
1/6

www.trendmicro.com /en_hk/research/22/i/buzzing-in-the-background-bumblebee-a-new-modular-backdoor-evolv.html

Buzzing in the Background: BumbleBee, a New
Modular Backdoor Evolved From BookWorm
⋮ 9/2/2022

Updated on Sept. 2, 2022, at 9:55 p.m. ET to clarify the difference between this Bumblebee malware and the
Bumblebee ransomware loader.

Introduction

In March 2021, we investigated a backdoor with a unique modular architecture and called it BumbleBee due to a
string embedded in the malware. Its type of modular framework has made our static analysis more challenging
because it required us to first rebuild its structure or use dynamic analysis to understand its functionality and
behavior.

Our analysis found that BumbleBee only had little malicious code in its payload, and what it does on the surface is
track keys and clipboard content. However, further investigation revealed a controller application that expands the
malware’s capabilities.

This type of backdoor is similar to another of its kind called BookWorm, in which it can be inferred that BumbleBee is
a refactored version of BookWorm. At the time of writing, BumbleBee has only been deployed in Taiwan; together
with its use of Simplified Chinese as the language for its user interface, this malware can be suspected to be
deployed by malicious Chinese actors. This blog will tackle BumbleBee’s capabilities and our analysis of this
backdoor. It's important to note that this Bumblebee malware family is different from the Bumblebee loader, a loader
malware that is used by ransomware groups to drop backdoors to gain access to corporate networks.

BumbleBee – a refactored modular backdoor
BumbleBee is a modular backdoor that comprises two applications, a server and a client application (a master and
slaver application, respectively in the malware’s jargon). Once the client application is deployed on the target
computer (these are commonly local government devices), threat actors can control the machine using the server
module. Let us take a deeper look into this backdoor.

Layered deployment – client application

We have encountered the client application in a security breach incident. Its unique “layer-in-layer” architecture
caught our attention. The module has a self-extracted file that contains three main parts: a legitimate executable
(XcrSvr.exe), side-loaded DLL (XecureIO_v20.dll) and the shellcode binary file (ore) in the file system to execute the
legitimate executable.

Figure 1. Architecture of BumbleBee

https://www.trendmicro.com/en_hk/research/22/i/buzzing-in-the-background-bumblebee-a-new-modular-backdoor-evolv.html
https://www.bleepingcomputer.com/news/security/new-bumblebee-malware-replaces-contis-bazarloader-in-cyberattacks/

2/6

Figure 2. Metadata of XcrSvr.exe

XCrSvr.exe is the executable in the XecureVistaCryptoSvr module developed by SoftForum. This file is exploited to
launch the side-loaded DLL, XecureIO_v20.dll, which will work as the next-stage loader that executes the shellcode
“ore,” which is the main component in this backdoor. This shellcode contains multiple modules of its own (shown in
Table 1). Each module has corresponding 32-bit and 64-bit versions of binaries in the shellcode except for
launcher.dll.

Name Description

launcher.dll The first-stage launcher that loads all the subsequent modules. It decrypts a list of modules in
memory and executes each in order.

kernel.dll The utility component that controls all the other modules.
installer.dll The module used to install components in the compromised machine.

keylog.dll

The keylog component monitors the keystrokes and clipboard content of the victim, and records
actions from the victim such as running a process, entering a password, and getting the text of a
window. The stolen data will then be run through a XOR logic gate with a two-byte key 0xF29D
and saved under %temp%\kb\[UserName]\. The timestamp will be used as the file name.

loader.dll The module that reads the shellcode.
slaver.dll The main module that interacts with the other methods once the backdoor is launched.

Table 1. BumbleBee's modules

If a victim is compromised for the first time, launcher.dll loads and launches all the other modules. The installer
modules will be responsible for the installation and establishing persistence on the compromised machine via the
following steps:

1. Drop a copy of the XecureIO_v20.dll in %APPDATA%\LOCAL\TEMP folder.
2. Encrypt original shellcode file (to be a “bin” file) and path information (to be a “path” file) by using RC4 algorithm

(key is the value of “ProductID” from “HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet
Explorer\Registration”)

3. Drop bpu.dll (used to bypass UAC) and launched by rundll32.exe.
4. Establish persistence on compromised machine.
5. Delete the original SFX file.

Notably, as XecureIO_v20.dll is loaded by XcrSvr.exe, it will check if the parent process is “XcrSvr.exe.” If so, it will
patch the entry point of XcrSvr.exe with a long jump instruction to direct execution flow to the malicious code.

3/6

Figure 3. XecureIO_v20.dll hooks its parent process’ entry point

Figure 4. The original entry point

Figure 5. The patched entry point

Based on our analysis, we think the reason is that the malicious code embedded in XecureIO_v20 will not run if it
followed the normal execution flow of XCrSvr.exe. Hence, once XecureIO_v20.dll is loaded by XCrSvr.exe, it will
patch the entry point of XCrSvr.exe and jump to the address of the malicious code to make sure the code can be
executed properly.
After the client is installed and the persistence is established, the loader, XecureIO_v20.dll, will retrieve the value of
“ProductID” from the registry key “HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\Registration”
and use it as the key to decrypt the encrypted payload (the file “bin”) dropped in the first installation. Using the
information on the compromised machine as a key to encrypt the payload makes it much more difficult for analysts to
decrypt and debug the malware in the analysis environment.

File
name Description

path An RC4-encrypted path string used to find the location of next-stage shellcode. It could be a file path
or a registry path starting with HKLM or HKCU.

bin The next-stage RC4-encrypted shellcode payload.

Table 2. Payload file names

Expanded control – server application
 Due to BumbleBee’s complex client application, it took some time for us to fully analyze its functionality. While doing

so, we ran across the server application of the malware that acts as a controller. This provided us with further
understanding on how BumbleBee works.
As the client application is running on the infected device, it will communicate with the server application and show
the information of the machine it is in. Details, such as computer name, external IP address, geographic location, OS,
CPU, and memory, are collected by the client application.

4/6

Figure 6. Connection established

Figure 7. Built-in options in server application

Based on the options in the server application shown in Figure 7, we can determine that it supports the following
functions for controlling the compromised machine:

Functions Description
文件管理 (File
management)

Upload/download/delete/list files from the victim’s environment

屏幕控制 (Remote
desktop control)

Control the victim’s desktop remotely

进程管理 (Process
management)

List and manage running processes with the image names, current folder,
process id and parent process id

服务管理 (Service
management)

List and manage current services status

注冊表编辑 (Registry
editor)

List and manage the victim’s registry key

控制台命令 (Command
shell)

Execute the command shell

交互式控制台 (Interactive
console)

Execute the command shell

反向代理 (Reverse proxy) Reverse proxy to help expose a local server behind a NAT or firewall to the
internet

键盘记录 (Keylogger) Log keystrokes and clipboard contents

Table 3. Supported functions

BumbleBee’s modular framework allowed it to embed a small amount of malicious code that involves stealing
keystrokes and clipboard content in the client’s shellcode. However, it could expand its capabilities through its server
application by loading additional modules. This design proves that BumbleBee is flexible, allowing its developers to
focus on the development of additional modules instead of having to rebuild the malware itself. Its structure could
also reduce the risk of exposing itself to analysts and their own modules for comparison.

Network communication
BumbleBee communicates over the HTTP protocol. It first creates an HTTP request that acts as a network beacon to
notify the command and control (C&C) server. The POST request with the following URL, http://<C&C
server>/update/, is the initial network beacon. The client application will send information of the compromised
machine, which is encrypted by RC4 (see Figure 8 and Figure 9) once the first connection is established successfully.
All other communication traffic, except for the victim information, are encrypted between server and client applications
using the RC4 and compressed by LZO (Lempel–Ziv–Oberhumer) algorithm.

To make sure the received payload is correct, BumbleBee adopts a CRC32 checksum with reversed-presentation
mode to verify the received data. For the CRC32 calculation, a self-defined value, ”20200105” is used as the initial
value (typically, the value is 0xffffffff) for checksum calculation.

5/6

Figure 8. Encrypted information of the compromised machine

Figure 9. Decrypted information (by RC4)

Persistence
During the investigation, we found that BumbleBee adopted several techniques for persistence. It will use different
techniques depending on the configuration. Here are the techniques adopted by the BumbleBee sample we found:

Abuse registry run key to repeatedly execute the malware once system boot
Create Windows services to repeatedly execute malicious payloads
Use Windows logon scripts automatically executed at logon initialization to establish persistence via adding a
Registry key HKEY_CURRENT_USER\Environment "UserInitMprLogonScript"

Attribution
Due to the unique modular structure and installation procedures, we started to work on a literature review to clarify if it
is an exclusive tool used by a certain threat actor. We found a similar backdoor, “BookWorm,” revealed by Palo Alto in
2015. They share the following features:

1. Both are self-extracted files and abuse legitimate executables to load self-made malware.
2. Both use the same registry value as RC4 encryption key to encrypt their payload.
3. Both use modular architecture in the conception of the backdoor.
4. Both appeared in Southeast Asia, targeting local government-related organizations (similar victimology).
5. Both use RC4 and LZO algorithms in C&C communications (similar network protocol).

We think BumbleBee is likely to be the refactored BookWorm backdoor. They have similar tactics, techniques, and
procedures (TTPs), unique encryption approach, and similar target sectors. According to the language (Simplified
Chinese) shown in server application, we suspect that the origins and developers of BumbleBee may be in China and
of Chinese descent.

Conclusion
Since BumbleBee and Bookworm share the same features, BumbleBee is likely a refactored form of the latter.
Focusing on Asian local government targets, all signs point to a suspect linked to a Chinese hacker group.

BumbleBee, being a modular framework, is not only flexible but sophisticated as it will require analysts to investigate
its structure and behavior. Another aspect of having a modular framework is that they can just keep developing
additional modules since it can easily be integrated with the current version of said malware.

https://unit42.paloaltonetworks.com/bookworm-trojan-a-model-of-modular-architecture/

6/6

With its modular capabilities, the threat may deploy additional modules that may prove dangerous. Thus, an
advanced layer of protection and quick detection is needed to prevent the backdoor from taking root in the system.
Trend Micro Vision One™ offers both within different entry points of a backdoor.

IOCs

Trojan.Win32.MULTICOM.ZTIC

f8809c6c56d2a0f8a08fe181614e6d9488eeb6983f044f2e6a8fa6a617ef2475 slaver.exe

Trojan.Win32.REGLOAD.ZTI

ea5db8d658f42acad38106cbc46eea5944607eb709fb00f8adb501d4779fbea0 XecureIO_v20.dll
3fc6c5df4a04d555d5cbf2ca53bed7769b5595fc6143a2599097cb6193ef8810 XecureIO_v20.dll

Backdoor.Win32.BUMBLEB.ZTIC

eeca34fba68754e05e7307de61708e4ce74441754fcc6ae762148edf9e8e2ca0 ore
6690b7ace461b60b7a72613c202d70f4684c8cdc5afbb4267c67b5fe5dbf828e bin
4ecde81a476f1e4622d192fe2f120f7c5c3ec58bf118b791d5532f3ff61c09ee bin
8ab8bb836b074e170c129b7f0523d256930fd1f8cf126ca1875b450fdb6c4c05 bin
515cb31b2c89df83ea6d54d5c0c3e4fe9a024319d9bd8fd76ad351860bd67ea3 ore
8e340746339614ca105a1873dad471188b24421648d080e37d52b87f4ced5e6d bin

C&C:

· http[:]//www[.]synolo[.]ns01[.]biz:80/update

· http[:]//118[.]163[.]105[.]130:80/update

MITRE
Tactics Techniques

Defense Evasion

T1574.002 - Hijack Execution Flow: DLL Side-Loading
T1070.004 - Indicator Removal on Host: File Deletion
T1055 - Process Injection
T1480.001 - Execution Guardrails: Environmental Keying

Persistence
T1547.001 - Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
T1037.001 - Boot or Logon Initialization Scripts: Logon Script (Windows)
T1548.003 - Create or Modify System Process: Windows Service

Privilege Escalation T1548.002 - Abuse Elevation Control Mechanism: Bypass User Account Control
Collection T1056.001 - Input Capture: Keylogging
Reconnaissance T1592 - Gather Victim Host Information

Command and Control

T1071.001 - Application Layer Protocol: Web Protocols
T1090 - Proxy
T1573.001 - Encrypted Channel: Symmetric Cryptography
T1132.001 - Data Encoding: Standard Encoding

Resource Development

T1587.001 - Develop Capabilities: Malware

https://undefined/en_hk/business/products/detection-response/managed-xdr-mdr.html

