
1/13

blogs.blackberry.com /en/2022/06/symbiote-a-new-nearly-impossible-to-detect-linux-threat

Symbiote: A New, Nearly-Impossible-to-Detect Linux Threat
Dr. Joakim Kennedy, The BlackBerry Research & Intelligence Team ⋮ ⋮ 6/9/2022

This research is a joint effort between Joakim Kennedy, Security Researcher at Intezer, and the
BlackBerry Research & Intelligence Team. It can be found on the Intezer blog here as well.

In biology, a symbiote is an organism that lives in symbiosis with another organism. The symbiosis can
be mutually beneficial to both organisms, but sometimes it can be parasitic when one benefits and the
other is harmed. A few months back, we discovered a new, undetected malware that acts in this parasitic
nature affecting Linux® operating systems. We have aptly named this malware Symbiote.

What makes Symbiote different from other Linux malware that we usually come across, is that it needs to
infect other running processes to inflict damage on infected machines. Instead of being a standalone
executable file that is run to infect a machine, it is a shared object (SO) library that is loaded into all
running processes using LD_PRELOAD (T1574.006), and parasitically infects the machine. Once it has
infected all the running processes, it provides the threat actor with rootkit functionality, the ability to
harvest credentials, and remote access capability.

The Birth of a Symbiote

Our earliest detection of Symbiote is from November 2021, and it appears to have been written to target
the financial sector in Latin America. Once the malware has infected a machine, it hides itself and any

https://blogs.blackberry.com/en/2022/06/symbiote-a-new-nearly-impossible-to-detect-linux-threat
https://www.intezer.com/
https://blogs.blackberry.com/en/author/the-blackberry-research-and-intelligence-team
https://www.intezer.com/blog/research/new-linux-threat-symbiote/
https://attack.mitre.org/techniques/T1574/006/

2/13

other malware used by the threat actor, making infections very hard to detect. Performing live forensics
on an infected machine may not turn anything up since all the file, processes, and network artifacts are
hidden by the malware. In addition to the rootkit capability, the malware provides a backdoor for the threat
actor to log in as any user on the machine with a hardcoded password, and to execute commands with
the highest privileges.

Since it is extremely evasive, a Symbiote infection is likely to “fly under the radar.” In our research, we
haven’t found enough evidence to determine whether Symbiote is being used in highly targeted or broad
attacks.

One interesting technical aspect of Symbiote is its Berkeley Packet Filter (BPF) hooking functionality.
Symbiote is not the first Linux malware to use BPF. For example, an advanced backdoor attributed to the
Equation Group has been using BPF for covert communication. However, Symbiote utilizes BPF to hide
malicious network traffic on an infected machine.

When an administrator starts any packet capture tool on the infected machine, BPF bytecode is injected
into the kernel that defines which packets should be captured. In this process, Symbiote adds its
bytecode first so it can filter out network traffic that it doesn’t want the packet-capturing software to see.

Evasion Techniques

Symbiote is very stealthy. The malware is designed to be loaded by the linker via the LD_PRELOAD
directive. This allows it to be loaded before any other shared objects. Since it is loaded first, it can “hijack
the imports” from the other library files loaded for the application.

Symbiote uses this to hide its presence on the machine by hooking libc and libpcap functions. The
image below shows a summary of the malware’s evasions.

Figure 1: Symbiote evasion techniques

https://reverse.put.as/2021/12/17/knock-knock-whos-there/
https://www.pangulab.cn/files/The_Bvp47_a_top-tier_backdoor_of_us_nsa_equation_group.en.pdf

3/13

Host Activity

The Symbiote malware, in addition to hiding its own presence on the machine, also hides other files
related to malware likely deployed with it. Within the binary, there is a file list that is RC4 encrypted. When
hooked functions are called, the malware first dynamically loads libc and calls the original function. This
logic is used in all hooked functions. An example is shown in Figure 2 below.

Figure 2: Logic for resolving readdir from libc

If the calling application is trying to access a file or folder under /proc, the malware scrubs the output
from process names that are on its list. The process names in the list below were extracted from the
samples we have discovered.

certbotx64
certbotx86
javautils
javaserverx64
javaclientex64
javanodex86

If the calling application is not trying to access something under /proc, the malware instead scrubs the
result from a file list. The files extracted from all the samples we examined are shown in the list below.
Some of the file names match those used by Symbiote, while others match names of files suspected to
be tools used by the threat actor on the infected machine. The list includes the following files.

apache2start
apache2stop
profiles.php
404erro.php
javaserverx64

4/13

javaclientex64
javanodex86
liblinux.so
java.h
open.h
mpt86.h
sqlsearch.php
indexq.php
mt64.so
certbot.h
cert.h
certbotx64
certbotx86
javautils
search.so

One consequence of Symbiote being loaded into processes via LD_PRELOAD is that tools like ldd, a
utility that prints the shared libraries required by each program, will list the malware as a loaded object. To
counter this, the malware hooks execve and looks for calls to this function with the environment variable
LD_TRACE_LOADED_OBJECTS set to 1. To understand why, it’s worth looking at the manual page for
ldd:

In the usual case, ldd invokes the standard dynamic linker (see ld.so(8)) with the
LD_TRACE_LOADED_OBJECTS environment variable set to 1. This causes the dynamic linker to
inspect the program's dynamic dependencies, and find (according to the rules described in ld.so(8)) and
load the objects that satisfy those dependencies. For each dependency, ldd displays the location of the
matching object and the (hexadecimal) address at which it is loaded. (The linux-vdso and ld-linux shared
dependencies are special; see vdso(7) and ld.so(8).)

When the malware detects this, it executes the loader as ldd does, but it scrubs its own entry from the
result.

Network Activity

Symbiote also has functionality to hide network activity on the infected machine. It uses three different
methods to accomplish this. The first method involves hooking fopen and fopen64. If the calling
application tries to open /proc/net/tcp, the malware creates a temp file and copies the first line to that
file. After that, it scans each line for the presence of specific ports. If the malware finds a port it’s
searching for on a line it’s scanning, it skips to the next line. Otherwise, the line is written to the temp file.
Once the original file has been completely processed, the malware closes the file and returns the file
descriptor of the temp file back to the caller.

Essentially, this gives the calling process a scrubbed result, which excludes all entries of the network
connections that the malware wants to hide.

The second method Symbiote uses to hide its network activity is by hijacking any injected packet filtering
bytecode. The Linux kernel uses extended Berkeley Packet Filter (eBPF) to allow packet filtering based

https://www.kernel.org/doc/html/latest/networking/filter.html

5/13

on rules provided from a userland process. The filtering rule is provided as eBPF bytecode that the kernel
executes on a virtual machine (VM). This minimizes the context switching between kernel and userland,
providing a performance boost since the kernel performs the filtering directly.

If an application on the infected machine tries to perform packet filtering with eBPF, Symbiote hijacks the
filtering process. First, it hooks the libc function setsockopt. If the function is called with the option
SO_ATTACH_FILTER, which is used to perform packet filtering on a socket, it prepends its own
bytecode before the eBPF code provided by the calling application.

Code Snippet 1 shows an annotated version of the bytecode injected by one of the Symbiote samples.
The bytecode “drops” if they match the following conditions:

IPv6 (TCP or SCTP) and src port (43253 or 43753 or 63424 or 26424)
IPv6 (TCP or SCTP) and dst port 43253
IPv4 (TCP or SCTP) and src port (43253 or 43753 or 63424 or 26424)
IPv4 (TCP or SCTP) and dst port (43253 or 43753 or 63424 or 26424)

While this bytecode only drops packets based on ports, we have also observed filtering of traffic based
on IPv4 addresses. In all cases, the filtering operates on both inbound and outbound traffic from the
machine, to hide both directions of the traffic. If the conditions are not met, it just jumps to the start of the
bytecode provided by the calling application.

The bytecode extracted from one of the samples, as shown in Code Snippet 1, consists of 32
instructions. This code can’t be injected into the kernel on its own, because it assumes that more
bytecode exists after it. There are a few jumps in this bytecode that skip to the beginning of the bytecode
provided by the calling process. Without the caller’s bytecode, the injected bytecode would jump out-of-
bounds, which is not allowed by the kernel. Bytecode like this either has to be handwritten or by patching
compiler generated-bytecode. Either option suggests that this malware was written by a skilled developer.

6/13

7/13

Code Snippet 1: Annotated bytecode extracted from one of the Symbiote samples

The third method Symbiote uses to hide its network traffic is to hook libpcap functions. This method is
used by the malware to filter out UDP traffic to domain names it has in a list. It hooks the functions
pcap_loop and pcap_stats to accomplish this task. For each packet that is received, Symbiote checks
the UDP payload for substrings of the domains it wants to filter out. If it finds a match, the malware
ignores the packet and increments a counter. The pcap_stats uses this counter to “correct” the number
of packets processed by subtracting the counter value from the true number of packets processed. If a
packet payload does not contain any of the strings it has in its list, the original callback function is called.
This method is used to filter out UDP packets, while the bytecode method is used to filter out TCP
packets. By using all three of these methods, the malware ensures that all traffic is hidden.

Symbiote Objectives

The malware's objective, in addition to hiding malicious activity on the machine, is to harvest credentials
and to provide remote access for the threat actor. The credential harvesting is performed by hooking the
libc read function. If an ssh or scp process is calling the function, it captures the credentials. The

8/13

credentials are first encrypted with RC4 using an embedded key, and then written to a file. For example,
one of the versions of the malware writes the captured credentials to the file /usr/include/certbot.h.

In addition to storing the credentials locally, the credentials are exfiltrated. The data is hex encoded and
chunked up to be exfiltrated via DNS address (A) record requests to a domain name controlled by the
threat actor. The A record request has the following format:

Code Snippet 2: Structure of DNS request used by Symbiote to exfiltrate data

The malware checks if the machine has a nameserver configured in /etc/resolv.conf. If it doesn’t,
Google’s DNS (8.8.8.8) is used. Along with sending the request to the domain name, Symbiote also
sends it as a UDP broadcast.

Remote access to the infected machine is achieved by hooking a few Linux Pluggable Authentication
Module (PAM) functions. When a service tries to use PAM to authenticate a user, the malware checks the
provided password against a hardcoded password. If the password provided is a match, the hooked
function returns a success response. Since the hooks are in PAM, it allows the threat actor to
authenticate to the machine with any service that uses PAM. This includes remote services such as
Secure Shell (SSH).

If the entered password does not match the hardcoded password, the malware saves and exfiltrates it as
part of its keylogging functionality. Additionally, the malware sends a DNS TXT record request to its
command-and-control (C2) domain. The TXT record has the format of
%MACHINEID%.%C2_DOMAIN%. If it gets a response, the malware base64 decodes the content,
checks if the content has been signed by a correct ed25519 private key, decrypts the content with RC4,
and executes the shell script in a spawned bash process. This functionality can operate as a break-glass
method for regaining access to the machine in case the normal process doesn’t work.

Once the threat actor has authenticated to the infected machine, Symbiote provides a way for the actor to
gain root privileges. When the shared object is first loaded, it checks for the environment variable
HTTP_SETTHIS. If the variable is set with content, the malware changes the effective user and group ID
to the root user, and then clears the variable before executing the content via the system command.

This process requires that the SO has the setuid permission flag set. Once the system command has
exited, Symbiote also exits the process, to prevent the original process from executing. Figure 3 below
shows the code executed. This allows for spawning a root shell by running HTTP_SETTHIS=”/bin/bash -
p” /bin/true as any user in a shell.

https://www.openssh.com/
https://linux.die.net/man/1/chmod

9/13

Figure 3: Logic used to execute a command with root privileges

Network Infrastructure

The domain names used by the Symbiote malware are impersonating some major Brazilian banks. This
suggests that these banks or their customers are the potential targets. Using the domain names utilized
by the malware, we managed to uncover a related sample that was uploaded to VirusTotal with the name
certbotx64. This file name matches one of those listed as a file to hide in one of the Symbiote samples
we originally obtained. The file was identified as an open-source DNS tunneling tool called dnscat2.

The sample had a configuration in the binary that used the git[.]bancodobrasil[.]dev domain as its C2
server. During the months of February and March, this domain name resolved to an IP address that is
linked to Njalla’s Virtual Private Server (VPS) service. Passive DNS records showed that the same IP
address was resolved to ns1[.]cintepol[.]link and ns2[.]cintepol[.]link a few months earlier. Cintepol is
an intelligence portal provided by the Federal Police of Brazil. The portal allows police officers to access
different databases provided by the federal police as part of their investigations. The nameserver used for
this impersonating domain name was active from the middle of December 2021 to the end of January
2022.

Also starting in February of 2022, the name servers for the domain caixa[.]wf were pointing to another
Njalla VPS IP. Figure 4 below shows a timeline of these events. In addition to the network infrastructure,

https://github.com/iagox86/dnscat2
http://www.seplag.mt.gov.br/index.php?pg=ver&id=300&c=38

10/13

the timestamps of when the files were submitted to VirusTotal are included. These three Symbiote
samples were uploaded by the same submitter from Brazil. It appears that the files were submitted to
VirusTotal before the infrastructure went online.

Given that these files were submitted to VirusTotal prior to the infrastructure going online, and because
some of the samples included rules to hide local IP addresses, it is possible that the samples were
submitted to VirusTotal to test antivirus (AV) detection before being used. Additionally, a version that
appears to be under development was submitted at the end of November from Brazil, further suggesting
VirusTotal was being used by the threat actor or group behind Symbiote for detection testing.

Figure 4: Timeline showing when files were submitted to VirusTotal and when network infrastructure went
active

Similarity to Other Malware

Symbiote appears to be designed for both credential stealing and to provide remote access to infected
Linux servers. Symbiote is not the first Linux malware developed for this goal. In 2014, ESET released an
in-depth analysis of Ebury, an OpenSSH backdoor that also performs credential stealing. There are some
similarities in the techniques used by both malware families. Both use hooked functions to capture
credentials and exfiltrate the captured data as DNS requests. However, the authentication method to the
backdoor used by the two malware families is different. When we first analyzed the samples with Intezer
Analyze, only unique code was detected (Figure 5). As no code is shared between Symbiote and
Ebury/Windigo or any other known malware, we can confidently conclude that Symbiote is a new,
undiscovered Linux malware.

https://www.welivesecurity.com/2014/02/21/an-in-depth-analysis-of-linuxebury/
https://analyze.intezer.com/

11/13

Figure 5: Intezer analysis of a Symbiote sample showing only genes classified as Symbiote

Conclusion

Symbiote is a malware that is highly evasive. Its main objective is to capture credentials and to facilitate
backdoor access to infected machines. Since the malware operates as a userland level rootkit, detecting
an infection may be difficult. Network telemetry can be used to detect anomalous DNS requests, and
security tools such as antivirus and endpoint detection and response (EDR) should be statically linked to
ensure they are not “infected” by userland rootkits.

Indicators of Compromise (IoCs)

Hashes

Hash Notes
121157e0fcb728eb8a23b55457e89d45d76a
a3b7d01d3d49105890a00662c924

“kerneldev.so.bkp.” Appears to be an early
development build.

f55af21f69a183fb8550ac60f392b05df14aa01
d7ffe9f28bc48a118dc110b4c

“mt64_.so.” Missing credential exfiltration
over DNS.

ec67bbdf55d3679fca72d3c814186ff4646dd7
79a862999c82c6faa8e6615180

“search.so.” First sample with credential
exfiltration of DNS.

a0cd554c35dee3fed3d1607dc18debd1296fa
aee29b5bd77ff83ab6956a6f9d6

“liblinux.so.”

45eacba032367db7f3b031e5d9df10b30d016
64f24da6847322f6af1fd8e7f01

“certbotx64.” dnscat2

Ports Hidden

45345
34535
64543
24645

https://analyze.intezer.com/files/ec67bbdf55d3679fca72d3c814186ff4646dd779a862999c82c6faa8e6615180
https://analyze.intezer.com/files/121157e0fcb728eb8a23b55457e89d45d76aa3b7d01d3d49105890a00662c924
https://analyze.intezer.com/files/121157e0fcb728eb8a23b55457e89d45d76aa3b7d01d3d49105890a00662c924
https://analyze.intezer.com/files/f55af21f69a183fb8550ac60f392b05df14aa01d7ffe9f28bc48a118dc110b4c
https://analyze.intezer.com/files/f55af21f69a183fb8550ac60f392b05df14aa01d7ffe9f28bc48a118dc110b4c
https://analyze.intezer.com/files/ec67bbdf55d3679fca72d3c814186ff4646dd779a862999c82c6faa8e6615180
https://analyze.intezer.com/files/ec67bbdf55d3679fca72d3c814186ff4646dd779a862999c82c6faa8e6615180
https://analyze.intezer.com/files/a0cd554c35dee3fed3d1607dc18debd1296faaee29b5bd77ff83ab6956a6f9d6
https://analyze.intezer.com/files/a0cd554c35dee3fed3d1607dc18debd1296faaee29b5bd77ff83ab6956a6f9d6
https://analyze.intezer.com/files/45eacba032367db7f3b031e5d9df10b30d01664f24da6847322f6af1fd8e7f01
https://analyze.intezer.com/files/45eacba032367db7f3b031e5d9df10b30d01664f24da6847322f6af1fd8e7f01

12/13

47623
62537
43253
43753
63424
26424

Domains Hidden

assets[.]fans
caixa[.]cx
dpf[.]fm
bancodobrasil[.]dev
cctdcapllx0520
cctdcapllx0520[.]df[.]caixa
webfirewall[.]caixa[.]wf
caixa[.]wf

Process Names Hidden

javaserverx64
javaclientex64
javanodex86
apache2start
apache2stop
[watchdog/0]
certbotx64
certbotx86
javautils

File Names Hidden

apache2start
apache2stop
profiles.php
404erro.php
javaserverx64
javaclientex64
javanodex86
liblinux.so
java.h
open.h
mpt86.h
sqlsearch.php
indexq.php
mt64.so
certbot.h

13/13

cert.h
certbotx64
certbotx86
javautils
search.so

Credential Exfil Domains

*.x3206.caixa.cx
*.dev21.bancodobrasil.dev

