
1/7

www.mandiant.com /resources/unc2891-overview

Have Your Cake and Eat it Too? An Overview of UNC2891

The Mandiant Advanced Practices team previously published a threat research blog post that provided an overview
of UNC1945 operations where the actor compromised managed services providers to gain access to targets in the
financial and professional consulting industries.

Since that time, Mandiant has investigated and attributed several intrusions to a threat cluster we believe has a nexus
to this actor, currently being tracked as UNC2891. Through these investigations, Mandiant has discovered additional
techniques, malware, and utilities being used by UNC2891 alongside those previously observed in use by UNC1945.
Despite having identified significant overlaps between these threat clusters, Mandiant has not determined they are
attributable to the same actor.

UNC2891 intrusions appear to be financially motivated and in some cases spanned several years through
which the actor had remained largely undetected.
UNC2891 demonstrated fluency and expertise in Unix and Linux environments, mostly through the targeting of
Oracle Solaris based systems with TINYSHELL and SLAPSTICK backdoors.
Mandiant observed UNC2891 operate with a high degree of OPSEC and leverage both public and private
malware, utilities, and scripts to remove evidence and hinder response efforts.
Mandiant discovered a previously unknown rootkit for Oracle Solaris systems that UNC2891 used to remain
hidden in victim networks, we have named this CAKETAP.
One Variant of CAKETAP manipulated messages transiting a victims Automatic Teller Machine (ATM) switching
network. It is believed this was leveraged as part of a larger operation to perform unauthorized cash
withdrawals at several banks using fraudulent bank cards.

Extensive Use of SLAPSTICK and TINYSHELL Backdoors
Like past UNC1945 intrusions, Mandiant observed UNC2891 make extensive use of the Pluggable Authentication
Module (PAM) based backdoor we track as SLAPSTICK to aid with credential harvesting, and to provide backdoor
access to compromised machines in victim networks. As detailed in our previous blog post, SLAPSTICK provides
persistent backdoor access to infected systems with a hard-coded magical password, it also logs authentication
attempts and corresponding passwords in an encrypted log file. Although this is expected to have tremendously
assisted UNC2891 with credential harvesting and lateral movement activities, it also provided valuable information to
Mandiant Incident Responders. Although SLAPSTICK log files were often timestomped, Mandiant was able to
decode them and trace some of the actor’s lateral movement activities through the usage of the backdoor provided
magical password.

Figure 1: Example SLAPSTICK decoded log (fabricated)

Alongside SLAPSTICK, UNC2891 often installed a custom variant of the publicly available TINYSHELL backdoor.
UNC2891 TINYSHELL backdoors leveraged an external encrypted configuration file and some variants included
additional functionality, such as the ability to communicate via a HTTP proxy with basic authentication. In line with the
group’s familiarity with Unix and Linux based systems, UNC2891 often named and configured their TINYSHELL
backdoors with values that masqueraded as legitimate services that might be overlooked by investigators, such as
systemd (SYSTEMD), name service cache daemon (NCSD), and the Linux at daemon (ATD).

Table 1: Observed TINYSHELL file paths
TINYSHELL Backdoor File Paths TINYSHELL Configuration File Paths

/usr/lib/libhelpx.so.1

/usr/lib/systemd/systemd-helper

/usr/sbin/nscd

/usr/lib/libatdcf.so

/usr/lib/libnscd.so.1

/usr/lib/libsystemdcf.so

/var/ntp/ntpstats/1
Table 2: Example decoded TINYSHELL configuration (systemd variant)

Example Decoded configuration
pm_systemd_mag <32-character string>

systemd_nme <system id>

pm_systemd_adr <C2 IP address/domain>

pm_systemd_prt <443 or 53>

pm_systemd_tme 300

https://www.mandiant.com/resources/unc2891-overview
https://www.mandiant.com/resources/live-off-the-land-an-overview-of-unc1945
https://www.mandiant.com/resources/live-off-the-land-an-overview-of-unc1945
https://github.com/creaktive/tsh

2/7

systemd_non1 none

systemd_non2 none

systemd_non3 none

systemd_non4 none

 In the case of the systemd variant, UNC2891 also leveraged systemd service unit files for persistence of the
TINYSHELL backdoor.

Table 3: Service unit file used for TINYSHELL persistence
/usr/lib/systemd/system/systemd-helper.service
[Unit]

Description=Rebuild Hardware Database

[Service]

Type=forking

ExecStart=/lib/systemd/systemd-helper

[Install]

WantedBy=multi-user.target

Based on analyzed configurations, UNC2891 had configured TINYSHELL backdoors in a multi-hop structure that
leveraged several compromised internal servers for command and control. In one case, Mandiant found evidence
that suggests the actor had chained different TINYSHELL variants together to obtain remote access to a server inside
a network segment with network restrictions.

To keep their network of TINYSHELL connections hidden, UNC2891 had installed and configured a rootkit to filter out
these connections from network connection related APIs (keep reading for details on the CAKETAP rootkit).
UNC2891 configured remotely accessible systems with TINYSHELL backdoors that used dynamic DNS domains for
their external command and control channel. These domains were created per-host and were not used more than
once, the subdomains sometimes resembled the hostname of the compromised machine. Mandiant was unable to
collect passive DNS data for these dynamic DNS domains, suggesting that UNC2891 had likely enabled IP resolution
for short periods of time when access to the network was required. At one victim, these TINYSHELL backdoors were
configured to perform communications using TCP over port 53 and 443, likely as a mechanism to bypass outbound
network protections, blend in with existing traffic, and evade detection.

Figure 2: Example of TINYSHELL command and control used by UNC2891

STEELHOUND, STEELCORGI and Environment Variable Keying

3/7

UNC2891 often made use of the STEELCORGI in-memory dropper which decrypts its embedded payloads by
deriving a ChaCha20 key from the value of an environment variable obtained at runtime. In many cases, Mandiant
was unable to recover the requisite environment variables to decrypt the embedded payloads. However, in the limited
samples we were able to decrypt, UNC2891 had deployed different versions of an extensive toolkit which appears to
be developed under the name SUN4ME. SUN4ME contains tools for network reconnaissance, host enumeration,
exploitation of known vulnerabilities, log wiping, file operations, as well as common shell utilities. Yoroi has previously
published information about this toolkit following our previous blog post on UNC1945’s usage of STEELCORGI.

Mandiant discovered UNC2891 leveraging a similar in-memory dropper that also used environment variables to
decrypt its embedded payload but instead relied on RC4 encryption, we have named this STEELHOUND. In addition
to functioning as dropper for an embedded payload, STEELHOUND is also able to encrypt new payloads by
encrypting a target binary and writing it to disk along with a copy of itself and an end-of-file configuration.

WINGHOOK and WINGCRACK
During these investigations, Mandiant also discovered a family of keylogger malware we have named WINGHOOK
and WINGCRACK.

WINGHOOK is a keylogger for Linux and Unix based operating systems. It is packaged as a shared library (SO
file) that hooks the read and fgets functions, which are two common functions used for processing user input.
The captured data is stored in an encoded format in the directory /var/tmp/ with a filename that begins with
.zmanDw.
WINGCRACK is a utility that can decode and display the content of files containing encoded keylog data from
WINGHOOK. The malware author appears to refer to these encoded files as “schwing” files.

Utilities Observed

Mandiant previously observed UNC1945 use a large amount of different public and private tools during their
intrusions, and this was also true for UNC2891. Mandiant discovered additional utilities that were leveraged by
UNC2891:

BINBASH is a simple ELF utility that executes a shell after setting the group ID and user ID to either "root" or
specified values. BINBASH appears to be a compilation of the source code.
WIPERIGHT is an ELF utility that clears specific log entries on Linux and Unix based systems. It can remove
entries associated with a given user in the lastlog, utmp/utmpx, wtmp/wtmpx, and pacct logs. It appears to have
originated from available source code, and possibly a more recent version.
MIGLOGCLEANER is another ELF utility that wipes logs or remove certain strings from logs on Linux and Unix
based systems. It is publicly available on GitHub.

Whilst seemingly uncommon amongst threat actors, UNC2891 frequently used the uuencoding scheme to encode
and decode files, such as malware binaries or files containing output from extensive host enumeration scripts. The
actor often leveraged simple Perl wrapper scripts that performed uuencoding and uudecoding functions.

CAKETAP

CAKETAP is a kernel module rootkit that UNC2891 deployed on key server infrastructure running Oracle Solaris.
CAKETAP can hide network connections, processes, and files. During initialization, it removes itself from the loaded
modules list and updates the last_module_id with the previously loaded module to hide its presence.

A hook is installed into the function ipcl_get_next_conn, as well as several functions in the ip module. This enables
CAKETAP to filter out any connections that match an actor-configured IP address or port (local or remote).

One way to identify CAKETAP running on a Solaris system is to check for the presence of this hook. The following
shows an example command to identify a hooked ipcl_get_next_conn function (Note: The mdb command may
require special permissions on the system):

root@solaris:~# echo 'ipcl_get_next_conn::dis -n 0 ; ::quit' | mdb -k

The output in a clean SPARC Solaris system would look similar to the following:

ipcl_get_next_conn: save %sp, -0xb0, %sp

A hooked function would begin with the sethi instruction as follows (the constant 0x11971c00 will change from
instance to instance depending on where CAKETAP is loaded):

ipcl_get_next_conn: sethi %hi(0x11971c00), %g1

Additional hooks are installed into the mkdirat (make directory at) and getdents64 (get directory entries) system calls.
CAKETAP uses the mkdirat hook to receive commands from paths containing the signal string. Commands include
configuring network filters, display or update its configuration, and to unhide itself. The getdents64 hook enables
CAKETAP to hide files or directories on the file system containing the secret signal string. Table 4 contains the signal
strings for the CAKETAP hooks.

https://yoroi.company/research/opening-steelcorgi-a-sophisticated-apt-swiss-army-knife/
https://www.mandiant.com/resources/live-off-the-land-an-overview-of-unc1945
https://packetstormsecurity.com/files/23336/Slx2k001.txt.html
http://www.afn.org/~afn28925/wipe.c
https://packetstormsecurity.com/files/23336/Slx2k001.txt.html
https://github.com/Kabot/mig-logcleaner-resurrected

4/7

Table 4: Observed secrets for CAKETAP hooks
Secret Usage
.caahGss187 mkdirat hook signal string
.zaahGss187 getdents64 hook signal string

The mkdirat hook enabled UNC2891 to control and configure CAKETAP through existing backdoor access to
compromised servers by issuing shell commands that leverage these system calls (e.g. mkdir for mkdirat). A single
character appended to the signal string indicated which command was to be executed. The following commands
were observed:

Table 5: Observed CAKETAP commands
Command Function
Empty Add the CAKETAP module back to loaded modules list
M Change the signal string for the getdents64 hook
I Add a network filter (format <IP>p<PORT>)
i Remove a network filter
P Set the current thread TTY to not be filtered by the getdents64 hook
p Set all TTYs to be filtered by the getdents64 hook
S Displays the current configuration

For example, to configure a new network filter and display the current configuration, the following commands might
be used:

mkdir /some/path/.caahGss187I192.168.1.10p80 - Add network filter for 192.168.1.10:80
mkdir /some/path/.caahGss187S - Display current configuration

The hook installed into getdents64 filtered output to hide presence of the signal string in directory contents.

Mandiant observed UNC2891 load CAKETAP with the module name ipstat from attacker created directories that
often resided somewhere inside the /var directory tree.

CAKETAP Unauthorized Transactions
Memory forensics from one victim’s ATM switch server revealed a variant of CAKETAP with additional network
hooking functionality that intercepted specific messages relating to card and pin verification. Evidence suggests that
this variant of CAKETAP was used as part of an operation to perform unauthorized transactions using fraudulent
bank cards.

This CAKETAP variant targeted specific messages destined for the Payment Hardware Security Module (HSM). This
additional network hooking performed several functions:

1. Manipulation of card verification messages:
 CAKETAP altered the mode of certain outgoing messages to disable card verification. This resulted in the HSM

not performing the proper card verification and instead generating a valid response. Fraudulent bank cards
generated verification messages using a custom algorithm using the Primary Account Number (PAN) and other
parameters which served as a “marker” for CAKETAP. CAKETAP examined outgoing messages and if it
matched the algorithm, CAKETAP identified the card as fraudulent and stored the PAN in memory to use in the
following step.

2. Replay of PIN verification messages:
 CAKETAP examined outgoing PIN verification messages that matched certain conditions and identified those

with a Primary Account Number (PAN) that reflected a fraudulent card. If the message was not for a fraudulent
card, it would save the message internally and send it unmodified, as to not interrupt legitimate ATM PIN
verifications. However, if it was for a fraudulent card, CAKETAP would instead replace the message content
with data from a previously saved message. This was effectively a replay attack that resulted in a bypass of
PIN verification for fraudulent cards.

Based on Mandiant’s investigation findings, we believe that CAKETAP was leveraged by UNC2891 as part of a larger
operation to successfully use fraudulent bank cards to perform unauthorized cash withdrawals from ATM terminals at
several banks.

Conclusion

UNC2891 maintains a high level of OPSEC and employs several techniques to evade detection. The actor uses their
skill and experience to take full advantage of the decreased visibility and security measures that are often present in
Unix and Linux environments. Mandiant expects that UNC2891 will continue to capitalize on this and perform similar
operations for financial gain that target mission critical systems running these operating systems.

While some of the overlaps between UNC2891 and UNC1945 are notable, it is not conclusive enough to attribute the
intrusions to a single threat group. For example, it is possible that significant portions of UNC2891 and UNC1945
activity are carried out by an entity that is a common resource to multiple threat actors, which could explain the
perceived difference in intrusion objectives—a common malware developer or an intrusion partner, for example.

5/7

Regardless, Mandiant is releasing this information on the actor to raise awareness of the fraudulent activity and aid
defenders in uncovering further UNC2891 operations.

YARA
The following YARA rules are not intended to be used on production systems or to inform blocking rules without first
being validated through an organization's own internal testing processes to ensure appropriate performance and limit
the risk of false positives. These rules are intended to serve as a starting point for hunting efforts to identify samples,
however, they may need adjustment over time if the malware family changes.

rule TINYSHELL

{

 meta:

 author = "Mandiant "

 strings:

 $sb1 = { C6 00 48 C6 4? ?? 49 C6 4? ?? 49 C6 4? ?? 4C C6 4? ?? 53 C6 4? ?? 45 C6 4? ?? 54 C6 4?
?? 3D C6 4? ?? 46 C6 4? ?? 00 }

 $sb2 = { C6 00 54 C6 4? ?? 4D C6 4? ?? 45 C6 4? ?? 3D C6 4? ?? 52 }

 $ss1 = "fork" ascii fullword wide

 $ss2 = "socket" ascii fullword wide

 $ss3 = "bind" ascii fullword wide

 $ss4 = "listen" ascii fullword wide

 $ss5 = "accept" ascii fullword wide

 $ss6 = "alarm" ascii fullword wide

 $ss7 = "shutdown" ascii fullword wide

 $ss8 = "creat" ascii fullword wide

 $ss9 = "write" ascii fullword wide

 $ss10 = "open" ascii fullword wide

 $ss11 = "read" ascii fullword wide

 $ss12 = "execl" ascii fullword wide

 $ss13 = "gethostbyname" ascii fullword wide

 $ss14 = "connect" ascii fullword wide

 condition:

 uint32(0) == 0x464c457f and 1 of ($sb*) and 10 of ($ss*)

}
rule TINYSHELL_SPARC

{

 meta:

 author = "Mandiant"

 strings:

 $sb_xor_1 = { DA 0A 80 0C 82 18 40 0D C2 2A 00 0B 96 02 E0 01 98 03 20 01 82 1B 20 04 80 A0 00
01 82 60 20 00 98 0B 00 01 C2 4A 00 0B 80 A0 60 00 32 BF FF F5 C2 0A 00 0B 81 C3 E0 08 }

 $sb_xor_2 = { C6 4A 00 00 80 A0 E0 00 02 40 00 0B C8 0A 00 00 85 38 60 00 C4 09 40 02 84 18 80 04
C4 2A 00 00 82 00 60 01 80 A0 60 04 83 64 60 00 10 6F FF F5 90 02 20 01 81 C3 E0 08 }

 condition:

 uint32(0) == 0x464C457F and (uint16(0x10) & 0x0200 == 0x0200) and (uint16(0x12) & 0x0200 ==
0x0200) and 1 of them

}
rule SLAPSTICK

{

 meta:

6/7

 author = "Mandiant "

 strings:

 $ss1 = "%Y %b %d %H:%M:%S \x00"

 $ss2 = "%-23s %-23s %-23s\x00"

 $ss3 = "%-23s %-23s %-23s %-23s %-23s %s\x0a\x00"

 condition:

 (uint32(0) == 0x464c457f) and all of them

}
rule STEELCORGI

{

 meta:

 author = "Mandiant "

 strings:

 $s1 = "\x00\xff/\xffp\xffr\xffo\xffc\xff/\xffs\xffe\xffl\xfff\xff/\xffe\xffx\xffe\x00"

 $s2 = "\x00\xff/\xffv\xffa\xffr\xff/\xffl\xffi\xffb\xff/\xffd\xffb\xffu\xffs\xff/\xffm\xffa\xffc\xffh\xffi\xffn\xffe\xff-
\xffi\xffd\x00"

 $sb1 = { FE 1B 7A DE 23 D1 E9 A1 1D 7F 9E C1 FD A4 }

 $sb2 = { 3B 8D 4F 45 7C 4F 6A 6C D8 2F 1F B2 19 C4 45 6A 6A }

 condition:

 (uint32(0) == 0x464c457f) and all of them

}

Indicators of Compromise

Malware
Family MD5 SHA1 SHA256

STEELCORGI e5791e4d2b479ff1dfee983ca6221a53 e55514b83135c5804786fa6056c88988ea70e360 95964d669250f0ed1614
STEELCORGI 0845835e18a3ed4057498250d30a11b1 c28366c3f29226cb2677d391d41e83f9c690caf7 7d587a5f6f36a74dcfbcb
STEELCORGI d985de52b69b60aa08893185029bcb31 a3e75e2f700e449ebb62962b28b7c230790dc25d cd06246aff527263e409d
TINYSHELL 4ff6647c44b0417c80974b806b1fbcc3 fa36f10407ed5a6858bd1475d88dd35927492f52 55397addbea8e5efb8e6
TINYSHELL 13f6601567523e6a37f131ef2ac4390b 4228d71c042d08840089895bfa6bd594b5299a89 24f459a2752175449939
TINYSHELL 4e9967558cd042cac8b12f378db14259 018bfe5b9f34108424dd63365a14ab005e249fdd 5f46a25473b9dda83451
STEELHOUND a4617c9a4bde94e867f063c28d763766 097d3a15510c48cdb738344bdf00082e546827e8 161a2832baba6ff6f9f1b5

MITRE ATT&CK

Discovery:
T1016:System Network Configuration Discovery
T1018:Remote System Discovery
T1049:System Network Connections Discovery
T1082:System Information Discovery
T1083:File and Directory Discovery
T1135:Network Share Discovery

Lateral Movement:
T1021:Remote Services
T1021.004:SSH

Credential Access:
T1003:OS Credential Dumping
T1003.008:/etc/passwd and /etc/shadow
T1110:Brute Force
T1110.001:Password Guessing
T1552:Unsecured Credentials
T1552.003:Bash History
T1552.004:Private Keys
T1556.003:Pluggable Authentication Modules

Command and Control:
T1090:Proxy
T1095:Non-Application Layer Protocol
T1105:Ingress Tool Transfer

7/7

T1572:Protocol Tunneling
T1573.001:Symmetric Cryptography

Execution:
T1053.001:At (Linux)
T1059:Command and Scripting Interpreter
T1059.004:Unix Shell

Collection:
T1056.001:Keylogging
T1560:Archive Collected Data
T1560.001:Archive via Utility
T1560.002:Archive via Library

Defense Evasion:
T1014:Rootkit
T1027:Obfuscated Files or Information
T1070:Indicator Removal on Host
T1070.002:Clear Linux or Mac System Logs
T1070.004:File Deletion
T1070.006:Timestomp
T1140:Deobfuscate/Decode Files or Information
T1480.001:Environmental Keying
T1548.001:Setuid and Setgid
T1620:Reflective Code Loading

Persistence:
T1543.002:Systemd Service
T1547.006:Kernel Modules and Extensions

