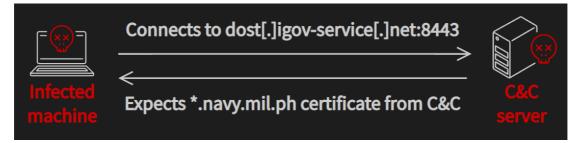
decoded.avast.io /threatintel/avast-finds-compromised-philippine-navy-certificate-used-in-remote-access-tool/

Avast Finds Compromised Philippine Navy Certificate Used in Remote Access Tool

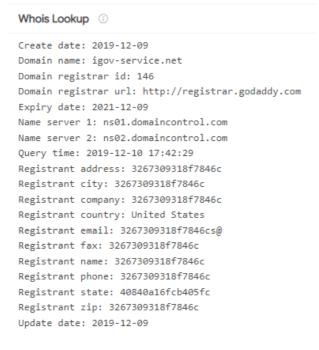
: 3/28/2022

by Threat Intelligence TeamMarch 28, 20224 min read

Avast Threat Intelligence Team has found a remote access tool (RAT) actively being used in the wild in the Philippines that uses what appears to be a compromised digital certificate belonging to the Philippine Navy. This certificate is now expired but we see evidence it was in use with this malware in June 2020.


Based on our research, we believe with a high level of confidence that the threat actor had access to the private key belonging to the certificate.

We got in touch with CERT-PH, the National Computer Emergency Response Team for the Philippines to help us contact the navy. We have shared with them our findings. The navy security team later let us know that the incident has been resolved and no further assistance was necessary from our side.


Because this is being used in active attacks now, we are releasing our findings immediately so organizations can take steps to better protect themselves. We have found that this sample is now available on VirusTotal.

Compromised Expired Philippine Navy Digital Certificate

In our analysis we found the sample connects to dost[.]igov-service[.]net:8443 using TLS in a statically linked OpenSSL library.

A WHOIS lookup on the C&C domain gave us the following:

The digital certificate was pinned so that the malware requires the certificate to communicate.

When we checked the digital certificate used for the TLS channel we found the following information:

😽 Certi	ficate			2			
General	Details	Certification Path	I				
Show:	<all></all>		~				
Field			Value	^			
E Sig	nature ha	ash algorithm	sha256				
E Iss	uer	-	GlobalSign RSA OV SSL CA 201				
🔄 Va	lid from		Sunday, December 15, 2019 8				
🔄 Va	lid to		Tuesday, December 15, 2020				
🗐 Su	bject		*.navy.mil.ph, Philippine Navy				
🗐 Pu	blic key		RSA (2048 Bits)				
📄 Pu	blic key p	arameters	05 00				
_ Æ An	thority In	formation Access	[1]Authority Info Access: Acc	×			
O = Ph L = Ca	labarzon						
		Ē	dit Properties Copy to File				

Some important things to note:

- The certificate is a valid certificate with a subject of *.navy.mil.ph, the Philippine Navy.
- The certificate has recently expired: it was valid for one year, from Sunday December 15, 2019 until Tuesday December 15, 2020.
- · Our research shows that Censys saw this certificate employed by the actual navy.mil.ph website

Based on our research, we believe with a high level of confidence that the threat actor had access to the private key belonging to the certificate.

While the digital certificate is now expired we see evidence it was in use with this malware in June 2020.

The malicious PE file was found with filename: C:\Windows\System32\wlbsctrl.dll and its hash is: 85FA43C3F84B31FBE34BF078AF5A614612D32282D7B14523610A13944AADAACB.

In analyzing that malicious PE file itself, we found that the compilation timestamp is wrong or was edited. Specifically, the TimeDateStamp of the PE file was modified and set to the year 2004 in both the PE header and Debug Directory as shown below:

ta:0000000180266700		; sub_18000FF60+81tr
ita:0000000180266710 ; Debu	g Directory entries	
ata:0000000180266710	dd 0	; Characteristics
ita:0000000180266714	dd 40El3AAlh	; TimeDateStamp: Tue Jun 29 09:47:13 2004
ata:0000000180266718	dw 0	; MajorVersion
ata:000000018026671A		; MinorVersion
ata:000000018026671C	dd 0Dh	; Type: IMAGE_DEBUG_TYPE_POGO
ata:0000000180266720	dd 3BCh	; SizeOfData
ata:0000000180266724	dd rva aGctl	; AddressOfRawData
ata:0000000180266728	dd 269E54h	; PointerToRawData
ata:000000018026672C	dd 0	; Characteristics
ata:0000000180266730	dd 40E13AA1h	; TimeDateStamp: Tue Jun 29 09:47:13 2004
ata:0000000180266734		; MajorVersion
ata:0000000180266736	dw 0	; MinorVersion
ata:0000000180266738	dd 0Eh	; Type: IMAGE_DEBUG_TYPE_ILTCG
ata:000000018026673C	dd 0	; SizeOfData
ata:0000000180266740	dd 0	; AddressOfRawData
ata:0000000180266744	dd 0	; PointerToRawData
ata:0000000180266748	align 10h	

:0404040180401040 -0404040180401040	; Format : Portable executable for AMD64 (PE) : Imagebase : 180000000
:0000000180001000	; Timestamp : 40E13AA1 (Tue Jun 29 09:47:13 2004)
:0000000180001000	; Section 1. (virtual address 00001000) : Virtual size : 001CA5D1 (1877457.)
:0000000180001000	; Section size in file : 001CA600 (1877504.)
:000000180001000	; Offset to raw data for section: 00000400
	; Flags 60000020: Text Executable Readable : Alignment : default
:0000000180001000	; OS type : MS Windows
:0000000180001000	; Application type: DLL

However, we found that the author used OpenSSL 1.1.1g and compiled it on April 21, 2020 as shown below:

rdata:00000001801E6772		db					
rdata:00000001801E6773		db					
rdata:00000001801E6774		db					
rdata:00000001801E6775		db					
rdata:00000001801E6776		db					
rdata:00000001801E6777		db					
rdata:00000001801E6778	aOpenssl111g21A	db	'OpenSSL	1.1.lg	21 Apr 3	2020',0	
rdata:00000001801E6794		db					
rdata:00000001801E6795		db					
rdata:00000001801E6796		db					
rdata.00000001801E6797		dh					

The username of the author was probably udste. This can be seen in the debug information left inside the used OpenSSL library.

'.0

We found that the malware supported the following commands:

- run shellcode
- read file
- write file
- cancel data transfer
- list drives
- rename a file
- delete a file
- · list directory content

enum COMMANDS				
RUN_SHELL_COMMAN	D			
READ_FILE				
WRITE_FILE				
CANCEL_TRANSFER				
GetDrives				
DoPathRename				
DoPathDelete				
GetDirectory				
QUIT				

Some additional items of note regarding the malicious PE file:

- All configuration strings in the malware are encrypted using AES-CBC with the exception of the mutex it uses.That mutex is used as-is without decryption: t7As7y916EGwJOQkJz1oRvPUFx1CJTsjzgDlm0CxIa4=.
- When this string is decrypted using the hard-coded key it decrypts to QSR_MUTEX_ZGKwWAejTD9sDitYcK. We suspect that this is a failed attempt to disguise this malware as the infamous Quasar RAT malware. But this cannot be the case because this sample is written in C++ and the Quasar RAT is written in C#.

Avast customers are protected against this malware.

Indicators of Compromise (IoC)

• Repository: https://github.com/avast/ioc/tree/master/Philippine-Navy-Certificate

SHA256

File name

 $85FA43C3F84B31FBE34BF078AF5A614612D32282D7B14523610A13944AADAACB\ C: \windows \system 32 \with the second second$

Mutex

t7As7y9I6EGwJOQkJz1oRvPUFx1CJTsjzgDIm0CxIa4=

C&C server

dost[.]igov-service[.]net:8443

2022 Copyright © Avast Software s.r.o.