701ea3
b7324771b0e
a2c26c6c

x64 Downloader
(2nd stage)

1996-04-05 2020-12-13 2021-04-21 2021-06-19

ed5fbefd61a7
2ec9f8a5ebd7
fa7bcd632ec5
5f04bdd4a4e
24686edccb0
268e05

1177105e51fa
02f9977bd43
5f9066123ace
32b991ed549
12ece8f3d4fb
eeade4

x64 Downloader
(2nd stage)

1996-10-17 2020-12-03 2021-04-13 2021-04-22

008e906f2727
d502f130a549
eeebfda23362
e24b2f1ac6e2
c198ea82acc8
a06a

1177105e51fa
02f9977bd43
5f9066123ace
32b991ed549
12ece8f3d4fb
eeade4

x64 Downloader
(2nd stage)

1996-10-17 2020-12-03 2021-04-20 2021-04-22

b59e8f44822a
d6bc3b4067b
fdfd1ad286b8
ba76c1a3faff8
2a3feb7bdf96
b9c5

63bae252d79
6bc9ac331fdc
13744a72bd8
5d1065ef41a8
84dc11c6245
ea933e2

x64 Downloader
(2nd stage)

1996-04-05 2020-12-11 2021-04-19 2021-04-19

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 23

6310cd9f8b6a
e1fdc1b55fe1
90026a119f7e
a526cd3fc22a
215bda51c9c
28214

63bae252d79
6bc9ac331fdc
13744a72bd8
5d1065ef41a8
84dc11c6245
ea933e2

x64 Downloader
(2nd stage)

1996-04-05 2020-12-11 2021-04-19 2021-04-19

350082b3f14
e130c6337ef8
8d46d54d353
ca678550826
4112dfbd20c
e4e47b98

63bae252d79
6bc9ac331fdc
13744a72bd8
5d1065ef41a8
84dc11c6245
ea933e2

x64 Downloader
(2nd stage)

1996-04-05 2020-12-11 2021-05-11 2021-04-19

f40d387631d
db0db70128e
72239d0cae7
a22b2135c0e
c0d540e018a
a727d4c8e

588cdbd3ee3
594525eb62fa
7bab148f6d7
ab000737fc0c
311a5588dc9
6794acc

x64 Downloader
(2nd stage -
persistence)

1996-10-13 2020-11-24 2021-04-27 2021-04-27

0996a8e5ec1
a41645309e2
ca395d3a6b7
66a7c52784c
974c776f258c
1b25a76c

588cdbd3ee3
594525eb62fa
7bab148f6d7
ab000737fc0c
311a5588dc9
6794acc

x64 Downloader
(2nd stage -
persistence)

1996-10-13 2020-11-24 2021-04-27 2021-04-27

4da0ac4c3f47
f69c992abb5d
6e9803348bf
9f3c6028a721
4dcabec9a2e
729b99

588cdbd3ee3
594525eb62fa
7bab148f6d7
ab000737fc0c
311a5588dc9
6794acc

x64 Downloader
(2nd stage -
persistence)

1996-10-13 2020-11-24 2021-04-28 2021-04-27

ab194f2bad3
7bffd32fae98
33dafaa04c79
c9e117d86aa
46432eadef64
a43ad6

49a13bf0aa53
990771b7b7a
7ab31d6805e
d1b547e7d9f
114e8e26a98f
6fbee28

x86 Downloader
(2nd stage)

1996-09-08 2020-07-20 2020-07-22 2020-07-22

4d03a981bed
15a3bd91f36
972d7391b39
791c582bb29
59a9be154a7
4bd64db31

4aadf7674910
77ab83c6436
cf108b014fc0
bf8c3bd01cc6
087a0f2b8056
4bc08

x64 RAT (3rd
stage)

2023-11-28 2020-10-18 2020-10-19 2021-06-17

1f8dcfaebbcd
7e71c2872e0
ba2fc6db81d
651cf654a21d
33c78eae666
2e62392

f32f6b229913
d68daad937c
c72a57aa452
91a9d623109
ed48938815a
a7b6005c

x64 RAT (3rd
stage –
Variant 3)

1997-09-30 2021-01-18 2021-06-30 2021-10-21

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 24

d231f3b6d6e
4c56cb7f149c
bc0178f7b804
48c24f14dced
5a864015512
b0ba1f

ed11e94fd9aa
3c7d4dd0b43
45c106631fe5
2929c6e26a0
daec2ed7d22
e47ada0

x64 RAT (3rd
stage –
Variant 3)

2021-10-12 2020-12-13 2021-04-21 2021-06-21

da787cf1f4fd8
29dd4a7637b
ec392438b79
3c5f9c920560
197545d20b5
8691af

fec82f2542d7f
82e9fce3e16b
fa4024f253ad
ee7121973bd
9d67a3c7944
1b83c

x64 RAT (3rd
stage –
Variant 3)

1997-04-29 2020-11-24 2021-04-21 2021-04-21

69bac736f42e
37302db7eca
68b6fc138c3a
a9a5c902c149
e46cce8b42b
172603

8b3c8046fa77
6b70821b7e5
0baa772a395
d3d245c10bd
aa4b6171e0c
5ce3f717

x64 RAT (3rd
stage –
Variant 2)

1995-08-15 2020-09-21 2020-09-26 2021-06-17

b0d6aee39e9
88196fdc8218
95a1f1aa63d1
c032ea880c2
6a15c857068f
34bfd9

bbddcb280af
742ce10842b
18b9d712063
2cc042a8fe42
eed90fc4bc94
f2d71ac

x64 RAT (3rd
stage –
Variant 2)

2024-06-09 2021-01-11 2021-01-21 2021-01-21

0e447797aa2
0bff41607328
1adb09b73c1
5433ab855b5
cdb2d883f8c2
af9c414

bbddcb280af
742ce10842b
18b9d712063
2cc042a8fe42
eed90fc4bc94
f2d71ac

x64 RAT (3rd
stage –
Variant 2)

2024-06-09 2021-01-11 2021-01-25 2021-01-21

f13aff9e1192c
081c012f974b
29bf6048738
5eed644d506
d7f82b3538c2
b035f

bbddcb280af
742ce10842b
18b9d712063
2cc042a8fe42
eed90fc4bc94
f2d71ac

x64 RAT (3rd
stage –
Variant 2)

2024-06-09 2021-01-11 2021-01-25 2021-01-21

9137e886e41
4b12581852b
96a1d90ee87
5053f16b79b
e57694df9f93
f3ead506

bbddcb280af
742ce10842b
18b9d712063
2cc042a8fe42
eed90fc4bc94
f2d71ac

x64 RAT (3rd
stage –
Variant 2)

2024-06-09 2021-01-11 2021-01-25 2021-01-21

d26987b705f
537b10a11fb
9913d0acc02
18a0c0ae5f27
e6f821d6d98
7b1cd4c7

bbddcb280af
742ce10842b
18b9d712063
2cc042a8fe42
eed90fc4bc94
f2d71ac

x64 RAT (3rd
stage –
Variant 2)

2024-06-09 2021-01-11 2021-01-25 2021-01-21

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 25

- 868a62feff8b4
6466e9d63b8
3135a7987bf6
d332c13739a
a11b747b3e2
ad4bbf

x64 RAT (3rd
stage –
Variant 2)

 2021-01-11 2021-01-25

87f389d8f3a6
3f0879aa9d9d
fbbd2b2c9cf6
78b871b704a
01b39e1eaa2
34020c

464eaa82103f
6f479e0d62d
d48d2dab8ec
e300458136c
03165d20915
ee658067

x86 RAT (3rd
stage –
Variant 1)

2000-07-07 2020-08-27 2020-09-24 2020-09-24

2f53109e01c4
31c1c1acec66
7adee07cf907
cdc4d364290
22f915654c9b
7113b

464eaa82103f
6f479e0d62d
d48d2dab8ec
e300458136c
03165d20915
ee658067

x86 RAT (3rd
stage –
Variant 1)

2000-07-07 2020-08-27 2020-09-25 2020-09-25

ebe4befd2a7f
941baa65248
d5dea09de80
9e638ec8e8c
affae322aa3b
6863c1c

464eaa82103f
6f479e0d62d
d48d2dab8ec
e300458136c
03165d20915
ee658067

x86 RAT (3rd
stage -
Variant 1)

2000-07-07 2020-08-27 2020-09-25 2020-09-25

1892b72c053
ab48edae830
5ef449f2b539
1921efea8b1
d7c37d6d29f
59edc92e

464eaa82103f
6f479e0d62d
d48d2dab8ec
e300458136c
03165d20915
ee658067

x86 RAT (3rd
stage –
Variant 1)

2000-07-07 2020-08-27 2020-09-24 2020-09-24

e83f5e0a5184
5d7078a3aca
8ca7a5b786e
8bdf284efd3e
08b3472dbf3
e098930

464eaa82103f
6f479e0d62d
d48d2dab8ec
e300458136c
03165d20915
ee658067

x86 RAT (3rd
stage –
Variant 1)

2000-07-07 2020-08-27 2020-09-24 2020-09-24

d0fa0bfef8b1
99a42f4f3314
5274576e5a7
edeb5522fb3
42af41fdc16e
9021e2

464eaa82103f
6f479e0d62d
d48d2dab8ec
e300458136c
03165d20915
ee658067

x86 RAT (3rd
stage –
Variant 1)

2000-07-07 2020-08-27 2020-09-24 2020-09-24

f62adc678eaa
dc019277640
e6695143a45
336c2f91019f
5d9308812db
1d07285

464eaa82103f
6f479e0d62d
d48d2dab8ec
e300458136c
03165d20915
ee658067

x86 RAT (3rd
stage –
Variant 1)

2000-07-07 2020-08-27 2020-09-25 2020-09-25

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 26

0dc3f66f4af32
50f56a32f8e1
b9e772c514f7
4718358d19c
195e3950d37
0ea01

464eaa82103f
6f479e0d62d
d48d2dab8ec
e300458136c
03165d20915
ee658067

x86 RAT (3rd
stage –
Variant 1)

2000-07-07 2020-08-27 2020-09-24 2020-09-24

7d7dc8125a2
6d9515d90a6
6bfd20d6098
20197c87903
0cb932d39b1
c2998e9d4

464eaa82103f
6f479e0d62d
d48d2dab8ec
e300458136c
03165d20915
ee658067

x86 RAT (3rd
stage –
Variant 1)

2000-07-07 2020-08-27 2020-09-24 2020-09-24

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 27

EXTRACTED C2S

Another indicator to group these samples could be the C2 used by each sample. To do so, we
created a config extractor for these samples. The following table shows the C2s for each sample. The
2nd stage samples use a domain whereas the 3rd stage samples directly use an IP address.

NOTE: In the configuration of the 3rd stage there are 4 hardcoded IPs. In almost all cases, three of
them are the same IP which belong to the C2. The remaining IP is empty in some cases, and in
others it looks like a network mask (e.g. 1.0.0.0, 2.0.0.1, 4.0.0.0, 16.0.0.0). We omitted these in the
following table. You can find the “raw” configuration here:
https://github.com/threatray/tigerrat/blob/main/iocs/payload_configs.csv

Unpacked hash Arch Stage Variant C2

f32f6b229913d68daad937c
c72a57aa45291a9d623109
ed48938815aa7b6005c

x64 RAT (3rd
stage)

RAT-KrCERT-
x64
(TigerRAT)

52.202.193.124

ed11e94fd9aa3c7d4dd0b4
345c106631fe52929c6e26a
0daec2ed7d22e47ada0

x64 RAT (3rd
stage)

RAT-KrCERT-
x64
(TigerRAT)

185.208.158.208

fec82f2542d7f82e9fce3e16
bfa4024f253adee7121973b
d9d67a3c79441b83c

x64 RAT (3rd
stage)

RAT-KrCERT-
x64
(TigerRAT)

185.208.158.208

4aadf767491077ab83c6436
cf108b014fc0bf8c3bd01cc6
087a0f2b80564bc08

x64 RAT (3rd
stage)

RAT-
Kaspersky-
x64
(TigerRAT)

10.101.30.127

8b3c8046fa776b70821b7e5
0baa772a395d3d245c10bd
aa4b6171e0c5ce3f717

x64 RAT (3rd
stage)

RAT-
Kaspersky-
x64
(TigerRAT)

23.229.111.197

bbddcb280af742ce10842b
18b9d7120632cc042a8fe42
eed90fc4bc94f2d71ac

x64 RAT (3rd
stage)

RAT-
Kaspersky-
x64
(TigerRAT)

45.58.112.77

868a62feff8b46466e9d63b
83135a7987bf6d332c13739
aa11b747b3e2ad4bbf

x64 RAT (3rd
stage)

RAT-
Kaspersky-
x64
(TigerRAT)

45.58.112.77

464eaa82103f6f479e0d62d
d48d2dab8ece300458136c
03165d20915ee658067

x86 RAT (3rd
stage)

RAT-
Kaspersky-
x86
(TigerRAT)

23.229.111.197

5c2f339362d0cd8e5a8e310
5c9c56971087bea2701ea3
b7324771b0ea2c26c6c

x64 Downloa
der (2nd
stage)

Downloader-
Kaspersky-
x64

hxxp://mail.sisnet.co.kr/jsp/user/sms/sms_recv.jsp
hxxp://mail.neocyon.com/jsp/user/sms/sms_recv.jsp

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 28

1177105e51fa02f9977bd43
5f9066123ace32b991ed549
12ece8f3d4fbeeade4

x64 Downloa
der (2nd
stage)

Downloader-
Kaspersky-
x64

hxxp://www.jinjinpig.co.kr/Anyboard/skin/board.php
hxxp://mail.namusoft.kr/jsp/user/eam/board.jsp

63bae252d796bc9ac331fdc
13744a72bd85d1065ef41a
884dc11c6245ea933e2

x64 Downloa
der (2nd
stage)

Downloader-
Malwarebyte
s-x64

hxxp://snum.or.kr/skin_img/skin.php
hxxp://www.ddjm.co.kr/bbs/icon/skin/skin.php

588cdbd3ee3594525eb62f
a7bab148f6d7ab000737fc0
c311a5588dc96794acc

x64 Downloa
der (2nd
stage)

Downloader-
Kaspersky-
x64
(Persistence)

hxxp://www.jinjinpig.co.kr/Anyboard/skin/board.php
hxxp://mail.namusoft.kr/jsp/user/eam/board.jsp

49a13bf0aa53990771b7b7a
7ab31d6805ed1b547e7d9f
114e8e26a98f6fbee28

x86 Downloa
der (2nd
stage)

Downloader-
Kaspersky-
x86

hxxp://www.conkorea.com/cshop/banner/list.php
hxxp://www.allamwith.com/home/mobile/list.php

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 29

MITRE ATT&CK MAPPING

The table below shows the MITRE ATT&CK Mapping after combining all these attacks/campaigns
from previous reports and our analysis.

Technique Tactic Technique Name

T1584.006 Resource Development Compromise Infrastructure: Web Services

T1583.003 Resource Development Acquire Infrastructure: Virtual Private Server

T1566.001 Initial Access Phishing: Spearphishing Attachment

T1189 Initial Access Drive-by Compromise

T1204.002 Execution User Execution: Malicious File

T1059.007 Execution Command and Scripting Interpreter: JavaScript

T1036.005 Defense Evasion Masquerading: Match Legitimate Name or Location

T1027.003 Defense Evasion Obfuscated Files or Information: Steganography

T1497.001 Defense Evasion Virtualization/Sandbox Evasion: System Checks

T1049 Discovery System Network Connections Discovery

T1057 Discovery Process Discovery

T1113 Collection Screen Capture

T1056.001 Collection Input Capture: Keylogging

T1071.001 Command and Control Application Layer Protocol: Web Protocols

T1095 Command and Control Non-Application Layer Protocol

T1573.001 Command and Control Encrypted Channel: Symmetric Cryptography

T1041 Exfiltration Exfiltration Over C2 Channel

T1486 Impact Data Encrypted for Impact

ESTABLISHING THE TIGERRAT AND TIGERDOWNLOADER MALWARE FAMILIES 30

ABOUT THREATRAY

Threatray is a novel malware analysis and intelligence platform. We support all key malware defense
use cases, including identification / detection, hunting, response, and analysis. Threatray helps
security teams of all skill levels to effectively identify and analyze ongoing and past compromises.

At the core of Threatray are highly scalable code similarity search algorithms that find code reuse
between a new and millions of known samples in seconds. Our core search algorithms do not make
use of traditional byte pattern matches and are thus highly resilient to code mutations.

Our user facing features are based on the core search technology. They include best of class threat
family identification and detection, easy to use real-time retro-hunting and retro-detection, cluster
analysis to quickly find relevant IOCs, and low-level multi-binary analysis capabilities. Some of our
binary analysis capabilities have been used for the research presented in this report.

Contact us at https://threatray.com/contact-us or https://twitter.com/threatray

