secu rityi ntelligence.com /posts/itg23-crypters-cooperation-between-cybercriminal-groups/

ITG23 Crypters Highlight Cooperation Between Cybercriminal
Groups

Malware May 19, 2022
By Charlotte Hammond co-authored by Ole Villadsen , Golo Muhr 25 min read

IBM Security X-Force researchers have continually analyzed the use of several crypters developed by the
cybercriminal group ITG23, also known as Wizard Spider, DEV-0193, or simply the “Trickbot Group”. The results of
this research, along with evidence gained from the disclosure of internal ITG23 chat logs (“Contileaks”), provide new
insight into the connections and cooperation between prominent cybercriminal groups whose attacks often lead to
ransomware.

Crypters are applications designed to encrypt and obfuscate malware to evade analysis by antivirus scanners and
malware analysts. Crypters generally operate by encrypting the pre-compiled malware payload and embedding it
within a secondary binary, known as a stub, which contains code to decrypt and execute the malicious payload. The
use of crypters allows malware developers to easily experiment with different methods of evading antivirus detection
without having to make changes to the malware itself.

X-Force analyzed thirteen crypters that have all been used with malware built or operated by ITG23 internal teams or
third-party distributors — including Trickbot, BazarLoader, Conti, and Colibri — as well as malware developed by
other groups such as Emotet, IcedID, Qakbot, and MountLocker. The presence of one of these crypters on a file
sample is a strong indication that its developer, distributer, or operator is either a part of ITG23 or has a partnership
with the group.

X-Force found evidence that ITG23 by mid-2021 scaled up their efforts to crypt malware with the development of
several new crypters and the construction of a Jenkins build server to automate the crypting of malware at scale. X-
Force also observed the analyzed crypters used repeatedly by Emotet and IcedID malware samples, indicating
ITG23 is also crypting malware for these groups. These findings add to a growing body of evidence indicating a close
relationship between ITG23 and the threat actors behind the development and operation of IcedID and Emotet.

Additionally, X-Force uncovered that at least one ITG23 crypter has been used repeatedly since late February 2022
with the Qakbot banking trojan and at least once with the Gozi banking trojan likely delivered by the ITG23
distribution affiliate TA551 (tracked by X-Force as Hive0106). X-Force’s analysis of these crypters has also uncovered
a previously undisclosed relationship between the IcedID group and MountLocker ransomware-as-a-service (RaaS)
operation.

A Tangled Web They Weave

ITG23’s “Build Machine”

ITG23 is a cybercriminal gang known primarily for developing the Trickbot banking Trojan, which was first identified in
2016 and initially used to facilitate online banking fraud. The group since that time expanded its operations to develop
and operate new malware such as BazarLoader and Anchor. ITG23 also adapted to the ransomware economy by
using its payloads to gain a foothold in victim environments for ransomware attacks and developing and operating the
Conti and Diavol RaaS operations. ITG23 is best thought of as a group of groups, not unlike a large corporation, who
report to common “upper management” and share infrastructure and support functions, such as IT and human
resources. One of these support groups within ITG23 is dedicated to developing crypters for use with the group’s own
malware operations as well as for several other groups.

ITG23 have been crypting their malware for several years, and crypters used by the group were regularly seen in use
with malware such as Trickbot, Emotet, Cobalt Strike and Ryuk. However, the development of multiple new crypters

1/19

https://securityintelligence.com/posts/itg23-crypters-cooperation-between-cybercriminal-groups/
https://securityintelligence.com/category/x-force/malware-threat/
https://securityintelligence.com/author/charlotte-hammond/
https://securityintelligence.com/author/ole-villadsen/
https://securityintelligence.com/author/golo-muhr/
https://securityintelligence.com/posts/trickbot-gang-doubles-down-enterprise-infection/
https://www.breachquest.com/conti-leaks-insight-into-a-ransomware-unicorn/
https://securityintelligence.com/posts/new-malware-trickbot-anchordns-backdoor-upgrades-anchormail/

during the past year suggests a focused effort to scale up their crypting operation.

Evidence gained from several sources, including ContiLeaks, indicates that ITG23 has set up a Jenkins build server
to automate the mass crypting of malware, also referred to as the “Build Machine”. Jenkins is an open-source
automation server designed to automate the building, testing, and deploying of software. The “Build Machine” was
created in April 2021, coinciding with an increase in the use of crypters with malware developed by ITG23 and other
groups.

Since that time, ITG23 crypters have been applied to:

¢ Malware used to gain a foothold in victim environments, such as Trickbot, BazarLoader, Sliver, IcedID, Emotet,
Qakbot, and Gozi. We even identified ITG23 crypters with Colibri, a loader advertised on underground forums
that was used to download Trickbot in fall of 2021, likely by an internal ITG23 distribution affiliate. Some of
these malware families are built by ITG23, such as Trickbot and BazarLoader, and others are built by different
groups, such as IcedID, Emotet, and Qakbot. ITG23 distribution affiliates have deployed Sliver, an open
source, cross-platform adversary simulation and red team platform, probably to gain access for ITG23 internal
red teams to conduct ransomware attacks.

o Cobalt Strike beacon samples downloaded during attacks commencing with the above malware and used by
internal red teams or other affiliates when performing ransomware attacks.

¢ Ransomware such as Conti and MountLocker, also known as Xinglocker, AstroLocker, and Quantum, which are
often deployed following an infection with the above tools and malware.

ITG23 has discontinued use of Trickbot and BazarLoader as of December 2021 and February 2022, respectively, but
X-Force continues to observe the crypters leveraged by other malware, including IcedID, Emotet, Conti, Qakbot, and
the adversary simulation software Cobalt Strike. One notable exception is the Anchor malware which although
attributed to ITG23 does not tend to use the same crypters as the other malware mentioned throughout this report.
The Anchor malware was commonly observed using a separate crypter, named ShellStarter, which has some code
overlap with Anchor itself and was likely created by the same developer. The ShellStarter crypter was also regularly
used with Cobalt Strike payloads, but otherwise did not seem to be used for general crypting operations. We are also
currently analyzing Bumblebee malware samples which we have also linked to ITG23 to determine if they are using
an ITG23 crypter.

ContiLeaks

In February 2022, a Ukrainian security researcher using the Twitter handle “ContiLeaks” revealed a wealth of
information about ITG23 and its operations, including private conversations between its members. While these leaks
appeared to concentrate on the Conti RaaS operation, they also show that it was part of the larger ITG23
“corporation” which also includes ITG23’s crypting operation. These chats indicate that the head of this crypting
operation uses the handle “Bentley”, who manages a team of developers responsible for both developing the crypters
and crypting malware for affiliates and partners. Bentley in turn regularly provides status reports to “Mango”, a more
senior manager within ITG23 who reports to the group’s former leader “Stern.” Other security researchers have also
identified Bentley and his role managing the crypting team. Below is an example of a status update on malware
crypting that Bentley would send on a regular basis to Mango.

Date: Aug 26, 2021 @ 11:08:21.000

From: bentley@g3mcco35auwcstmt.onion

To: mangolg3mcco3b5auwcstmt.onion

Message:

[lpoekT Jieo — 13 kpunror. Bunn mMammzHa (Project leo - 13 crypts. Build Machine)
BK (BK)

rpynna 15: 20 xpuntor, O6wuin mammHa (group 15: 20 crypts, build machine)
rpynna 19: 5 xpunra, Owmnn mammHa (group 19: 5 crypts, build machine)
rpynna 20: 1 xpunto, 6wminn mammHa (group 20: 1 crypt, build machine)
Tpuk: (Trick)

4 mny: 2 coMm 2 HeBua (4 dll: 2 sam 2 nevil)

Tporka: (Troika:)

2/19

https://blog.malwarebytes.com/threat-intelligence/2022/04/colibri-loader-combines-task-scheduler-and-powershell-in-clever-persistence-technique/
https://www.proofpoint.com/us/blog/security-briefs/ta551-uses-sliver-red-team-tool-new-activity
https://www.cobaltstrike.com/features/
https://www.proofpoint.com/us/blog/threat-insight/bumblebee-is-still-transforming
https://research.nccgroup.com/2022/03/31/conti-nuation-methods-and-techniques-observed-in-operations-post-the-leaks/
https://research.checkpoint.com/2022/leaks-of-conti-ransomware-group-paint-picture-of-a-surprisingly-normal-tech-start-up-sort-of/

HeBuJ (nevil)
lMlenkorn: O6wmnnm MmammHa (Shellcode: Build Machine)

KobanbT: 6unnm mamrHa (Cobalt: Build Machine)

Chat logs from the ContiLeaks also provide details about the creation of the build machine. On April 15, 2021, Mango
informed Stern that the build machine for the crypters would be ready by the end of April 2021.

Mango — Stern: 6I/LH,Z[MalliHa HOJIAd KPUIITOPOB 6yneT I'OTOBa K KOHLYy MeCHdlla, BUepa yXe
Haualm oOkKaThHBaATh €€ HO IoKa CEIpOBaTa
(The build machine for cryptors will be ready by the end of the month, yesterday they

already started to run it in, but it’s still raw)

On June 7, 2021, Bentley provides an update to Stern on the status of the transition of work to the build machine.

Bentley — Stern: [eja - xXopomo. JVIHTEPECHO M HACHIIEHO.
Bce KpunTOpH MNEpPELyM M3 PYyYHOTO TpyLa B aBToOMaTHMUeCKkyM COOpKy uepes3s OMJI MalMHY .
Tenepb OHM BaHMMAKLTCS aKTyaJiM3alLuMel M UUMCTKOM cTabor. A dalyu g mesan Ha OwUIg MalMHe,

IPOBEPSID M BHIAWL.
Ecam uTo-TO OMIOMTCHA I'PA3HEIM — OOpallalCh K KPpUNTOPy. OH umcTuT cTad®. CHOBa NpPOBEpPSEM U
BBIOAEM.

Bamaum:

Kpunrosaume o¢anynor nja Jleo Ha OuIn MallMHE.

lenxon xoBajbT

1

2

3. Jlokep:
4. KoabanbT exe M IJi

5. dll Tpuxa

6. ObOyuyamw M OPenoCTaBJIod OOCTYI OPYI'MM YJIeHaM KOMAaHIE K OuJin MallMHe, YTOOBl OHM MOTIJIM
camMm CcoOupaTb KPUIITH .

7. IlooroToBaka JIMHKOB OJIA HATPYy3KM M TeCTHMpoBaHMe exejsiert mna netwalker, hash, cherry.

Everything is OK. Interesting and rich.

All cryptors have moved from manual labor to automatic assembly through the build
machine.

Now they are engaged in updating and cleaning stubs. And I make files on the build
machine, check and issue.

If something is being built dirty, I turn to cryptor. He cleans the stub. Check again
and release.

Tasks:

1. Crypting files for Leo on the build machine.

2. Cobalt shellcode

3. Lockers

4. Cobalt exe and dll

5. Trickbot dl1l

6. Educate and give other team members access to the build machine so that they can
collect the crypts themselves.

7. Preparing links for loading and testing excels for netwalker, hash, cherry.

Within the ContiLeaks, there are multiple references to the use of a Jenkins server for the Build Machine. In one such
example, on January 17, 2022, two ITG23 developers “derekson” and “elon” discuss the Jenkins server. X-Force also
uncovered Program Database (PDB) file paths used by ITG23 crypters that reference Jenkins (see below for more
details).

Derekson — Elon: IlpmeeT. IIOUTM BaKOHYMJI CO BTOPEM cepBepoM. Ckaxu KoOI'Ha MOXHO

IIOOKJIUMTE K IOXEHKMHCY IJId TecTra?

3/19

(Hello. Almost finished with the second server. Tell me when can I connect to jenkins

for a test?)

Throughout the leaked chats, there are multiple examples of Bentley delivering crypted malware samples to affiliates
and partners such as Cherry, Netwalker, and Zeus. X-Force assesses that “zevs” (“zeus”) is affiliated with the
prominent distribution group Hive0106 (aka TA551), which used the gtags ‘zev,” ‘zem’ and ‘zvs’ during their Trickbot
campaigns. Hive0106 is a prominent distribution affiliate with an established relationship with ITG23. Throughout the
chats, “zeus” is alternatively translated as “seBca”, “3eBcom”, “3eBcy”, and “3eBc” depending on the grammatical case.
For example, on Aug 10, 2021, Bentley sends the following request to Hof, a developer associated with Trickbot
malware:

Bentley — Hof: Hobpoe yTpo. Cmemaw, noxamnyycra, zev4d.dll m zeml.dll nnsa 3eBca

(Good morning. Please make zev4.dll and zeml.dll for Zeus)

The following messages also indicate crypted samples were prepared for Zevs:

August 31, 2021:

Bentley — Zevs: Eme oTBeT: y HaC €CTb OIBT CEPMMHOM BHIOAUM KpMUITOB I BK* yxe, omun
3akas3umk Oepetr naptusamm o 30-100 wmryk

(Another answer: we have experience in the serial issuance of crypts and BK* already,

one customer takes in batches of 30-100 pieces)
September 24, 2021:

Neo — Zevs: MOHT MOJIUMUT, 4 KPUIITEI I'OTOBWJI 3 LITYKNM K 8 mo mMck

(Mont is silent, I prepared 3 crypts by 8 Moscow time)

*We assess BK (BK) likely is a reference to BazarLoader based on analyzing multiple chat references to this
acronym.

Emotet and IcedID: Longtime Pals

The use of ITG23 crypters with Emotet and IcedID malware is the latest evidence of a close relationship with these
groups that has featured distributing each other’s malware and cooperating on malware development. Emotet first
appeared in 2014 as a banking trojan and later emerged as a prominent downloader for other banking trojans,
including IcedID, Qakbot, and Trickbot. IcedID, also known as Bokbot and often referred to by ITG23 as Anubis, is a
banking trojan first discovered by X-Force in September 2017. Since that time IcedID — like many banking trojans —
has evolved to include backdoor and data harvesting capabilities and is often used as a downloader for other
malware, including Cobalt Strike and ransomware.

Emotet: ITG23 and the Emotet group have a history of seeding each other’s malware. ITG23 has used Emotet
extensively to deliver Trickbot malware often leading to the notorious Emotet -> Trickbot -> Ryuk ransomware attack
sequence. Following actions to disrupt Trickbot group operations in fall 2020, Emotet moved quickly to assist ITG23’s
recovery by downloading Trickbot malware to infected machines. A year later, ITG23 returned the favor by seeding
Emotet samples to facilitate Emotet’s return following the January 2021 international law enforcement operation
against the group.

The presence of “Veron” aka “Mors” participating in conversations with ITG23 members in the leaked chats also
points to ITG23’s close cooperation with Emotet. Historically, “mors” was a gtag used with Trickbot samples delivered
by Emotet. Based on the conversations, \Veron/Mors appears to be a liaison to ITG23 for Emotet related matters.
Veron/Mors also seemed to work with the crypting team, and messages can be found from Bentley which discuss
crypting files for Veron. Bentley sent the following messages to Veron and Stern between February and May 2021
possibly related to crypting Emotet samples for testing purposes before Emotet’s reappearance in November:

February 24, 2021:

Stern — Bentley: veron 3anyctuicsa? (Veron started?)

4/19

https://securityintelligence.com/posts/trickbot-gang-doubles-down-enterprise-infection/
https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://thedfirreport.com/2021/07/19/icedid-and-cobalt-strike-vs-antivirus/
https://www.cybereason.com/blog/research/triple-threat-emotet-deploys-trickbot-to-steal-data-spread-ryuk-ransomware
https://www.cyberscoop.com/trickbot-takedown-cyber-command-microsoft/
https://intel471.com/blog/trickbot-online-emotet-microsoft-cyber-command-disruption-attempts/
https://www.bleepingcomputer.com/news/security/emotet-malware-is-back-and-rebuilding-its-botnet-via-trickbot/
https://www.justice.gov/opa/pr/emotet-botnet-disrupted-international-cyber-operation
https://research.checkpoint.com/2022/leaks-of-conti-ransomware-group-paint-picture-of-a-surprisingly-normal-tech-start-up-sort-of/

Bentley - Stern: OH HaumMHaeT B MapTe. PaborTaeM Han KpuMITaMyM OJid HeI'O. HaAlMX KPUIITOpa

(He starts in March. We're working over the crypters for him. Our crypters)

March 1, 2021:

Stern — Bentley: veron He Haualn eme? (Veron hasn't started yet?)

Bentley — Stern: IlpBuetr. Eme He HauvaHajyn. Crnejlany TOHOEHM KPUIT ero mui. XmemM xak mact
IIOJIHYID BEepCMI0O CO BCEMM HblaHCaMMu

(Hi. Not started yet. Made a suitable crypter for his dll. We're waiting for a full

version with all the nuances.)

May 5, 2021
Bentley — Veron: Moxewb IaTb IJIJI Ha KpuIT? [loKa MOXEM HadaTb KPUITOBATbH M I'OTOBUTH
cTabs

(Can you give a dll for the crypt? For now, we can start to crypt and prepare stubs)

Messages between Veron and Stern in May 2021 seem to suggest that the return of Emotet may have been delayed
due a need to rewrite parts of the code for security purposes.

May 18, 2021:

Stern - Veron: mpmuBeT. KOI'ga CTapTyem?

(Hi, when are we starting?)

Veron — Stern: mpuBeT, s CKaxy Kkorga TOYHO, B OJmxallllee BpeMs yXe, Hejlald 4YTOOH He
B3JIOMaJM

(Hello, I'll tell you exactly when, in the near future already, I'm doing it so that
they don't get hacked)

May 24, 2021:

Veron — Stern: mnpuBeT, COPpM, UYTO 3aIepXMBaeM, HO HAIO IepenucaTb YacThb, S 3a
©e30MnacHOCThb

Hanmuuy Kak OyIelb, €CJM BOIPOCH €CTb

(hello, sorry for the delay, but we need to rewrite part, I'm for security

let me know if you have any questions)

IcedID: The first evidence of ITG23’s cooperation with the IcedID group appeared in May 2018 when security
researchers observed IcedID downloading Trickbot malware. Several months later other researchers noted Trickbot
returning the gesture and downloading an updated IcedID variant that incorporated features used with Trickbot
samples, suggesting that the two groups also collaborated on development. In early 2019, other analysts observed
IcedID using a custom Trickbot shareDLL module to download core Trickbot malware. These researchers a month
later described a new Trickbot proxy module for man-in-the-middle (MITM) attacks against web browsers that was
highly similar to the IcedID proxy module. A Trickbot module named anubisDII32 was also developed containing the
IcedID core code. In November 2021, X-Force and other researchers observed multiple campaigns during which
BazarLoader was used to download IcedID malware.

ITG23’s leaked chats provide additional insight into ITG23’s close relationship with IcedID, although the exact nature
of this relationship remains unclear. On May 1, 2021, Stern congratulates “Leo” on his “cool bot IcedID” for gaining
the attention of security researchers, revealing that Leo is likely affiliated with the IcedID group.

Stern - Leo: a TBOM kpyTOoM 6oT ICEDIld

(and your cool ICEDId bot)

Stern —» Leo: Opo HEro mNMuyT MCCJeIOoBaTeNu
(researchers write about it)

Stern - Leo: 4YTO TH CeMdyac Ha [IepBOM MecTe

(that you're in the first place)

The leaked chats often refer to a “Project Leo”, which we assess is a reference to IcedID. Bentley regularly provides
Mango with updates on crypting related to “Project Leo” and in November 2021, Stern messaged the following

5/19

https://www.flashpoint-intel.com/blog/trickbot-icedid-collaborate-increase-impact/
https://www.fortinet.com/blog/threat-research/icedid---trickbot--a-give-and-take-relationship
https://www.crowdstrike.com/blog/sin-ful-spiders-wizard-spider-and-lunar-spider-sharing-the-same-web/
https://www.crowdstrike.com/blog/wizard-spider-lunar-spider-shared-proxy-module/
https://securelist.com/trickbot-module-descriptions/104603/
https://twitter.com/malware_traffic/status/1465853138657808521

instruction to Bentley:

Stern - Bentley: "BKJIOUM KPUIITE JIEO

(turn on the crypts of Leo)"

IcedID and MountLocker Ransomware

X-Force uncovered evidence that ITG23 crypters were used with MountLocker (see below), a ransomware-as-a-
service (RaaS) operation that has been active since July 2020. Since then, MountLocker has rebranded several times
to other names including XingLocker, AstroLocker, and Quantum. This evidence — combined with code overlap
between Iced|D and MountLocker ransomware and the use of IcedID alongside MountLocker during multiple
ransomware attacks — suggests that the IcedID group operates the MountLocker RaaS.

The following conversation between Stern and Bentley on May 6, 2021, provides additional evidence that Leo, who
operates IcedID, also has some involvement with ransomware. Stern asks Bentley which ‘lockers’, aka ransomware,
his team have been crypting, and Bentley responds that they have had binaries from Reshaev and from Leo.
Reshaev is a developer/manager for the Conti ransomware.

Stern: kak aBTOOWMIOEl padboTawnT?

Bentley: Bogsbumasa yacTb cTaboB yxe pabdoranT. BrimaeM Jiokephl exe 32 64 mmn 32 64 , xoOy
32 64 kxak exe Tak u m. llenxonel B exe m mui. I[lpoctee mi, BK.

Stern: Kakme JIOKEPEH

Bentley: oT pemaeBa B exe M OT JIeO B IJUI

Stern: How's the autobuild working?

We issue lockers exe 32 64 dll 32 64,
Simple D11, BK.

Bentley: Most of the stubs are already working.
cobalt 32 64 as exe and dll. Shellcode in exe and dll.
Stern: Which lockers?

Bentley: From Reshaev in exe and from Leo in D11

Analysis of IcedID and MountLocker samples reveals areas of code overlap, particularly in the logging and decryption
functions. Both IcedID and MountLocker generate extensive debug logs, which are formatted in an almost identical

manner.
: seg0... 00000030 C [INFO] bot.hooker.process > inject to [%u] Ys\rin

's’| seg0... 00000030 C [INFO] bot.inj.config > set apc id=%u size=%u\r\n

's’| seg0... 00000037 C [ERROR] bot.dg.cookie.chrome > sglite exec status=%u\r\n
\'s| seg0... 00000036 C [INFO] bot.inj.config > config set ok id=%u cre=%u\r\n
's’| seg0... 000000... C [INFO] bot.inj.replace.text > replaced=%s\r\n

's’| seg0... 00000024 C [INFO] bot.be.socks > new sock=%p\r\n

‘s’ seg0... 00000006 C [INFO]

's’| seg0... 00000033 C [ERROR] bot.shed > ITrigger QueryInterface=%0.8X\r\n
's’| seg0... 00000024 C [ERROR] bot.hooker.inject > write\r\n

's’| seg0... 00000032 C [ERROR] bet.hooker.inject > open process gle=%u'\r\n

's’| seg0... 000000... C [ERROR] bot.gate.queue.add > merge/pack\r\n

's’| seg0... 00000027 C [INFO] bot.url.get > item=%u list="%u\r\n

‘s’ seg0... 0000001F C [INFO] bot.inj.traf > url=%s\r\n

's’| seg0... 00000037 C [ERROR] bot.dg.pass.chrome > sqlite exec 2 status=%u\r\n
's’| seg0... 000000.. C [INFO] bot.dg.pass > ie vault status=%u'\r\n

's’| seg0... 00000035 C [ERROR] bot.dg.pass.chrome > sqlite open status=%u\r\n
's’| seg0... 000000... C [ERROR] bot.inj.config > query apc gle=%u\r\n

's| seg0... 000000.. C [INFO] bot.cmd > run shellcode param=%s\r\n

's’l seg0... 00000042 C [WARN] bot.update.botpack > Bad format support=960.2X file=%0.2X\r\n
's’| seg0... 0000002F C [INFO] bot.dg.pass > cred status=%u count=%u\r\n

's’| seg0... 00000037 C [ERROR] bet.dg.pass.chrome > sqlite exec_1 status=%u\r\n
s seg0... 000000.. C [ERROR] bot.bc.main.session > auth=%0.8X\r\n

's’| seg0... 00000028 C [INFO] bot.bc.socks > sock=%p host=%s\r\n

Figure 1 — Debug log strings from an IcedID sample

6/19

https://blogs.blackberry.com/en/2020/12/mountlocker-ransomware-as-a-service-offers-double-extortion-capabilities-to-affiliates
https://www.trendmicro.com/en_us/research/21/j/ransomware-operators-found-using-new-franchise-business-model.html
https://thedfirreport.com/2021/10/18/icedid-to-xinglocker-ransomware-in-24-hours/

axt "UTF-16LE", '[ERROR] locker.file > ;et_pos gle=%u name=%s',@Dh,@Ah

axt "UTF-16LE", ©
lign 1@h
: DATA XREF: sub_18000499C+141To

ext "UTF-16LE", '[ERROR] locker.file > read gle=%u name=%s",@Dh,8Ah,0

lign 18h
DATA XREF: sub_186@00499C+12Bto

ext "UTF-16LE", "[ERROR] locker.file > write gle=%u name=%s',@Dh,@Ah

axt "UTF-16LE", @
lign 1@h
H ; DATA XREF: sub_180@04B1e+48to

axt "UTF-16LE", '[ERROR] locker.file > open gle=%u name=%s",@Dh,@Ah,0

lign 16h
: DATA XREF: sub_180004B10+88T0

: 3
ext "UTF-16LE", '[ERROR] locker.file > get_size gle=%u name=%s',@Dh,0@Ah

ext "UTF-16LE", @

DATA XREF: zf_encrypt_file+110To

sxt "UTF-16LE", @
lign 1@h
: ; DATA XREF: zf_encrypt_file+186to

axt "UTF-16LE"™, '[ERROR] locker.file > write_key gle=%u name=%s',@Dh

ext "UTF-16LE", ©Ah,0
lign 2@h
; DATA XREF: zf_encrypt_file+231To

axt "UTF-16LE", '[OK] locker.file > time=%@.3f size=%0.3f KB speed=%'

axt "UTF-16LE", '@.3f MB/s name=%s',@Dh,0Ah,0
lign 1@h
: ; DATA XREF: zf_encrypt_file+265%0

ext "UTF-16LE", '[OK] locker.file > time=%@.3f size=%@.3f MB speed=%'

ext "UTF-16LE", '@.3f MB/s name=%s',@Dh,0Ah,@
lign 2@h
; DATA XREF: zf_handle_net_drive+2ETo

2

ext "UTF-16LE", '[SKIP] locker.work.enum.net_drive > readonly name=%"

sxt "UTF-16LE", 's',@Dh,0Ah,0
lign 18h

Figure 2 — Debug log strings from a MountLocker sample

Additionally, samples of both IcedID and MountLocker were identified which contained almost identical XOR

decryption and key generation algorithms.

L

ext "UTF-16LE", '[ERROR] locker.file > rename gle=%u name=%s’',@Dh,@Ah

| _inte4 _ fastcall zf_decrypt_data(unsigned int *al, __inte4 a2)

{
unsigned _ intl6 i; // [rsp+28h] [rbp-18h]
unsigned _ intl6 v4; // [rsp+2ah] [rbp-14h]
unsigned int vS; f/ [rsp+2Bh] [rbp-1@h]
__int64 w63 ff [rspt+4@h] [rbp+8h]
v = ¥alj

9 v4 = *(al + 2) ~ *al;

1@ vE = al + B;

11| for { i = @5 i € vd; +4i)

(= R T, - TV N

12

13 v o 2f_gen_key(vs);

14 (a2 + i) = w5 & "(vE + 1);

15| }

16 return a2;

17 |}

1 inted _ fastcall zf gen key(int al)

2

3| return __ROL4__(__ROL4_ (__ROR4__(__ROR4_ (__ROR4_ (2l + 11865, 1), 1), 2) ~ @x151D, 2), 1);
4l

Figure 3— XOR algorithm and key generation function from an IcedID sample

7/19

=

unsigned intls i; //
unsigned _ intlé w4; //
int v5; //

H

*(

+2) *
+ 6
- Q;

for (
r
1

RS

= zf_gen_key(vs);
*(a2 + i) = * vE[i];
}
return

1| inmte4 fastcall zf gen_key(int al)
2
4

return {(-__ROR4__(__ROL4_ ((al * @x93FE) + 38784, 1) - 23285, 1) - 116682);

Figure 4 — XOR algorithm and key generation function from a MountLocker sample
Qakbot: A New Partner?

While monitoring for signs of ITG23 crypters’ use in the wild, X-Force identified the first known use in late February
2022 of an ITG23 crypter with Qakbot aka Qbot. The Qakbot banking trojan was first identified in 2007 and like other
banking trojan groups, it has increased its functionality over the years and evolved into a flexible downloader and
backdoor often leading to ransomware attacks. The appearance of ITG23 crypters on Qakbot samples provides
evidence of a direct relationship between ITG23 and the Qakbot group. The relationship between ITG23 and Qakbot
is also supported by additional evidence published recently. That said, the discovery does not come as a complete
surprise. In the leaked chats, “Tramp” asked Bentley on December 6, 2021, about crypting Qakbot:

Tramp — Bentley: kxpunraHeM kBak Hora ?
(crypt Quak Bot?)

Bentley - Tramp: naBay nornpobyem
(let's try)

Tramp later sends Bentley a file named stager_1_tr.dll to be crypted. Tramp may be affiliated with “TR”, a prominent
distribution affiliate also known as TA577 and which is currently distributing Qakbot. We have since identified ITG23
crypters used with Qakbot samples delivered by the two most prominent and current Qakbot distribution affiliates —
TA570 and TA577 — suggesting that ITG23 is assisting the Qakbot group with crypting its malware and not just a
single distribution affiliate. There is also evidence that Qakbot has a relationship with the Emotet group, dating back
several years. Emotet has historically been used to download Qakbot in addition to Trickbot, for example during 2020
and then more recently in March 2022. Given ITG23’s partnership with Emotet, it is possible that the Emotet group is
facilitating ITG23’s relationship with Qakbot leading to the latter’s use of an ITG23 crypter.

Hive0106 (TA551) Gozi Sample

X-Force researchers also found a Gozi sample using an ITG23 crypter on April 7, 2022 (see below). Gozi is also a
banking trojan first appearing in 2007 that has evolved into a multi-module, multi-purpose malware. However, unlike
the other banking trojans discussed so far, the Gozi source code has leaked and the malware is not operated or
developed by a single group. The threat actor Hive0106 (aka TA551) was likely responsible for this campaign
delivering Gozi. We assess that Bentley and his team likely crypted this Gozi sample on behalf of this group, with
which they have an established relationship.

The Crypters

Crypters are applications designed to encrypt and obfuscate malware to protect it from anti-virus scanners and
malware analysts. The crypting process generally involves encrypting a pre-compiled malware payload, such as an

8/19

https://www.microsoft.com/security/blog/2021/12/09/a-closer-look-at-qakbots-latest-building-blocks-and-how-to-knock-them-down/
https://www.prodaft.com/m/reports/WizardSpider_TLPWHITE_v.1.4.pdf
https://www.bleepingcomputer.com/news/security/emotet-botnet-is-now-heavily-spreading-qakbot-malware/
https://twitter.com/Cryptolaemus1/status/1506647250927300611
https://research.checkpoint.com/2020/gozi-the-malware-with-a-thousand-faces/
https://twitter.com/k3dg3/status/1512067808133214225

EXE, DLL file, or shellcode, and embedding it within a secondary binary, known as a ‘stub’, which contains code to
decrypt and execute the malicious payload. The stubs generally take the form of binaries, such as Exe or DLL files,
are often either polymorphic or updated frequently in order to evade signature-based detection methods, and usually
make use of code obfuscation techniques.

When the crypted binary is executed, the stub code will extract the embedded payload, decrypt it, load it into memory
and execute it. As a result of this behavior, the crypted binary containing the stub code may also be referred to as a
‘loader’ or ‘in-memory dropper’.

In order to protect their payloads many crypters may also include additional functionality to detect sandbox
environments, hinder AV scanners, escalate privileges, or perform other basic system checks. It's common for
crypters to utilize a high level of code obfuscation within the stubs, and the majority also employ polymorphic
techniques such as metaprogramming to ensure that each crypted binary is unique and thus make it harder to identify
via signature-based detection methods.

Another common technique is for the crypter to disguise the malware as a benign executable, and to this end, they
will often use source code from legitimate applications as a template for the stub binary, or include strings or functions
which mimic benign activity. The code to decrypt and load the payload will be made as inconspicuous as possible in
an effort to hide it from the attention of malware scanners.

All of these techniques together also provide obstacles for the malware reverse engineer and make it harder to write
detection signatures and automated malware parsers.

X-Force research indicates that ITG23 is providing crypting services to other threat actors in addition to using them
for their own malware. Using the same crypter for multiple malware families has an additional benefit of confusing the
identification capabilities of AV applications. Indeed, it is not uncommon to see a crypted malware binary flagged by
AV as belonging to one malware family, when it is in fact a completely different one, and they just happen to be using
the same crypter.

X-Force analysts are tracking at least thirteen crypters we believe to be developed and currently in use by ITG23 that
we are calling Dave, Pear, Lore, Mirror, Galore, Rustic, Tron, Hexa, Stub, Error, Skeleton, Charm, and Graven. Whilst
variants of the Dave RC4 crypter have been in use for at least a couple of years, the rest appear to have been
primarily developed in the past year. ITG23 has used these crypters with Trickbot, BazarLoader and Conti malware
— all of which are attributed to ITG23 — and used them to crypt malware on behalf of groups such as IcedID and
Emotet. We have also observed these crypters used with Cobalt Strike samples, which we assess are used by
ransomware internal red teams or affiliates when conducting attacks on clients infected with Trickbot, BazarLoader,
IcedID or Emotet.

In the sections below, we provide an overview of each of the crypters and the examples of the malware families they
have been used with.

Dave

Dave is one of the older crypters that X-Force tracks as currently in use by ITG23, having been used since at least
2020. Several variations of Dave exist, but one of the most common variants stores the payload either as an RCData
type resource or within the data section, and decrypts it using a custom RC4 algorithm, which uses a variable sbox
size rather than the standard for RC4 which is 256 bytes. Dave is so-called as it commonly wraps the payload in a
second-stage shellcode loader, where the ascii string ‘dave’ is used to mark the end of the payload. Dave loaders
have been most frequently observed loading Emotet and Trickbot, but also occasionally BazarLoader, Ryuk, Conti,
IcedID, Cobalt Strike and Colibri.

It is common practice for malware developers to ‘strip’ malware binaries during compilation which removes symbol
information such as variable and function names. This has the benefits of making the malware more difficult to
analyze, as well as removing details, which may potentially be used by analysts to fingerprint the developer.

Almost all samples analyzed by X-Force are fully stripped, however from November 2021 to January 2022 X-Force
observed a number of unstripped Dave-crypted samples uploaded to repositories such as VirusTotal, providing a rare

9/19

https://securityintelligence.com/posts/trickbot-gang-template-based-metaprogramming-bazar-malware/

insight into the coding style of the developer. Based off some of the strings and function names X-Forced determined

the developer utilized components of publicly available code for the stub, for example, the function

CLoad::FromMemory() can be traced back to a 2016 code sample, memlib.cpp, originally published on a forum. The

aforementioned shellcode with the ‘dave’ signature also appears to be modified from the open source sRDI

repository.

BOOL __stdcall D1IMain(HMINSTANCE hinstDLL,

imt (__stdcall A y(int,
int v5; /S =
int ve; //f

imt (_ stdcall y(_DwORD, int, int, int);

int va; // =

int wa; ff

unsigned int v1@; f/

unsigned _ intd *wil; //

unsigned .mta mu-::ule na"u:lle I’
Cload *v13; //

hmad_current = hi
reson_call = fd
Feserv =

if (_Zea r‘l{.‘l..l‘.‘k""]

printf{&Fornat);

return @
¥
else
ql _.I " H
g2 = @;
q3 = @;
|'|4 = B;
q5 = B}

= gct rc:duJ.e h.:nrdLrefL K

gq—f module_handle(L"

virt_allocatlon mem = ne proc .dd ess(

virtmemliuma - get_proc_address(
if { virtmesNuma)
{
- 'u"l.l"ti‘cfrldm
= atol("84");
= ptol("B192")}
BYTEL(vG) |= @xldu;

}

else

{

(-1, @, 143872, v, v3, B);

= vire_sllocation_mem;
= atol("64");
= atol("B182");
BYTEL(vO) |= @xléu;
= v7(@, 143872, w9, vA);
}

mERpy » GrawData, Ox23200u);

= malloc{size_arrary);
red_dndel ; kay, oxBlu);
red_crypt(¥ s Bx2IZ0Bu)
hLibrary = ClLoad::LoadFromMemory
return 1

DWORD fdwReason, LPVOID lpvReserved)

, Bx23100,

Select samples using the Dave crypter:

DRD); JF esi

2. dll™);

, BxA0E9TIA2U);

» OnIB911ESu)

Figure 5 — Unstripped Dave stub with original function and variable names as assigned by the developer.

ISample Family|| SHA256 Hash

|
[Cobalt Strike |la9c4eafcff0567c68919c93ddf8baa769392e92706e6b35f7b989310d70f732f |
Colibri f5fd02ebd2376fd1bc1ff121e9bfda618755a5c049edc8a4288eb67eb1cc7fob |
[Emotet 5da102cc1ff7d842e3b5c9d6f57 1bd3b3afdc1715d37f120b31€1859928f5837 |
[Trickbot |947c81aefdba79de7e75f14be2921bb829478680e039c2bc40a4c258524819b8 |
[BazarLoader |l47bac27be954cf593ac731cd57fa98b565cf5036a6fbf35c508549f03%¢easdf3 |
[Conti |5ace33358a8b11ae52050d02d2d6705f04bd47a27c6c6e28ef65028bbfaf5dad |
IRyuk 180f82bbedb03dc29328e32e054069870a1e65078b78b2120a84c96aaed7d843|
Pear

10/19

https://www.mpgh.net/forum/showthread.php?t=1101356
https://github.com/monoxgas/sRDI

Pear crypter can be tracked back to at least March 2021, when it was used to crypt IcedID. Pear has been primarily
observed in use with IcedID payloads, but samples loading BazarlLoader, Trickbot, and Colibri payloads have also
been found. Pear crypter stores the payload within one of the stub binary’s data sections, and custom algorithms are
used to encrypt the payload. The exact format and values of the encryption algorithm change per sample, suggesting
a technique such as metaprogramming may have been employed to generate the algorithms. The encrypted payload
often has a recognizable alternating byte pattern that makes use of a restricted set of bytes in order to keep the
entropy low. Entropy measures the level of randomness in the data, and many encryption algorithms will generate
encrypted data with a distinctively high entropy value, which is easily detectable by binary analysis tools. By using an
algorithm that outputs lower-entropy data, the encrypted payload is less easy to detect by automated systems.

dEpaasoen

_'daéa segment para public "DATA" wsess
asseme cs:_rdata

B A 33 JE IT A 47 37 I3+a3TH2IFSISIEETI O4b "-3.
@ 32 3% 32 35 32 36 32 3T+
@ 32 34 32 39 32 34 32 3B+ db " @34
P 33 39 33 38 37 3E 32 IF+ db -
@ 37 38 32 41 32 42 33 35+ db *
B 33 34 33 35 33 36 1 7
B 37 38 33 39 33 34 3
& 33 3C 33 3D 33 3E 3
B 33 4B 33 41 33 42 14 33
@ 34 34 34 35 34 36 3
€ 34 38 34 30 34 34 34

B 34 3C 34 30 32 3F 34 3F
B 34 48 34 41 34 42 35

@ 35 34 35 35 35 36 35 37
m 35 38 35 39 35 34 35

& 2F 3C 35 3D 35 3E 35 3F
& 35 36 38 &

@ 36 34 28 39 36 30 3
@ 34 37 28 41 35 39 W
B 32 37 34 3E 39 42 3
@ 38 37 37 48 34 42 36

B 36 33 36 34 36 3E 3
@ 37 42 39 42 39 41
P 37 34 39 39 39 34 3
& 392 3C 39 30 39 3E 3
& 37 36 20 43 13 3E 28 41
B 34 33 38 35 3A 3C 3@

@ 34 37 38 39 JA 48 3
B 34 38 3@ 30 34 34 3@

@ 3§ 3E 34 3B 33 41 35

& 31 35 35 35 28 3C 35 3C
® 28 34 37 33 24 3F 35

& 31 36 35 30 23 34 35

e 31 3F 35 41 28 37 1%

B 38 3C 36 35 2C 3C 36

ARARTEAN ARARLAAT SARAT AN lnm s nOTONGICHCALSTTD [Term alemmmd madl sl mh Tl slle %

Figure 6 — Pear crypted sample with distinctive encrypted payload utilizing a restricted byte set.

Select samples using the Pear crypter:

|Sample Family||[SHA256 Hash |
icedID |[9f4bdbfec9f091e985e153a1597fc271abd0320c60dfe37dc3e7d81e5d18ad83 |
[BazarLoader |[26cac671e215d88b5070af7d94200588d2b7c414a6e8debf7370b993fcfffb23 |
Colibri |b1fc2855f5579f02ac6d03c2d20e85948e9609fd769389addb8ce5986b1f8ecd |
[Trickbot |le2ba0567ac236a24bfd4df321ae7860e8fe2810dbd088e0e90d67167¢1ccd4cs|
Lore

Lore crypter has been in use since at least May 2021 and has been observed with payloads including Emotet,
Trickbot, BazarLoader, IcedID and Cobalt Strike. This crypter stores the payload as a BITMAP type resource, with a
103-byte bitmap file header added to the start of the payload data. Upon execution, the stub code loads the resource,
removes the bitmap header, and decrypts the remaining data using XOR and a hardcoded key. The payload is then
loaded into memory and executed. The crypter originally appeared to be designed for use with PE payloads, and so
shellcode-based payloads were wrapped in an additional second stage loader.

Lore crypted binaries often include a lot of extraneous imports and junk functions in an attempt to obscure the
location of the payload decryption and loading code from analysts. This loading code instead uses API hashes to

11/19

retrieve handles to the API functions it requires, so the extraneous imports can generally be ignored by the analyst.

A handful of Lore crypted samples were identified containing the following PDB paths:

204506c69824371017£482e88£9fbbl4cfd0fbcl7233fa8d3ffbf4£f527e20afb
c:\jenkins\workspace\crypter5 generic exe\Bin\x64\Release\MFC Stub.pdb
dlal2eb52d9fcc57580146370933a3£9%9eb027c5fec972abc%ac2£2b7d9£94e0d3
c:\jenkins\workspace\crypter5 shellcode 64 exe\Bin\x64\Release\MFC Stub.pdb
41c56e92efd01a553d0faf39ccb440c7e84d32531335¢c262572d6a01b£f7£70c8
c:\Jjenkins\workspace\crypter5 generic_exe\Bin\x86\Release\MFC Stub.pdb
615f9a5517e71648a0780c186af8642e2848589d6962bcl12f£f34c0c54b650d£f5
c:\jenkins\workspace\crypter5 shellcode 64 exe\Bin\x64\Release\MFC_ Stub.pdb

These paths provide evidence of a Jenkins server being used for crypting operations and also suggest that it likely
contains a number of different crypters, with crypter5 being Lore Crypter. This is corroborated by the PDB path found
within some Error crypted samples, detailed further below, which refer to it as ‘crypter7’.

The directory names ‘crypter5_generic_exe’ and ‘crypter5_shellcode_64_exe’ indicate that different configurations of
the crypter stubs were likely compiled for different types of payloads. In this case, the two samples containing the
reference ‘crypter5_shellcode 64_exe’ are both 64-bit executable files that contain Cobalt Strike shellcode http
stagers as their payloads. For the two samples containing the reference ‘crypter5_generic_exe’, one is a 64-bit
executable containing a BazarLoader payload and the other is a 32-bit executable containing a Conti ransomware
executable.

Select samples using the Lore crypter:

[Sample Family|[SHA256 Hash |
[Cobalt Strike |leeBefcd34db429697337d7275d713385600c510558a8a4615bd 1eb 1884714312 |

[Conti |e6e248be24782f28a492055ebb35886ad057d8a5f4d7315f22af1fe29d9df0d |
licedID [7a6c42343b3d422c9f65¢72763645b8f1b4931c609c320e60816aee55e4ae8a |
[Emotet [70b66e57ea54f48a8b288d65d93063478e27b57 10cab106cf41464€086e784db|
[Trickbot [2587€94f3bc1ae54f7732984925def76de934b3e1b1f7407bd66491db18f7e0 |

[BazarLoader ||8661bd7d893fe1dd2109fac55cf9cea5f609012769732039¢20165a3198¢1086 |

Mirror

Mirror crypter has been observed since November 2021, and so far has primarily been found loading BazarLoader
payloads, as well as some IcedID and Cobalt Strike. Mirror crypter shares some code overlap and obfuscation
mechanisms with Lore crypter, suggesting they may have the same developer or codebase. Mirror splits its encrypted
payload into three parts which are stored across different sections of the resulting binary loader. Two main variants of
the Mirror stub code have been found so far, one which decrypts the payload using AES-256 via the Windows
CryptDecrypt API, and a second which decrypts the payload using XOR and a hardcoded key.

Select samples using the Mirror crypter:

ISample Family |SHA256 Hash |
[BazarLoader (IDB Sample)|lcbd830c745bbec26733214798fe144c61ef4bac342c853f8a08b682077b2178D |
[BazarLoader (XOR variant)|[p44d0261823595b303bdae62df7790b30c13a0a897978d30f3041¢c27a645each|

licedID |00c46232cdad873bf02787746fbadd 196a6045bac1051154af7772f5b0f29b87 |
[Cobalt Strike 9eedbac3f1c8795cf1f04301ecf2d66aacacbbb9e6c087ed158f00f81fae7375 |
Galore

Whilst the majority of ITG23’s current crypter stubs are coded in C/C++, it seems the developers also experimented
with alternative languages, producing crypters with loader stubs written in both the Go and Rust programming

12/19

languages. Galore crypter uses the Go programming language and has been observed in the wild since mid-2021
when it was frequently used to crypt BazarLoader payloads. The Go programming language has become increasingly
popular with malware authors over the past few years due to its convenient cross-platform support, and the fact that it
produces large and complex binaries upon compilation which can be tricky to reverse engineer and often have lower
detection rates against AV applications than their C/C++ coded counterparts.

Upon execution the Galore stub code decrypts the payload using XOR, and loads and executes the PE payload using
code based off the open-source Reflective DLL Injection project. The use of this Reflective DIl Injection code is
common in many of ITG23’s crypters.

Select samples using the Galore crypter:

|Sample Family||[SHA256 Hash |
[Baazarloader |[26be0ba3533703f5eeea8489e6a8881461dab7f597f33€546182ba1910953d09|

Rustic

Rustic crypter uses the Rust programming language which, like Go, has been seeing an increase in popularity with
malware developers. The payload is stored in the .rdata section of the loader and encrypted using a XOR based
algorithm with two keys applied in multiple iterations. The crypter supports both shellcode and PE payloads, with
shellcode payloads loaded into memory and executed directly, and PE payloads loaded in a similar manner to Galore
crypter, using the Reflective DLL Injection technique.

Rustic crypted samples were first observed in early September 2021 and it has been used with malware including
BazarLoader, IcedID, Cobalt Strike, Quantum, as well as implants from Sliver which is a post-exploitation framework
written in Go.

13/19

https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/BishopFox/sliver

19 | wia = -2i64;

28 | sub_18@@19ACE();

21| *key2 = xmmword_lB808283C0;

22 | *Rkey2[16] = 538353438;

23| *Bkey2[20] = -19630;

24 *leyl = BxFCID77SEEEI85F27uisd;
25 | *&keyi[8] = -923177876;

26 | *&keyl[12] = -18794;

27 v@ = hHeap;

28 | if ('hHeap)

29|

30 ProcessHeap = GetProcessHeap();
31 if (!'ProcessHeap)

32 goto LABEL_14;

33 v@ = ProcessHeap;

34 hHeap = ProcessHeap;

35| 3

36 count = @;
37| buffer = HeapAlloc(v@, @, @x9C3AD4uiB4);
33| if { !buffer)

39 |LABEL_14:

48 sub_l3B@26EFE(1@2386761i64, 1i64);

41 | buffer_ = buffer;

42 | zf_copy_bytes(buffer, g_paylead, @x9C3AD4uisd);
43 do

a4

45 for (i = @i64; i != 1B238676; 1 += 2164)
46

47 vE = &keyl[-14 * (i / @xE)];

48 buffer_[i] ~= v6[i];

49 buffer_[i + 1] ~= v6[1i + 1];

s 1

51 +Hcount;

52

53| while { count != 1881 };

S4| Ffor (1 =@; 7 != 1eal; ++7)

55| {

56 for (k = @i64; k& != 1B238676; k += 2i64)
57 {

53 va = Gkey2[-22 * (k / exl16)];

59 buffer_[k] ~= va[k];

68 buffer_[k + 1] ~= vi[k + 1];

61 1

62| 1}

63 lpMem = buffer_;

64 | paylead_start = VirtualAllec(@is4, 8x3C3AD4uisd, 8x3608u, Bx48u);

65 | zf_copy bytes(payload start, lpMem, @x9C3AD4uicd);
66 | payldad start();

57 | HeapFree(hHeap, @, lpMem);

68 [}

00000552 LoadBytes:€€ (1800011%2) (Synchronized with IDA View-&)

Figure 7 — Rustic stub loader code responsible for loading and decrypting the payload

00000077 C Cisovpxwrdnpersgtgkisvhexggdpyibinjgfccrmodcuaifqzaafuzgbipfgyxbvzifoieceodoyzdivphiydxjsve...
00000017 C fatal runtime error: \n

00000030 C called "Option:unwrzp()’ on @ ‘None valuestack backtrace\n

00000058 C note: Some details are omitted, run with "RUST_BACKTRACE=full’ for 2 verbese backirace\n
00000036 C _rust_begin_short_backtrace__rust_end_short_backirace

00000004, C <unknowns

00000053 C C:gtjokngjkgidefqnf pbrssmywrmdvsbe czvzizewydowmyfloddjtkpopfenidebemc gtrogedfboquchpi...
00000050 C C:ypqksajtzgthifjjcfnszeyvmmijchutiyvgdagiowbnzsyacigexchbozoesoaliswififdodssemfygjivcog,..
0000002C C called ‘Result:unwrap()” on an "Err value

00000024 C memory allecation of bytes failed\n

..... C Rust panics must be rethrown

00000086 C C:pebifsdvphiyapkgswmsvgdwiuagrizwocntokmizdiimbosced dfjbibsybgonesmwngsyawmgutiw...
00000024 C <unnamed>thread " panicked at ”,

Q0O000AF C note run with RUST_BACKTRACE=T" emvironment vanable to display 2 backtrace\n

Figure 8 — Strings within a Rustic-crypted sample indicate that the binary was written using the Rust language

Select samples using the Rustic crypter:

|Sample Family||[SHA256 Hash |
ISliver |45aa8efb6b1a9a0e0091040bb99a7c37d346aaf306fa4e31e9d5d9f0fef56676 |

[Cobalt Strike |le75fce425df2e878c7938cdf86c8e4bde541c68f75d55edb62a670af52521740 |
| I |

[BazarLoader |[8d84152b69161bf5abb2f80fef310ec92cc8b1cb23dff18eebd8d039cdadféad |

licedID |becBdc7f7bfbded59d1a9290105e13ac91cf676ef5a4513bacbfcabf73630202 |
lQuantum fd7ca7afob2b6c5ffdb3206d647301de8bea33ab9679e117be30e9a601c5dea2)
Tron

Tron crypter first appeared in the wild in September 2021 when it was used to crypt Trickbot binaries associated with
gtag rob132. Since then, it has been observed with payloads within Emotet, Trickbot, BazarLoader, IcedID, Conti and
Cobalt Strike. Of note, Tron is the crypter identified in this article from CERT-UA.

Tron crypted binaries have their payload usually stored within the .text section of the stub loader which, upon
execution, unpacks and decompresses the payload, and then loads it into memory and executes it. The
decompression of the payload is performed using the Zlib library; however, the unpacking appears to be performed
using code originating from an obscure Github project called Megatron (https://github.com/akakist/megatron/),
specifically a module called ioBuffer.cpp which implements basic buffer manipulation and unpacking functions. The
Megatron project has since been taken down but previously strings from the source code in Github could be observed
within the unpacking functions in the crypted binaries.

= =2 ¢ {r @a githuk.com ’ & H

Sa akakisl new version frerm warking -eco

A1 centrbutar

£39 lines [483 sloe) | .84 KB Feaw SlaTe

1nclude =stclib.he

g1rclude =stoie.h=

"Rxtianal.n”
Euffer.n®

d::stringh 5} @ out_pes{3d), m_sizziz.size{})]
utfer{const AEF_getTercrothuffors2) © oot pos{3), W_S1ZOf5->51zn), W doks([wnciorod coor)s->harror) [)

Figure 9 — The source code of ioBuffer.cpp as seen on Github

The above image shows the source code of ioBuffer.cpp as seen on Github, specifically a function named
inBuffer::get_8() is shown, which contains the error string “inBuffer::get_8: noenough®. This same function and
error string can be seen within the unpacking functions of the crypted binary.

15/19

https://cert.gov.ua/article/39708
https://github.com/akakist/megatron/)

Pseudocode-A

1 [char __thiscall inBuffer::get_8(decomp_obj *this)
2

char v2[8]; //
decomp_obj *v3; //

if (-»out_pos + 1 » -3m_size)

1

CommonError(“inBuffer::get 8: noenough *);
sub_6BC223B2(v2, &_TI1_AVCommonError__);

1

I
return vi->m_data[v3->out_pos++];

—

The payload data is split into chunks which are delimited with the bytes ‘c3 cc cc cc’, where the number of ‘cc’ bytes
varies based on alignment. Bytes used to calculate the size of each chunk are added at the start of each chunk. The
unpacking code parses the payload data, calculating the size of each chunk and appending the chunk data to the
output buffer whilst checking for and discarding the 0xc3 and Oxcc padding bytes.

The compressed and decompressed sizes are then parsed from the start of the unpacked data, and the
zlib.decompress function is used to decompress the payload. One version of this crypter stores the payload in
multiple parts, which are unpacked individually and then joined together before decompression.

Several other variants of the Tron crypter have also been observed. One example contains the same ioBuffer
unpacking functions, but the payloads are decrypted using XOR rather than decompressed using Zlib. Some variants
also have the payload stored in the .data section, and others may encode the payload in a numeric ascii format.

Some samples were identified containing path strings for header files such as the following:

Z:\cr4\ballast\5\core\src\BitArray.h
Z:\cr\crypterd\ballast\3\openjp2\opj intmath.h

Considering the PDB strings identified within Lore and Error crypted samples, these path strings may indicate that
Tron crypter is referred to as crypter4 within the group.

Select samples using the Tron crypter:

|Sample Family||[SHA256 Hash |
[Cobalt Strike |l44€2057c7466881a61e3b542ce055b3d54aa7d88040ce879a915620ed996d097 |
[Conti |38784c635de9716c09a6f11f4d76f6402b5f6638f1614ed929c7de136bb5301a |
[Emotet 18d8138c23bf514a984918f7b5c5a7501€91b2c058574b7ce0b9ccbe638e82387 |
[Trickbot f[d083bc2dbc3426a332eaf861dea03c648ad04chb73ba8f09504c970af9134898 |
[BazarLoader |[p88382ef06808155253f631a06e31024436e19d5bffd34f9b03906295e82de52 |
licedID [2b9cbad3290c9d4cc2d6a47432ddac5752c63e5ac519c2056ba466580424ed3b |
Hexa

Hexa crypter compresses and RC4 encrypts its payload, and then encodes it as a hexadecimal ascii string to reduce
entropy. This is then stored in the data sections of the stub binary, with some variants splitting the payload across two
or three different sections. Upon execution the payload is reconstructed, decompressed and decrypted and then
copied to a newly created memory section and execution transferred to the payload. Portable executable (PE)
payloads may be preceded by a shellcode loader which is responsible for properly mapping the PE file into memory
and executing it.

Hexa makes use of code obfuscation techniques to hinder analysis efforts including splitting the code into many tiny
blocks separated by jumps, and the inclusion of blocks of junk data.

16/19

Hexa crypted samples were observed towards the end of 2021, with payloads including BazarLoader, Cobalt Strike,
and Conti. It has also seen an increase in usage over the past couple of months where it has been used with
malware families including IcedID, QakBot and Gozi.

Select samples using the Hexa crypter:

|Sample Family||[SHA256 Hash |
licedID |bbefadf7747822e017580206931aec6e948e6cb3ca897b9615d87430b99e7d e |
[Qakbot |0da8df441dc92d6719092aea1d3e9709e802aa87410279374d69626573fd3177 |
[BazarLoader |[18bbaddacba7bcdda4a1a088a640e167271f44d6232c20aa7d88eceeb3028826
[Cobalt Strike ||p51465ca7e71da2cd29072c819076c4efcch391dead53f16a36b0a60459b3358 |

[Conti c77032c772e0ef0e3200edf38223f9c604756294e840ea79689b9e56048c69c¢ |
IGozi 1412e907a2bb73794bb2cff40b429e62305847a3e1a95f188b596f1cf925c4547 |
Stub

Stub crypter was first observed in November 2021. It has been used primarily in IcedID campaigns, but samples have
also been identified with payloads such as BazarLoader, Cobalt Strike, Conti, and Quantum ransomware, which is a
variant of MountLocker and thought to be associated with the IcedID group.

Stub crypter stores the payload across multiple RCDATA type resources with sequential ids, e.g. 200, 201, 202. The
first resource contains the encryption key, and the remaining resources each hold an encrypted section of the
payload PE file.

To generate the encryption key, the malware takes the first resource, removes a 62-byte header, and then proceeds
to generate each byte of the key by combining the next three bytes from the resource data using bitwise shift and or
operations. The final key length is usually 1024 bytes.

The malware then proceeds to decrypt the next resource using this key and a custom xor-based algorithm, which
varies between samples. The first decrypted resource contains the PE header of the payload binary, and the loading
code uses information from this header to map each of the remaining PE sections into memory as it decrypts them
from the resources. The loaded payload is then executed at its entry point.

Select samples using the Stub crypter:

[Sample Family||[SHA256 Hash |
[BazarLoader ||936426ce7210fbd0ce519fb4121289fc1c43247fa96a7d1cd96d276f1662df26 |
lQuantum faf49653a0f057ed09a75c4dfc01e4d8e6fef203d0102a5947a73db80be0db1d |
[Cobalt Strike ||84f1e4c2524fea85c43f9df6ac1449c95d2d3ba5bd7chbbbff2f4e1c97dc8cbel |
icedID |008a674€33435ce00892d0a68ac6d01f9606c040da87b21a10ed069729ee04ff|
[Conti 141896f40197a6160fcab046b5fc63a36d0805dbb 1ca5a03af35b92b27d9aleb5 |
Error

Error crypter was prominent from late November 2021 to January 2022 when it was used to crypt samples in Emotet,
IcedID and BazarLoader campaigns, as well as being used with Cobalt Strike payloads. Error crypted binaries
contain a large amount of junk code and strings for obfuscation, with one variant seemingly designed to be disguised
as a hospital administration tool. Some samples also contain strings, which appear to have been generated from
literary texts such as ‘David Copperfield'.

17/19

] rotatac

=] retabaetini
=] retataetini
=] rcabaetini
=] setatzetin

b veraneg assveand e
I WAV HANE CRISSED THE LM T 10 EMTER WRIBG PASSWORLES o s
sekabict ol 1o ogen §
i

168 Current Symibomp 1
V1. Wimight :

dalal
[E] sidat 000
it
|

[EFTP
[st
[sctate
[sdate o0
[E] susta000000,. 00000017

Figure 10 — Error crypted sample containing strings relating to a hospital administration application

Error crypter encrypts its payload using XOR and the encrypted payload is divided into small chunks which are
scrambled up and stored. Upon execution, the stub code uses a complicated series of functions to retrieve the data
chunks and reconstruct the encrypted payload. The XOR key required for decryption is generated in a similarly
convoluted manner, with data being decrypted and retrieved from various sources and concatenated to form a string.
This string is then hashed, and the hash is used to generate the final XOR key.

An example of one of the strings used to generate the XOR decryption key is as follows:

2021-12-03-
mok.35022336.17:33:40===700524802745472 .xKUzpAWUHQUKEHhnAwJ4MEDN40DSNpNgXpt.2691200820897.!

Error crypter also includes some anti-debugging functions within the stub code including checking for the presence of
a debugger and checking the system time year against a hard coded value.

Some Error crypted samples were found to contain the following PDB string:
C:\\crypter7\\Bin\\x64\\Release\\D11\\cryptERRD11l.pdb
This PDB string suggests that this crypter may have been known as ‘crypter7’ or ‘cryptERR’ internally within ITG23.

Select samples using the Error crypter:

|Sample Family||[SHA256 Hash |
[Emotet a7343086d72f81f91cedc05d88b11cf44ba5dadac6c25983870f3a77854f4e9 |
[BazarLoader |[[f17718d8f12cfada48a9288bf5f91e81787e361071f82345364c8e85b539524a |
[Cobalt Strike ||1d20191aee650fd8c58c6564ce9ff5b86138a954bc49a3e25033cc888fc85466 |
icedID fof62722ff249¢8219d4864dc46a1bbb3871b1b3f9c4 139ffe2726b8f6f27ad0 |

Charm

Charm crypter was observed primarily in campaigns between August 2021 and October 2021, and has been seen
loading payloads such as BazarlLoader, Cobalt Strike, Conti, and MountLocker. Charm crypter compresses its
payload using an arithmetic coding algorithm, and then xor encrypts the compressed data and splits it into many
small segments which are stored throughout the loader binary. Charm crypted binaries are obfuscated using junk
code to hinder analysis.

18/19

Select samples using the Charm crypter:

|Sample Family||[SHA256 Hash |
[BazarLoader ||8758196b4266ca7809e54c84ff6767784ch105fce247ad3459a15bb8ef9032c8|
[Cobalt Strike ||peccc2f0b5fb42a7b59881acdef621cc086d6ab76dfd80e5a3b3542590197805

[Conti 63061a372c415797f18dfeed166ec350e4029c46ad3c42ff79b8e284ebb5ad6 |
lQuantum [267f6ba1363b2dbf56ad7e324380782de682a59f7d647eaee7d92b1ba5d2fcfal
Graven

Graven crypter splits the payload into three parts which are stored in different sections of the generated loader binary.
Each part is then split into small pseudo-randomly sized chunks, delimited with pseudo-randomly sized chunks of null
bytes. The algorithm to determine both the size of payload chunks and null-byte chunks is deterministic with a fixed
seed allowing for the payload to be reconstructed by the loader. Upon execution, the payload is rebuilt and decrypted
using AES, then loaded into memory and executed. Some variants of Graven also include code to create a mutex
with the name 7ce3e80173264ea19b05306b865eadf9.

Graven crypted samples were primarily observed between November 2021 and February 2022, and payloads include
BazarlLoader, Emotet, and IcedID.

Select samples using the Graven crypter:

|Sample Family||[SHA256 Hash |
BazarLoader |[4246dbf6daf37bac0e525bdd8122131bedf4e32f9542c4696fa525€1f71a6508 |

[Emotet |836d8e2f36ad80f937a377568d78653e975e4b52db995ae 1827 2dfeccadacOf |
licedID |a61b1d70d469b8ca7acdbd26fc859e6aeb229c4636fe9c92eac856914f326acs|
Skeleton

Skeleton is a fairly basic crypter, which stores the payload as a XOR encrypted, MessageTable type resource within
the loader binary, often with just a hardcoded ascii string used as the XOR key. Upon execution, the payload resource
is loaded, decrypted, and executed in memory. Variants have been found loading either shellcode or PE formatted
payloads. PE payloads are mapped into memory, imports loaded, and then executed from their entrypoint. Skeleton
crypted binaries have been observed loading Trickbot, Cobalt Strike and IcedID payloads between December 2021
and late March 2022.

Select samples using the Skeleton crypter:

|Sample Family||[SHA256 Hash |
[Trickbot |01c69d0acc8734993badchbfe9b0da4616bb05041e103afdb487759995b93ee5c|
licedID 617e0f5714283ca044003326663b5614d66f97e16bccdd8bec1321fad44a7195 |
[Cobalt Strike |[3deaObac5c9ae010bdabeb532a3a347cd55682512ffe287dbb310d5d434777ef |

19/19

