
1/11

www.welivesecurity.com /2022/09/14/you-never-walk-alone-sidewalk-backdoor-linux-variant/

You never walk alone: The SideWalk backdoor gets a Linux variant
⋮ 9/14/2022

ESET researchers have uncovered another tool in the already extensive arsenal of the SparklingGoblin APT group: a
Linux variant of the SideWalk backdoor

ESET researchers have discovered a Linux variant of the SideWalk backdoor, one of the multiple custom implants
used by the SparklingGoblin APT group. This variant was deployed against a Hong Kong university in February 2021,
the same university that had already been targeted by SparklingGoblin during the student protests in May 2020. We
originally named this backdoor StageClient, but now refer to it simply as SideWalk Linux. We also discovered that a
previously known Linux backdoor – the Specter RAT, first documented by 360 Netlab – is also actually a SideWalk
Linux variant, having multiple commonalities with the samples we identified.

SparklingGoblin is an APT group whose tactics, techniques, and procedures (TTPs) partially overlap with APT41 and
BARIUM. It makes use of Motnug and ChaCha20-based loaders, the CROSSWALK and SideWalk backdoors, along
with Korplug (aka PlugX) and Cobalt Strike. While the group targets mostly East and Southeast Asia, we have also
seen SparklingGoblin targeting a broad range of organizations and verticals around the world, with a particular focus
on the academic sector. SparklingGoblin is one of the groups with access to the ShadowPad backdoor.

This blogpost documents SideWalk Linux, its victimology, and its numerous similarities with the originally discovered
SideWalk backdoor.

Attribution

The SideWalk backdoor is exclusive to SparklingGoblin. In addition to the multiple code similarities between the Linux
variants of SideWalk and various SparklingGoblin tools, one of the SideWalk Linux samples uses a C&C address
(66.42.103[.]222) that was previously used by SparklingGoblin.

Considering all of these factors, we attribute with high confidence SideWalk Linux to the SparklingGoblin APT group.

https://www.welivesecurity.com/2022/09/14/you-never-walk-alone-sidewalk-backdoor-linux-variant/
https://blog.netlab.360.com/ghost-in-action-the-specter-botnet/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/


2/11

Victimology

Even though there are various SideWalk Linux samples, as we now know them, on VirusTotal, in our telemetry we
have found only one victim compromised with this SideWalk variant: a Hong Kong university that, amidst student
protests, had previously been targeted by both SparklingGoblin (using the Motnug loader and the CROSSWALK
backdoor) and Fishmonger (using the ShadowPad and Spyder backdoors). Note that at that time we put those two
different clusters of activity under the broader Winnti Group denomination.

SparklingGoblin first compromised this particular university in May 2020, and we first detected the Linux variant of
SideWalk in that university’s network in February 2021. The group continuously targeted this organization over a long
period of time, successfully compromising multiple key servers, including a print server, an email server, and a server
used to manage student schedules and course registrations.

The road to Sidewalk Linux

SideWalk, which we first described in its Windows form in our blogpost on August 24th, 2021, is a multipurpose
backdoor that can load additional modules sent from the C&C server. It makes use of Google Docs as a dead-drop
resolver, and Cloudflare workers as its C&C server. It can properly handle communication behind a proxy.

The compromise chain is currently unknown, but we think that the initial attack vector could have been exploitation.
This hypothesis is based on the 360 Netlab article describing the Specter botnet targeting IP cameras, and NVR and
DVR devices, and the fact that the Hong Kong victim used a vulnerable WordPress server, since there were many
attempts to install various webshells.

We first documented the Linux variant of SideWalk as StageClient on July 2nd, 2021, without making the connection
at that time to SparklingGoblin and its custom SideWalk backdoor. The original name was used because of the
repeated appearances of the string StageClient in the code.

While researching StageClient further, we found a blogpost about the Specter botnet described by 360 Netlab. That
blogpost describes a modular Linux backdoor with flexible configuration that uses a ChaCha20 encryption variant –
basically a subset of StageClient’s functionality. Further inspection confirmed this hypothesis; we additionally found a
huge overlap in functionality, infrastructure, and symbols present in all the binaries.

We compared the StageClient sample E5E6E100876E652189E7D25FFCF06DE959093433 with Specter samples
7DF0BE2774B17F672B96860D013A933E97862E6C and found numerous similarities, some of which we list below.

First, there is an overlap in C&C commands. Next, the samples have the same structure of configuration and
encryption method (see Figure 1 and Figure 2).

https://www.welivesecurity.com/2020/07/29/eset-threat-report-q22020/
https://www.welivesecurity.com/2020/01/31/winnti-group-targeting-universities-hong-kong/
https://www.welivesecurity.com/2021/08/24/sidewalk-may-be-as-dangerous-as-crosswalk/
https://twitter.com/esetresearch/status/1410864752948043778
https://blog.netlab.360.com/ghost-in-action-the-specter-botnet/


3/11

Figure 1. StageClient’s configuration with modified symbols

Figure 2. Specter’s configuration with modified symbols

https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-1.-StageClient%E2%80%99s-configuration-with-modified-symbols.png
https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-2.-Specter%E2%80%99s-configuration-with-modified-symbols.png


4/11

Additionally, the samples’ modules are managed in almost the same way, and the majority of the interfaces are
identical; modules of StageClient only need to implement one additional handler, which is for closing the module.
Three out of the five known modules are almost identical.

Lastly, we could see striking overlaps in the network protocols of the compared samples. A variant of ChaCha20 is
used twice for encryption with LZ4 compression in the very same way. Both StageClient and Specter create a number
of threads (see Figure 3 and Figure 4) to manage sending and receiving asynchronous messages along with
heartbeats.

Figure 3. A part of StageClient’s StageClient::StartNetwork function

Figure 4. A part of Specter’s StartNetwork function

Despite all these striking similarities, there are several changes. The most notable ones are the following:

The authors switched from the C language to C++. The reason is unknown, but it should be easier to
implement such modular architecture in C++ due to its polymorphism support.
An option to exchange messages over HTTP was added (see Figure 5 and Figure 6).

Figure 5. Sending a message in StageClient

https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-3.-A-part-of-StageClient%E2%80%99s-StageClient-StartNetwork-function.png
https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-4.-A-part-of-Specter%E2%80%99s-StartNetwork-function.png
https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-5.-Sending-a-message-in-StageClient_2.png


5/11

Figure 6. Sending a message in Specter

Downloadable plugins were replaced with precompiled modules that fulfill the same purpose; a number of new
commands and two new modules were added.
Added the module TaskSchedulerMod, which operates as a built-in cron utility. Its cron table is stored in
memory; the jobs are received over the network and executed as shell commands.
Added the module SysInfoMgr, which provides information about the underlying system such as the list of
installed packages and hardware details.

These similarities convince us that Specter and StageClient are from the same malware family. However, considering
the numerous code overlaps between the StageClient variant used against the Hong Kong university in February
2021 and SideWalk for Windows, as described in the next section, we now believe that Specter and StageClient are
both Linux variants of SideWalk, so we have decided to refer to them as SideWalk Linux.

Similarities with the Windows variant

SideWalk Windows and SideWalk Linux share too many similarities to describe within the confines of this blogpost,
so here we only cover the most striking ones.

ChaCha20

An obvious similarity is noticeable in the implementations of ChaCha20 encryption: both variants use a counter with
an initial value of 0x0B, which was previously mentioned in our blogpost as a specificity of SideWalk’s ChaCha20
implementation.

Software architecture

One SideWalk particularity is the use of multiple threads to execute one specific task. We noticed that in both variants
there are exactly five threads executed simultaneously, each of them having a specific task. The following list
describes the function of each; the thread names are from the code:

StageClient::ThreadNetworkReverse
 If a connection to the C&C server is not already established, this thread periodically attempts to retrieve the

local proxy configuration and the C&C server location from the dead-drop resolver. If the previous step was
successful, it attempts to initiate a connection to the C&C server.
StageClient::ThreadHeartDetect

 If the backdoor did not receive a command in the specified amount of time, this thread can terminate the
connection with the C&C server or switch to a “nap” mode that introduces minor changes to the behavior.
StageClient::ThreadPollingDriven

 If there is no other queued data to send, this thread periodically sends a heartbeat command to the C&C server

https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-6.-Sending-a-message-in-Specter.png


6/11

that can additionally contain the current time.
StageClient::ThreadBizMsgSend

 This thread periodically checks whether there is data to be sent in the message queues used by all the other
threads and, if so, processes it.
StageClient::ThreadBizMsgHandler
This thread periodically checks whether there are any pending messages received from the C&C server and, if
so, handles them.

Configuration

As in SideWalk Windows, the configuration is decrypted using ChaCha20.

Checksum

First, before decrypting, there is a data integrity check. This check is similar in both implementations of SideWalk (see
Figure 7 and Figure 8): an MD5 hash is computed on the ChaCha20 nonce concatenated to the encrypted
configuration data. This hash is then checked against a predefined value, and if not equal, SideWalk exits.

Figure 7. SideWalk Linux: Configuration integrity check

Figure 8. SideWalk Windows: Configuration integrity check

Layout

Figure 9 presents excerpts of decrypted configurations from the samples that we analyzed.

Figure 9. Configuration parts from E5E6E100876E652189E7D25FFCF06DE959093433
(left) and FA6A40D3FC5CD4D975A01E298179A0B36AA02D4E (right)

The SideWalk Linux config contains less information than the SideWalk Windows one. This makes sense because
the majority of the configuration artifacts in SideWalk Windows are used as cryptography and network parameters,
whereas most of these are internal in SideWalk Linux.

Decryption using ChaCha20

As previously mentioned, SideWalk uses a main global structure to store its configuration. This configuration is first
decrypted using the modified implementation of ChaCha20, as seen in Figure 10.

https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-7.-SideWalk-Linux-Configuration-integrity-check.png
https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-8.-SideWalk-Windows-Configuration-integrity-check.png
https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-9.-Configuration-parts-from-E5E6E100876E652189E7D25FFCF06DE959093433-left-and-FA6A40D3FC5CD4D975A01E298179A0B36AA02D4E-right.png


7/11

 

Figure 10. ChaCha20 decryption call in SideWalk Windows (left) and in SideWalk Linux (right)

Note that the ChaCha20 key is exactly the same in both variants, strengthening the connection between the two.

Dead-drop resolver

The dead-drop resolver payload is identical in both samples. As a reminder from our blogpost on SideWalk, Figure 11
depicts the format of the payload that is fetched from the dead-drop resolver.

Figure 11. Format of the string hosted in the Google Docs document

For the first delimiter, we notice that the PublicKey: part of the string is ignored; the string AE68[…]3EFF is directly
searched, as shown in Figure 12.

 

https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-10a.-ChaCha20-decryption-call-in-SideWalk-Windows-left-and-in-SideWalk-Linux-right.png
https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-10b.-ChaCha20-decryption-call-in-SideWalk-Windows-left-and-in-SideWalk-Linux-right.png
https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-11.-Format-of-the-string-hosted-in-the-Google-Docs-document.png
https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-12a.-SideWalk-Linux%E2%80%99s-firs-delimiter-routine-left-end-delimiter-and-middle-delimiter-routines-right-1.png
https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-12b.-SideWalk-Linux%E2%80%99s-firs-delimiter-routine-left-end-delimiter-and-middle-delimiter-routines-right-1.png


8/11

Figure 12. SideWalk Linux’s first delimiter routine (left), end delimiter and middle delimiter routines (right)

The delimiters are identical, as well as the whole decoding algorithm.

Victim fingerprinting

In order to fingerprint the victim, different artifacts are gathered on the victim’s machine. We noticed that the fetched
information is exactly the same, to the extent of it even being fetched in the same order.

As the boot time in either case is a Windows-compliant time format, we can hypothesize that the operators’ controller
runs under Windows, and that the controller is the same for both Linux and Windows victims. Another argument
supporting this hypothesis is that the ChaCha20 keys used in both implementations of SideWalk are the same.

Communication protocol

Data serialization

The communication protocol between the infected machine and the C&C is HTTP or HTTPS, depending on the
configuration, but in both cases, the data is serialized in the same manner. Not only is the implementation very
similar, but the identical encryption key is used in both implementations, which, again, accentuates the similarity
between the two variants.

POST requests

In the POST requests used by SideWalk to fetch commands and payloads from the C&C server, one noticeable point
is the use of the two parameters gtsid and gtuvid, as seen in Figure 13. Identical parameters are used in the Linux
variant.

1

2

3

4

5

6

7

8

9

POST /M26RcKtVr5WniDVZ/5CDpKo5zmAYbTmFl HTTP/1.1

Cache-Control: no-cache

Connection: close

Pragma: no-cache

User-Agent: Mozilla/5.0 Chrome/72.0.3626.109 Safari/537.36

gtsid: zn3isN2C6bWsqYvO

gtuvid: 7651E459979F931D39EDC12D68384C21249A8DE265F3A925F6E289A2467BC47D

Content-Length: 120

Host: update.facebookint.workers[.]dev

Figure 13. Example of a POST request used by SideWalk Windows

Another interesting point is that the Windows variant runs as fully position-independent shellcode, whereas the Linux
variant is a shared library. However, we think the malware’s authors could have just taken an extra step, using a tool
such as sRDI to convert a compiled SideWalk PE to shellcode instead of manually writing the shellcode.

Commands

Only four commands are not implemented or implemented differently in the Linux variant, as listed in Table 1. All the
other commands are present – even with the same IDs.

https://github.com/monoxgas/sRDI


9/11

Table 1. Commands with different or missing implementation in the Linux version of SideWalk

Command
ID (from

C&C)
Windows variants Linux variants

0x7C Load a plugin sent by the C&C server. Not implemented in SideWalk Linux.

0x82
Collect domain information about running processes, and
owners (owner SID, account name, process name,
domain information).

Do nothing.

0x8C Data serialization function.
Commands that are not handled, but
fall in the default case, which is
broadcasting a message to all the
loaded modules.

0x8E
Write the received data to the file located at
%AllUsersProfile%\UTXP\nat\<filename>, where
<filename> is a hash of the value returned by VirtualAlloc
at each execution of the malware.

Versioning

In the Linux variant, we observed a specificity that was not found in the Windows variant: a version number is
computed (see Figure 14).

Figure 14. Versioning function in SideWalk Linux

The hardcoded date could be the beginning or end of development of this version of SideWalk Linux. The final
computation is made out of the year, day, and month, from the value Oct 26 2020. In this case, the result is
1171798691840.

Plugins

https://www.welivesecurity.com/wp-content/uploads/2022/09/Figure-14.-Versioning-function-in-SideWalk-Linux.png


10/11

In SideWalk Linux variants, modules are built in; they cannot be fetched from the C&C server. That is a notable
difference from the Windows variant. Some of those built-in functionalities, like gathering system information
(SysInfoMgr, for example) such as network configuration, are done directly by dedicated functions in the Windows
variant. In the Windows variant, some plugins can be added through C&C communication.

Defense evasion

The Windows variant of SideWalk goes to great lengths to conceal the objectives of its code. It trimmed out all data
and code that was unnecessary for its execution and encrypted the rest. On the other hand, the Linux variants
contain symbols and leave some unique authentication keys and other artifacts unencrypted, which makes the
detection and analysis significantly easier.

Additionally, the much higher number of inlined functions in the Windows variant suggests that its code was compiled
with a higher level of compiler optimizations.

Conclusion

The backdoor that was used to attack a Hong Kong university in February 2021 is the same malware family as the
SideWalk backdoor, and actually is a Linux variant of the backdoor. This Linux version exhibits several similarities
with its Windows counterpart along with various novelties.

For any inquiries about our research published on WeLiveSecurity, please contact us at threatintel@eset.com.

ESET Research now also offers private APT intelligence reports and data feeds. For any inquiries about this service,
visit the ESET Threat Intelligence page.

IoCs

A comprehensive list of Indicators of Compromise and samples can be found in our GitHub repository.

SHA-1 Filename ESET detection
name Description

FA6A40D3FC5CD4D975A01E298179A0B36AA02D4E ssh_tunnel1_0 Linux/SideWalk.L
SideWalk
Linux
(StageClient
variant)

7DF0BE2774B17F672B96860D013A933E97862E6C hw_ex_watchdog.exe Linux/SideWalk.B
SideWalk
Linux
(Specter
variant)

Network

Domain IP First seen Notes
rec.micosoft[.]ga 172.67.8[.]59 2021-06-15 SideWalk C&C server (StageClient variant)

66.42.103[.]222 2020-09-25 SideWalk C&C server (Specter variant from 360 Netlab’s
blogpost)

MITRE ATT&CK techniques
This table was built using version 11 of the MITRE ATT&CK framework.

Tactic ID Name Description

https://undefined/mailto:threatintel@eset.com
https://www.eset.com/int/business/services/threat-intelligence/
https://github.com/eset/malware-ioc/tree/master/sparklinggoblin
https://attack.mitre.org/resources/versions/


11/11

Tactic ID Name Description
Resource
Development T1587.001 Develop Capabilities:

Malware SparklingGoblin uses its own malware arsenal.

Discovery T1016
System Network
Configuration
Discovery

SideWalk Linux has the ability to find the network
configuration of the compromised machine, including the
proxy configuration.

Command
and Control

T1071.001
Application Layer
Protocol: Web
Protocols

SideWalk Linux communicates via HTTPS with the C&C
server.

T1573.001
Encrypted Channel:
Symmetric
Cryptography

SideWalk Linux uses ChaCha20 to encrypt communication
data.

14 Sep 2022 - 11:30AM

https://attack.mitre.org/versions/v11/techniques/T1587/001
https://attack.mitre.org/versions/v11/techniques/T1016
https://attack.mitre.org/versions/v11/techniques/T1071/001
https://attack.mitre.org/versions/v11/techniques/T1573/001

