
1/23

December 27, 2021

A Deep Dive into DoubleFeature, Equation Group’s Post-
Exploitation Dashboard

research.checkpoint.com/2021/a-deep-dive-into-doublefeature-equation-groups-post-exploitation-dashboard

Earlier this year, Check Point Research published the story of “Jian” — an exploit used by Chinese threat
actor APT31 which was “heavily inspired by” an almost-identical exploit used by the Equation Group,
made publicly known by the Shadow Brokers leak. The spicy part of the story was that Jian had been
roaming in the wild and abusing Equation Group ingenuity to compromise systems before it was cool —
as early as 2014, a full two years before the Shadow Brokers leaks made the original exploit public.
Evidently, the authors of Jian had acquired early access to it some other way.

While this discovery had undoubtedly added an extra tinge of paranoia to an already complicated affair,
we were still left with some questions of our own. Chief among those questions was, “how come that little
nugget was still just lying there for us to find, a full 4 years after the fact?”. In information security terms, 4
years is an eternity. What else would we find, if we dug deep enough? Have the Russians actually had
access to these tools back in 2013? The Iranians in 2006? The Babylonians in 700 BC?

First of all, we are glad to say the answer is (probably) no. Best that we can tell, APT31’s apparent early
access to the leaked exploit was the exception, not the rule. This makes for a less exciting headline, but
should help all of us sleep better at night. During our research, we combed over the DanderSpritz

https://research.checkpoint.com/2021/a-deep-dive-into-doublefeature-equation-groups-post-exploitation-dashboard/
https://research.checkpoint.com/2021/the-story-of-jian/

2/23

framework — a major part of the “Lost in Translation” leak — in excruciating technical detail; and we
present our findings here, with a pedagogical focus on its DoubleFeature logging tool which provides a
unique view into the rest of the framework.

What is DanderSpritz?

DanderSpritz is a full-featured post-exploitation framework used by the Equation Group. This framework
was usually leveraged after exploiting a machine and deploying the PeddleCheap “implant”. DanderSpritz
is very modular and contains a wide variety of tools for persistence, reconnaissance, lateral movement,
bypassing Antivirus engines, and other such shady activities. It was leaked by The Shadow Brokers on
April 14th, 2017 as part of the “Lost in Translation” leak.

DanderSpritz Structure and Execution Flow

DanderSpritz logic can be found effectively split in two inside the directory tree of the “Lost in Translation”
leak:

leak root
----(...)
----windows
--------bin
--------exploits
--------fuzzbunch
--------implants
--------payloads
--------resources
--------specials
--------touches
----(...)

The core functionality of DanderSpritz is contained in the file DszLpCore.exe , which can be found at
windows/bin . The framework’s plugins and complex components, including DoubleFeature which we

will later discuss in detail, can be found under windows/resources . fuzzbunch , implants , and the
other directories under windows contain modules separate from DanderSpritz which are used for
exploitation itself, taking control of victim systems, initial data gathering and so on; these are all beyond
the scope of this publication.

The basic logical unit inside DanderSpritz is what we dub a “plugin”. These reside in
windows/resources ; there are about a dozen of them and they have a very specific directory structure,

seen in the diagram below (though some of these subdirectories are optional).

There are also some other directories under windows\\resources that are not plugins (and therefore
do not have this structure), and instead contain miscellaneous auxiliary scripts (such as validation scripts
to verify the affiliation of victim machines).

https://en.wikipedia.org/wiki/The_Shadow_Brokers
https://www.bleepingcomputer.com/news/security/shadow-brokers-release-new-files-revealing-windows-exploits-swift-attacks/
https://github.com/x0rz/EQGRP_Lost_in_Translation

3/23

plugin root
----aliases
----commands
----modules
--------descriptions
--------files-dsz
------------x86
----------------<module_name>
----------------<module_name>
----------------(...)
------------x64
----------------<module_name>
----------------<module_name>
----------------(...)
------------(...)
----payloads
--------descriptions
----pylp
----pyscripts
----scripts
----tools
----uploads
----version

Aliases and Commands – These both contain XML files that declare support for “aliases” and
“commands”, respectively, which serve a similar function. When a user of the DanderSpritz
framework issues a shell command (in the general sense of the word – in the same way that a Bash
user would run ls , top and so on), DanderSpritz will iterate over every plugin, check these
XMLs and verify whether they declare support for the shell command the user typed. If the
command appears under Aliases it will be simply mapped to an existing script; a Command will
typically, under the hood, invoke the inner logic of the plugin in some way. This effectively means
that a user of DanderSpritz can run many different shell commands to achieve various results
without being aware that behind the scenes, the same plugin handled the execution of all these
requests. Under Commands (but not Aliases), additionally to the XML, there is an XSL file which
specifies a format for the command’s output as returned to the DanderSpritz user (XSL is a markup
language for specifying presentation style for XML data — it is to XML as CSS is to HTML).
Modules – Most of the plugin logic is contained in this directory. As can be inferred from the name,

the logic is further divided into smaller “modules” of functionality. The descriptions subdirectory
contains an XML file which is a sort of “manifest”. It details what scripts and binaries should be run
on the victim machine and on the “LP” (“Listening Post” — an attacker-controlled machine remotely
monitoring the victim). It also lists the plugin’s dependencies on other modules, its interface data,
what computing architectures it supports, and whether it should run on the victim machine or on the
LP. A few plugins also contain a payloads directory with a similar function.
PyLp – Contains XML files for formatting incoming information exfiltrated from the victim machine.

For every “message type” (kind of exfiltrated information), an XML specifies a Python script that
formats the data for convenient display. This formatting script resides in the PyScripts directory.
PyScripts – All the miscellaneous Python scripts used by the framework are in this directory.
Scripts – This directory also contains miscellaneous scripts, written in some sigil-heavy scripting

language that might have seemed reasonable to use before Python’s rise to prominence.

4/23

Tools – A grab-bag of self-contained material (PEs, DLLs, scripts, JARs, text files, …) which the
authors figured they’d rather just include and invoke as-is.
Uploads – stand-alone binaries which are pushed to the victim system by the plugin.
Version – contains an XML file containing the plugin version.

Below we detail the typical control flow when a plugin alias or command is invoked.

1. The DanderSpritz user types a shell command in the DanderSpritz user interface which is, behind
the scenes, implemented using that specific plugin.

Figure 1: The User Interface of DanderSpritz and its shell commands.

1. DanderSpritz’s main logic iterates over the resources directory, looking at one plugin directory
after the other. For each plugin directory, DanderSpritz looks at the aliases subdirectory and the
commands subdirectory, and scrutinizes the XML file within, looking for a declared exported

functionality matching the shell command. The match is found, and the matched XML element
specifies a path inside the plugin’s pyscripts directory.

5/23

2. DanderSpritz computes the fully qualified path of the invoked script (by appending the path
specified in the matched XML element to the path of the plugin’s pyscripts directory) and
executes the file. This is where the user interface of the invoked shell command is displayed, and
the plugin can be said to be properly running. (Ideally, this Python script is just UI and glue, while
the core functionality that interacts with the victim machine resides in a separate remote
component; but this appealing abstraction is broken somewhat in the DoubleFeature plugin
which we will dig into later.)

3. Now the attacker gets to stare at the UI of the tool they invoked for as long as they like. Eventually,
they will probably want to invoke some functionality through this UI. Depending on the functionality
chosen, the Python UI constructs a Remote Procedure Call (taken from raw hardcoded data inside
the Python — no XMLs here). It sends this RPC to the DanderSpritz component on the victim
machine. This component on the victim side then executes the call and returns a result. In this way,
RPCs are used as the API which the component on the LP accesses to perform actions on the
victim machine (such as collecting screenshots or recording voice). This API is decoupled from the
way these actions are actually implemented on the victim component side.

4. The RPC returns with the precious information required by the attacker (or maybe just a terse
“action accomplished”). The Python UI consults the XML in the Plugin’s PyLP directory that
matches the result’s message type. This XML specifies how to display the returned information on
the LP end, and the UI does so.

6/23

Figure 2: Example of XML files (both LP and Target) of a specific command.

Focus on DoubleFeature

To better understand the above structure and flow, we focused our research on a component of
DanderSpritz named Doublefeature (or Df for short). According to its own internal documentation, this
plugin “Generates a log & report about the types of tools that could be deployed on the target”; a lot of the
framework tools, in their own internal documentation, make the chilling claim that DoubleFeature is the
only way to confirm their existence on a compromised system. After some pause, we figured that at least
this means DoubleFeature could be used as a sort of Rosetta Stone for better understanding
DanderSpritz modules, and systems compromised by them. DoubleFeature effectively, well, doubles as a
diagnostic tool for victim machines carrying DanderSpritz — It’s an incident response team’s pipe dream.

7/23

Figure 3: Code of strangeland.py referring to the fact that the only way to confirm is with DF.

In a perfect world, we wouldn’t need to explain anything about the inner workings of DoubleFeature under
the hood. After all, we just went through a whole section on how DanderSpritz plugins in general work
under the hood; and DoubleFeature is one such plugin; therefore, everything above about RPC calls
whose return values are formatted per an XSL specification should still hold — right?

Unfortunately, because of DoubleFeature’s unique function as a logging module, it collects a large
amount of data of various types. RPC return values and XSL markup are just not suited to transfer and
display information on this scale. An unexpected corner use case emerged, an ad-hoc solution was
created specifically for it, and the “pretty and elegant framework for everything” vision was quietly taken to
the backyard and shot. It’s a tale as old as time.

https://strangeland.py/

8/23

Figure 4: DoubleFeature main menu

DoubleFeature’s PyScripts directory contains its Python UI interface (doublefeature.py) — but when
the attacker chooses an option from the UI menu, behind the scenes instead of simply issuing an RPC,
the script transmogrifies a “template” DLL, DoubleFeatureDll.dll.unfinalized , that resides in the
plugin’s uploads directory. The Python invokes the external tool AddResource.exe , found in the
plugin’s tools directory, to implant a resource into the already-compiled DLL and make it ready to
detonate, under a new name: DoubleFeatureDll.dll.configured . The exact command run is:

*local run -redirect command "
<g_dfconfiguretool> cmpf 6 1104 <configureddllpath> <g_dfrscfile>"*"

The flags used by the command are explained below.

c (compressed) – Zlib compress the data
m (munge) = Obfuscate the resource by XORing with pseudo-random bytes. The bytes are

generated by running a PRNG (a 32-bit LCG, if you insist) and using the execution timestamp as
the seed; to allow recovery, the seed is prepended to the obfuscated resource.
p (place) = Place the resource into a homebrew resource directory (more detail about this later).
f (finalize) = Finalize the proprietary resource directory.
6 = Type of resource (in this case, the enum value 6 translates to RT_STRING , a string-table

entry)
1104 = Name of the resource.

After the main plugin DLL **is endowed with this new resource, the Python UI uses the DanderSpritz
dllload shell command to load it on the victim machine:

dllload -ordinal 1 -library <configuredDllPath>

Once the DLL on the victim side finishes running and writing the report to the log file on the victim
machine, the Python UI exfiltrates the log file back to the attacker machine using the following
DanderSpritz shell command:

foreground get <log_file_name> -name DFReport

While (as mentioned above) most output of DanderSpritz commands is viewed according to XSL
specifications, the output of DoubleFeature is too large and varied for this approach to be feasible.
Instead, the attacker typically views the log file using a specialized program written for this purpose —
DoubleFeatureReader.exe , which can be available in the plugin’s tools directory.

DoubleFeature writes all its log data to a debug log file named ~yh56816.tmp ; this artifact was covered
in Kaspersky’s 2015 report on the remote access tool dubbed “EquationDrug” (more on that below). This
log file is encrypted using the AES algorithm. Unless the user changes the key manually, the default one
used is badc0deb33ff00d (possibly to spite vegan developers).

Main DLL of DoubleFeature

https://doublefeature.py/
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://securelist.com/inside-the-equationdrug-espionage-platform/69203/

9/23

When the patched DLL (DoubleFeatureDll.dll.configured) is first loaded on the victim machine, it
looks for a resource named “106” in a homebrew resource directory. This directory resides in the “.text”
section right after the actual code, and the DLL is able to find it by searching for a distinct magic value.
The homebrew resource directory has the following structure:

Resource_Directory_struct:
word word_0
word num_of_resources
Resource_data[] resource_array

 dword resource_directory_size
 dword magic_hash

Resource_data:
word resource_type
word resource_num
dword offset_from_directory_start
dword resource_size

This resource (which is distinct from the resource earlier grafted onto the DLL by invoking
AddResource.exe) is encrypted at rest, and in order to be used, it must be decrypted and

decompressed. The (equivalent Python of the) logic is below.

def decrypt_decompress_resource(buf, seed):
output = bytearray(b'')
for i in range(len(buf)):
 seed = (0xDD483B8F - (0x6033A96D * seed) % (2**32)) % (2**32)
 cur_xor_key = seed >> 8
 output.append((cur_xor_key & 0xff) ^ (buf[i] & 0xff))

 uncompressed_resource = zlib.decompress(output[4:])
return uncompressed_resource

Resource 106, once decompressed, is a driver called hidsvc.sys. It is loaded into the kernel by invoking
the EpMe exploit of CVE-2017-0005 (this is the very same exploit that had its logic find its way into the
Jian exploit somehow). After the driver is loaded, the DLL begins communicating with it using
DeviceIoControl s. The most interesting IOControlCode supported by the driver is 0x85892408, which

allows user-mode code to directly invoke kernel functions by simply specifying the function name and the
arguments. The driver expects incoming messages with this code to be bundled with the following struct:

ControlCode_input_buffer:
dword export_func_hash
dword num_of_arguments_bufs
dword [0x20*num] arguments_buf

Most arguments are self-explanatory, given the purpose of this control code. The one detail that bears
explanation is the export_func_hash – the function name is not passed explicitly, but instead a
checksum of it. Upon receiving the struct, the driver iterates over every exported function of
ntoskernl.exe computes the resulting checksum and compares the result with the provided
export_func_hash . Once a match is found, the driver concludes it has found the correct function. This

is a standard method to obfuscate API calls, seen in many other pieces of malware.

The checksum computation logic can be seen below.

10/23

def checksum(name, len):
val = 0
for i in range(1, len+1):
 temp = (0x1A6B8613 * i) % (2**32)
 val = val ^ (temp * ord(name[i-1]) % (2**32))
return val

Some sample checksum values:

ZwQueryInformationProcess 0x62A0A841
ZwQueryObject 0xB7241E54
ZwOpenEvent 0xDE2837FA
ZwSetEvent 0x662E22E1
ZwOpenKey 0xA20F6388
ZwFsControlFile 0x407CC9F5
ZwQueryVolumeInformationFile 0x161C4B69
ZwQueryInformationFile 0xC0E4A30A
ZwSetInformationFile 0x535ACCEA
ZwReadFile 0xB8075119
ZwWriteFile 0xBAE70F4B
ZwClose 0x69023181
ZwCreateFile 0x01862336
ZwQueryDirectoryFile 0x41483801
ZwQuerySystemInformation 0x178B07C8
ZwCreateKey 0x01862336
ZwDeleteKey 0x2C9F7CA8
ZwQueryKey 0xBDD598E2
ZwEnumerateKey 0x8D3E3E7A
ZwSetValueKey 0x90A71127
ZwEnumerateValueKey 0x040F9817
ZwQueryValueKey 0xF655B34B
ZwDeleteValueKey 0x2A1BF746
ZwWaitForSingleObject 0x86324d14

This isn’t the only aspect of DoubleFeature (and other Equation Group tools) to make life difficult for
forensic analysts. The strings used in DoubleFeature are decrypted — that alone is very standard — but
they are decrypted on-demand per function, which is somewhat more frustrating than usual, and they are
re-encrypted once function execution completes, which is much more frustrating than usual.
DoubleFeature also supports additional obfuscation methods, such as a simple substitution cipher:

11/23

def deobfuscate_strings(enc_strings):
for enc_string in enc_strings:
 replace_buffer = [0x37, 0x3B, 0x5D, 0x4B, 0x45, 0x44, 0x3C, 0x5C, 0x7B, 0x4F,
 0x74, 0x41, 0x7D, 0x7E, 0x35, 0x46, 0x23, 0x2B, 0x72, 0x71,
 0x40, 0x78, 0x4C, 0x55, 0x39, 0x56, 0x30, 0x5F, 0x50, 0x2C,
 0x29, 0x2D, 0x79, 0x59, 0x3A, 0x57, 0x53, 0x69, 0x77, 0x63,
 0x26, 0x70, 0x2A, 0x76, 0x60, 0x3D, 0x33, 0x31, 0x22, 0x47,
 0x49, 0x4E, 0x75, 0x58, 0x34, 0x68, 0x6B, 0x20, 0x67, 0x32,
 0x27, 0x65, 0x51, 0x28, 0x5B, 0x2E, 0x7C, 0x6F, 0x24, 0x4A,
 0x3E, 0x64, 0x73, 0x6D, 0x7A, 0x3F, 0x6A, 0x54, 0x62, 0x42,
 0x6C, 0x48, 0x2F, 0x25, 0x43, 0x52, 0x21, 0x66, 0x38, 0x5A,
 0x61, 0x5E, 0x36, 0x4D, 0x6E, 0x00]

 dec_string = ''
 for i in range(len(enc_string)):
 cur_place = ord(enc_string[i]) - 0x20
 dec_string += chr (replace_b

uffer[cur_place])
 print(dec_string)

And a stream cipher based on a simple homebrew linear PRNG:

def decrypt(seed, buffer, mask, first_hex_seed, second_hex_seed):
outut = ''
for i in range(len(buffer)):
 seed = (((first_hex_seed * seed) % (2 ** 32)) + second_hex_seed) % (2 ** 32)
 cur_xor_key = ((seed >> 16)) | mask
 output += chr ((cur_xor_key & 0xff) ^ buffer[i])
return output

As mentioned above, by virtue of its function, DoubleFeature is a unique source of knowledge pertaining
to Equation Group tools — after all, the entire logging module depends on an ability to query these tools
on a victim system and verify which are present. Below we list some of the tools probed by the logging
module, some of which were unknown.

Apart from resources 106 and 1104, which are actively used in the DLL’s execution flow, the main DLL’s
homebrew resource directory also contains the following resources:

Resource 1004 – UnitedRake Restart DLL.
Resource 1005 – UnitedRake Shutdown DLL.
Resource 1006 – StraitBiZarre Restart DLL.
Resource 200 – Hashes of known boot managers that are being compared to BCD partition data.
Resource 1007 – Upgrade KillSuit module DLL — references to it can be found in the code, but it
can no longer be physically found in the directory. Possibly it existed in earlier versions of the DLL
and was removed later.

Plugins Monitored by DoubleFeature

UnitedRake

12/23

UnitedRake (UR) is a remote access tool that can be used to target Windows machines. It is an
extensible and modular framework that is provided with a large number of plugins that perform different
information collection functions. This is the tool that Kaspersky dubbed “EquationDrug” in their original
report, published before the Shadow Brokers leak. The leak also included the UnitedRake manual, which
contained the configuration, commands, and modules of this tool. DoubleFeature supports many
management functions related to UnitedRake such as Shutdown, TipOff, KickStart and
Enabling/Disabling logging.

We came across the following indicators of UnitedRake:

MSNDSRV.sys – Kernel mode stage 0 and rootkit. Implements an NDIS driver for filtering the
network traffic. Until UR version 4.0.
ATMDKDRV.sys – Network-sniffer/patcher. Since UR version 4.1.
“Software\Classes\CLSID\{091FD378-422D-A36E-8487-83B57ADD2109}\TypeLib” or
“\Registry\Machine\SOFTWARE\Classes\CLSID\{091FD378-422D-A36E-8487-
83B57ADD2209}\TypeLib” – contains the GUID of UR, the special key registry key.
“\Registry\Machine\System\CurrentControlSet\Control\Session Manager\MemSubSys\{95FFB832-
8B00-6E10-444B-DC67CAE0118A-F6D58114}” – KillSuit Logging data related registry key.
“Global\64322D88-0CEA-4ce0-8562-67345B70C655” – File Mapping created in TipOff command.
“*Global*6F27089A-3482-4109-8F5B-CB3143A1AB9A” and “*Global*667FBF02-F406-4C0A-
BA65-893747A0D372” – Events created in UR Shutdown.
{A0CCDC61-7623-A425-7002-DB81F353945F-5A8ECFAD} – UnitedRake 3/4 Config Data and
Transport Info CLSID
{30F3976F-90F0-B438-D324-07E031C7507E-981BE0DD} – UnitedRake Plugins Info CLSID
{95FFB832-8B00-6E10-444B-DC67CAE0118A-F6D58114} – UnitedRake Logging data CLSID
{01C482BA-BD31-4874-A08B-A93EA5BCE511} – UnitedRake’s mutex name.

StraitBizarre

StraitBizarre (SBZ) is an implant used for stealthy data exfiltration which is performed over FriezeRamp
– a custom network protocol that is similar to IPSEC. It’s a cross-platform project, and different versions
exist supporting Windows, Linux and mobile platforms (e.g. DROPOUTJEEP for iPhone, and there’s even
TOTEGHOSTLY for Windows Mobile).

https://securelist.com/inside-the-equationdrug-espionage-platform/69203/

13/23

Figure 5: StraitBizzare information. Source: Der Spiegel

We came across the following indicators of StraitBizarre inside DoubleFeature:

{1B8C5912-8BE4-11D1-B8D3-F5B42019CAED} – SBZ CLSID for GUID, version and Special
Status Keys.

KillSuit

KillSuit (KiSu) (“GrayFish” in the original Kaspersky report) is an unusual plugin in that once deployed on
the victim machine, its entire mission is running other plugins, providing a framework for persistence and
evasion. Some (not all) DanderSpritz plugins can be either run individually, or be invoked through KillSuit.
Its design is such that every instance of KillSuit running on the victim side can host a single tool (such as
MistyVeal, below); and so, it can easily happen that a victim machine will have several instances of
KillSuit installed on it, each hosting a different post-exploitation tool. The data for each KillSuit instance,
including all its modules, is kept encrypted in registry entries. This is something unique to KillSuit and is
not a feature of DanderSpritz plugins in general.

DoubleFeature logs a great amount of data pertaining to KillSuit. In fact, there is also some dead code
inside DoubleFeature that allows deleting, upgrading and pushing module updates into running KillSuit
instances (we agree with the decision to deprecate this code; after all, DoubleFeature is supposed to be

14/23

used for logging, and we’ll soon see this functionality in the KillSuit Python UI, where it belongs). While
“KillSuit” is the name used inside DoubleFeature and in the outer-layer DanderSpritz CLI that the attacker
will actually invoke, actually the Plugin folder name used internally is DecibalMinute (DeMi for short). The
Python UI logic can mainly be found inside 3 scripts that, unsurprisingly, reside in the plugin’s
pyscripts directory.

“Mcl_Cmd_DiBa_Tasking.py” – handles KiSu installation, uninstallation and upgrades. As a
parameter, this script accepts the type of persistence mechanism to use; there are 4 types of
persistence, helpfully named “Default”, “Launcher”, “SoTi” and “JuVi”. We elaborate on their internal
workings a bit further below. Under the hood, the Python UI implements this via an RPC call
(RPC_INFO_INSTALL).
“Mcl_Cmd_KisuComms_Tasking.py” – used to establish a connection with a running instance of
KillSuit on the victim end, and provides functionality for dynamically loading and unloading
modules/drivers.
“_KiSu_BH_enable.py” – One of KillSuit’s internal drivers is called “BroughtHotShot”, or BH for
short. This script does not enable it, but checks whether it is enabled (via DanderSpritz commands
available -command kisu_install -isloaded and available -command kisu_install -
load). If you want to enable the driver, you need to do KiSu_BH_enable.py on , and disabling it
is KiSu_BH_enable.py off .
“Mcl_Cmd_KiSuFullList_Tasking.py” – Produces a list of current KiSu installations on the target
machine. Behind the scenes, this is done by invoking the kisu_list DanderSpritz command, and
then for every returned installation, retrieving its configuration via the DanderSpritz command
kisu_config -instance id -checksum . This configuration contains various technical details

such as the KillSuit version, the installation’s registry key and value, the loaders for the kernel and
user modules, the directory of the encrypted virtual filesystem used to keep the hosted plugin’s
modules, the legitimate driver that’d been victimized by injecting the hosted plugin into it, and the
flags used internally when launching KillSuit on the victim.

Every KillSuit instance has an internal record of an “ID” of the tool hosted inside the instance, which is
universally the same per tool. We found referenced inside DoubleFeature to the following possible
instances:

PC (PeddleCheap) – 0x7A43E1FA – provides an interactive shell and some feature for long-term
persistence. Also serves as a post-exploitation tool in itself, and can install other KillSuit instances
on a compromised host.
UR (UnitedRake) – 0x91FD378 – see above
STLA (StrangeLand) / GROK – 0x1A0F5582 – these are both keyloggers. Their encrypted logs are
stored inside files with names of the form tm154*.da .
SNUN (SnuffleUnicorn) – 0x23A4732A
WRWA (WraithWrath) – 0x502BB710
SLSH (SleepySheriff) – 0x32A7032D
WORA (WoozyRamble) – 0x68A40E49
TTSU (TiltTsunami) – 0x8F1D6511
SOKN (SoberKnave) – 0x8F1D6510 – This tool has functionality for data exfiltration through
unused/disabled WiFi cards. It is used in Air-Gapped targets.

15/23

MAGR (MagicGrain) – 0x437E52E8
DODA (DoubleDare) – 0x1C9D4A8A
SAAN (SavageAngel) – 0x9D801C63
MOAN (MorbidAngel) – 0x9D801C62
DEWH (DementiaWheel) – 0xAE37690B – Hacking tool also known as “Fanny”.
CHMU (ChinMusic) – 0x39B2DA17
MAMO (MagicMonkey) – 0x2D473AB3
MABE (MagicBean) – 0x8675309 – used for WiFi Man In The Middle

DiveBar

DiveBar (DiBa) is DoubleFeature’s name for the part of KillSuit responsible for persistence methods
(such as “KSLA” (KillSuit loader), “SolarTime”, “JustVisiting” and “DoctorOcopus”.

The different persistence methods, which we mentioned above by name, are:

KSLA (Launcher) – Simply installs a new driver on the victim system and uses it for persistence.
This worked up until Microsoft introduced Driver Signing Enforcement (DSE), which does not allow
unsigned drivers to run. This method is not supported in Windows Vista and later.
JustVisiting (JuVi) – In order to bypass DSE, this persistence mechanism abuses a known
vulnerability in the signed driver ElbyCDIO.sys, which is a part of the software “CloneCD” by
RedFox. The vulnerable driver is made to be loaded, and exploited, on system startup. The
elevated privileges obtained in this way are then used to add DiveBar’s persistence driver to
LSAExtensionConfig/interfaces. This method is only compatible with Windows 8.
SolarTime (SoTi) – An advanced persistence mechanism that works by modifying one of the victim
system’s VBRs. More details about this method can be found in this report by F-Secure. Only
compatible with NTFS filesystems with FVEBOOT and a certain boot sector format. SoTi compares
the hash of the boot sector to a list of “known good” hashes, which are listed below.

C454045E1299C5AD5E2932A7B0016D7A
C1544A2220F5DD61A62C697D9A2C5B77
05422319E7821018401F477B3621F8E2
4C85F9D2D0B02E0B3BDFC34D0F63B414
0023DE8F74BF9F932AFC9E288082E660
58B9130DEEFF83F1185C372595CD4607
B4A78F824A7F0FA688DF729F2AEF7F7F
DCE6AAAD1574BC72A25DC4551D52A2C1

As mentioned above, KillSuit keeps inside the victim registry something called a “module store”.
Traditionally the registry has been used in malware to store simple configuration data, as per the
registry’s legitimate purpose; but as years have passed, more and more malware has gotten bold in using
the registry to store arbitrary data. Here the registry is made to swallow a whole Virtual File System
containing the module store, which is generated by concatenating two words chosen pseudo-randomly
from two hard-coded dictionaries (the creation time of the victim’s root directory is used as the seed). The
list of possible values for the first word is reproduced below:

https://securelist.com/a-fanny-equation-i-am-your-father-stuxnet/68787/
https://blog.f-secure.com/is-killsuit-lying-in-wait/

16/23

Account
Acct
Adapter
App
Audit
Boot
Class
Correction
Debug
Dir
Directory
Domain
Driver
Event
Font
Hardware
Hiber
Host
Language
Legacy
Locale
Logon
Manufacturer
Media
Net
Network
OEM
Power
Prefetch
Privilege
Process
Remote
Scheduler
Security
Server
Shared
Shutdown
Startup
Task
Trust
Uninstall
User
Win16
Win32

And the possible values for the second word:

17/23

Cache
Cfg
Config
Data
Database
Db
Exts
Flags
Hierarchy
History
Info
Libs
List
Logs
Mappings
Maps
Mgmt
Mon
Monitor
Performance
Plugins
Policy
Profile
Records
Registry
Settings
Setup
Support
Usage

Looking at the architecture of “GrayFish” as reported by Kaspersky, we are left with the impression that it
is one and the same as KillSuit:

18/23

Figure 6: Architecture of GrayFish. Source: Kaspersky

The resources in the diagram are in a one-to-one correspondence with the DiveBar resources:

102 – fvexpy.sys – F7F382A0C610177431B27B93C4C87AC1

103 – mpdkg32.dll – 0182DBF3E594581A87992F80C762C099

104 – BroughtHotShot driver – drmkflt.sys – 9C6D1ED1F5E22BF609BCF5CA6E587DEC /
D3DF8781249F2C404C4935CA9FFB1155

107 – New VBR (for SolarTime)

110 – mpdkg64.dll – F01525C9EF763C49E28CEC6C2F6F6C60

114 – Elby loader – fhsvcapi.dll – 6156E50571571B233019C4EBB472899D

115 – Elby driver – AAA8999A169E39FB8B48AE49CD6AC30A

DiveBar does not limit itself to abusing ElbyCDIO.sys; it also searches for vulnerable benign drivers
already present on the victim’s machine to be used as a “launcher” for the hosted plugin’s code.
Internally, such a benign driver that is chosen by DiveBar to launch KillSuit instance is called a “thunk”
(this might be the place to mention that according to the Merriam-Webster dictionary, the only meaning of
the word “thunk” is as a present-tense verb meaning “to produce a flat hollow sound”; the author of the
original PE file format caused enough suffering by using this mysterious word as a description for an

19/23

opaque digital object, and we are sad to see this practice repeated here). For every KillSuit instance,
DoubleFeature reports the thunk exploited dll used to load its kernel-mode module, which is called the
KML (Kernel Module Launcher) for short. A similar report is made for the User Mode Launcher (UML).

FlewAvenue

FlewAvenue(FlAv) is an IPv4 driver that provides covert network access for other tools. It provides
different networking faculties such as DNS queries and ICMP echo (“ping”).

We came across the following indicators of FlewAvenue:

“ntevt.sys ” – The name of this tool’s driver.

DuneMessiah

DoubleFeature diagnostics only provide very minimal information regarding this tool. For this tool,
DoubleFeature reports a pseudorandomly-generated “Event Name” that the instance on the victim
machine uses internally, as well a number of “registered KillSuit instances”.

CritterFrenzy

DoubleFeature reports only the bare minimum of information about this plugin as well. From the
information we can see DoubleFeature collects regarding this tool, it seems to be another instance of
KillSuit that probably has been used in the past and its ID was 333.

We came across the following indicators of CritterFrenzy:

“MPDKH32” – The name of this tool.

MistyVeal

MistyVeal (MV) is a “validator” implant, meaning that it is used to verify that the targeted system is indeed
an authentic victim and not a research environment. It is implemented as an Internet Explorer Browser
Helper Object (these are typically used for extending IE functionality; for example, Adobe’s Acrobat plugin
for IE is a Browser Helper Object). MistyVeal was also part of the Equation Group’s original “Double
Fantasy” implant, a precursor of UnitedRake. You can read more about it and the connection to Regin in
a report by EpicTurla.

“nethdlr.sys” – The name of this tool’s driver.

We came across the following indicators of MistyVeal:

{B812789D-6FDF-97AB-834B-9F4376B2C8E1} – MV CLSID for GUID and version.

DiceDealer

DiceDealer (DD), mentioned in the leaked UnitedRake manual, is a parsing tool for the logging data
produced by all installations and uninstallations performed by DiveBar (this is relevant to UnitedRake
because DiveBar is typically used to install it). If you are looking to manually parse DiceDealer log files,

https://www.epicturla.com/previous-works/hitb2020-voltron-sta

20/23

the easiest method is to copy the log file into the same directory where the DiceDealerReader tool is
located. The reader is dependent on several of the files within that directory and will fail to parse the log if
they are not present.

PeddleCheap

PeddleCheap ****(PC) is among the first tools to be run on a victim machine, and can be used to
bootstrap a complete DanderSpritz installation. PeddleCheap has minimal functionality allowing attackers
to connect to the victim machine and remotely install and configure implants that allow further post-
exploitation functionality, including a full install of the DanderSpritz framework. PeddleCheap is usually
injected into lsass.exe by several methods, including the DOUBLEPULSAR backdoor.

Figure 7: PeddleCheap User Interface.

We came across the following indicators of PeddleCheap:

{A682FEC0-333F-B16A-4EE6-24CC2BAF1185} – PC CLSID for GUID and version.

Control flow of DoubleFeature’s Rootkit

The rootkit used by DoubleFeature (hidsvc.sys) performs the following actions when it is loaded:

It creates an unnamed device object but registers IRP dispatch functions.
It dispatches IOCTL requests.
It specializes in run-time patching of Windows kernel code.
It runs kernel APIs for the user-mode module.

The rootkit is patched by the user-mode DLL before being loaded into memory — this is done to insert
the PID of the user-mode process so that the rootkit knows which process to hide. The rootkit then
attaches to this accomplice user-mode process via KeAttachProcess .

The rootkit finds the dynamic addresses of API functions using HalAllocateCommonBuffer or
MmIsAddressValid (the addresses for these functions are earlier obtained by invoking
MmGetSystemRoutineAddress). It uses encrypted stack strings which are decrypted on a need-to-use
basis and encrypted again immediately after they are used, similarly to the method used in the user-mode
component of DoubleFeature that we described earlier.

In order to avoid detection, the rootkit also takes care to create its own driver objects as stealthily as
possible. First, instead of creating the object directly, the rootkit creates a handle to Device\\NULL , then
hijacks its FileHandle by inserting its own device object with the name driver\\msvss . Then, it uses

21/23

this FileObject to send a IRP_MJ_Create request in order to obtain a handle to the newly created driver
object. Second, the rootkit calls ObMakeTemporaryObject and removes the name of the object from its
parent object manager directory, effectively unlinking it from the structs that the OS uses internally to
keep track of loaded drivers. Because of the way Windows OS handles drivers, this has the effect of
keeping the driver running in the background while diagnostic tools and researchers will fail to find the
driver.

The IRP_MJ_DEVICE_CONTROL handler function of the new device contains the different IoControl
codes that can be sent from the user-mode DLL (such as 0x8589240c for truncating a file, and
0x85892408 for executing an API call in kernel mode and sending the output back to the user-mode
process).

Conclusion

Sometimes, the world of high-tier APT tools and the world of ordinary malware can seem like two parallel
universes. Cybercriminals periodically produce the umpteenth Cryptolocker clone or, at most, another
modular jack-of-all-trades Emotet wannabe; in the meanwhile, nation-state actors tend to clandestine,
gigantic codebases, sporting a huge gamut of features that have been cultivated over decades due to
practical need. For those of us with our heads deep enough up the cybercrime industry’s nether regions,
many of the features described above — rootkits, dedicated components to thoroughly vet victims, whole
systems dedicated to logging the stages of post-exploitation — are, largely, abstract theory. The
cybercrime industry’s DoubleFeature is typically an HTTP GET request containing &OS=win10 ,
encrypted by some homebrew variant of RC4. The gap can really not be overstated.

It’s not often that we get such a candid glimpse into tools of this degree of sophistication, as the Shadow
Brokers leak allowed us. The DanderSpritz-tier projects of the world are naturally covered by a shroud of
secrecy — even, as we’ve seen, from fellow APT actors, who can maybe at best get their hands on a
rival tool once in a blue moon, as happened with EpRom which led to the creation of Jian. As an industry,
it turns out we too are still slowly chewing on the 4-year-old leak that revealed DanderSpritz to us, and
gaining new insights. On the defenders’ side, we have the duty to study these marvels of infosec
engineering carefully and apply the lessons learned — before lower-tier, run-of-the-mills attacker do the
same.

Appendix 1: Table of Command-Line Argument Supported by DoubleFeature
Main DLL

22/23

Option Arguments Relevant
command
in the
menu

Description

-n/-m Registry key name Check if a registry key
exists or not.

-o – Returns DuneMessiah
information

-p filename Changes the log file
name.

-q Hash, ID/Name Deletes KillSuit module.

-s ‘u’/’s’ Shutdowns UnitedRake or
StraitBizarre

-t IP, port TipOffs UnitedRake

-u Hash, ID/Name Upgrades KillSuit module

-v Hash, ID/Name Downloads KillSuit
module

-x filename Truncates file on victim’s
computer

-g IP:port Checks FlewAvenue
feature compatibility

-h ‘u’/’s’ Stops FA in UR or SBZ

-i k = KillSuit m = Manual Instances p = Processes info
q = Modules Data s = StraitBiZarre u = UnitedRake
c= CritterFrenzy d = DiveBar e = Loaded Drivers f =
FlewAvenue g = Special Implant i = Implant
Independet

Gives information about
the tool given as an
argument

-j 0/1 Get DiceDealer logs –
DiveBar information on
the victim’s computer.

-k ‘u’/’s’ KickStarts UR or SBZ

-l – DFQuery Query information as in ‘i’
command but on several
tools on one command.

23/23

-f – Toggles FlewAvenue
mode – as a network
sniffer or as a memory
patcher. It does this by
changing the “config2”
SubKey.

-a new AES key Replaces the AES key for
encrypting the logs.

-b/-e registry key Deletes DiveBar registry
key

-c – –

-d on/off Enable/Disable UR
logging

