
1/15

securityscorecard.com /research/apt28s-stealer-called-credomap

A Deep Dive Into the APT28’s stealer called CredoMap

Prepared by: Vlad Pasca, Senior Malware & Threat Analyst

Executive summary
CredoMap is a stealer developed by the Russian APT28/Sofacy/Fancy Bear that was used to target
users in Ukraine in the context of the ongoing war between Russia and Ukraine. The malware was
initially discovered by Google and CERT-UA. The threat actor weaponized a document to exploit the
Follina (CVE-2022-30190) vulnerability that would result in downloading the .NET stealer. The malware
aims to steal the credentials and cookies from Google Chrome, Mozilla Firefox, and Microsoft Edge. The
data exfiltration is done by sending information to a possibly compromised C2 server via the IMAP email
protocol.

Analysis and findings
SHA256: 2318ae5d7c23bf186b88abecf892e23ce199381b22c8eb216ad1616ee8877933

The process retrieves the path of the current executable and then connects to a hard-coded C2 server
(162.241.216.236) on port 143 (IMAP) using hard-coded credentials:

Figure 1

https://securityscorecard.com/research/apt28s-stealer-called-credomap
https://blog.google/threat-analysis-group/update-on-cyber-activity-in-eastern-europe/
https://cert.gov.ua/article/341128

2/15

Figure 2

The malware creates a TcpClient object, obtains a client stream for reading and writing, and then reads
the response from the server:

Figure 3

The binary performs the login operation and reads the response using the Read method:

Figure 4

It selects the INBOX folder using the SELECT command and performs multiple function calls that steal
the browsers’ credentials and cookies:

Figure 5

3/15

Figure 6

The sample verifies if the file “\Google\Chrome\User Data\Default\Network\Cookies” exists in the Local
AppData folder by calling the File.Exists function:

Figure 7

The File.Copy method is used to copy the above file to a new file called “cc”:

Figure 8

The malicious binary opens a connection to the Cookies database and executes an SQL query that
extracts some fields:

Figure 9

The process opens and reads the file called “Local/Google/Chrome/User Data/Local State” using
File.ReadAllText. It extracts the Base64-encoded random key that is encrypted with DPAPI from
JSON([“os_crypt”][“encrypted_key”]). The key is Base64-decoded and decrypted via a function call to
ProtectedData.Unprotect:

Figure 10

4/15

The binary creates an AESEngine object, an AEADParameters object containing the decrypted AES-128
key and the nonce (12 bytes), and calls the GcmBlockCipher.Init function with a “False” parameter
(decryption operation):

Figure 11

The “encrypted_value” extracted from the Cookies database is decrypted using the ProcessBytes and
DoFinal methods:

Figure 12

The resulting values are stored in a dictionary that has the keys as "host_key" with values "name=
<Decrypted encrypted_value>;”, as highlighted in the figure below.

Figure 13

Finally, the process serializes the dictionary to a JSON string using JsonConvert.SerializeObject:

Figure 14

The data exfiltration occurs by issuing a valid IMAP APPEND command. The “From” field is set to the
username obtained from the Environment.UserName property, the “Subject” field is set to the current

5/15

date and time on the computer obtained from the DateTime.UtcNow property, and the JSON string is also
included in the command (see figure 15).

Figure 15

The malware verifies if the file “\Google\Chrome\User Data\Default\Login Data” exists in the Local
AppData folder using File.Exists:

Figure 16

The File.Copy function is utilized to copy the above file to a new file called “cp”:

Figure 17

The binary opens a connection to the Login Data database and executes an SQL query that extracts the
“action_url”, “username_value”, and “password_value” fields:

Figure 18

6/15

The malicious process reads the file “Local/Google/Chrome/User Data/Local State” found in the AppData
directory and deserializes it using the JsonConvert.DeserializeObject method:

Figure 19

Figure 20

The sample extracts the Base64-encoded random key that is encrypted with DPAPI from [“os_crypt”]
[“encrypted_key”]. The key is Base64-decoded and decrypted via a function call to
ProtectedData.Unprotect:

Figure 21

The encrypted “password_value” field is decrypted using a function that will be explained below:

Figure 22

The first 12 bytes after skipping 3 bytes (version tag) from “password_value” represent the AES nonce,
and the rest of the information is the ciphertext, as displayed in the figure below.

7/15

Figure 23

As in the first case, the “password_value” field is decrypted by calling the ProcessBytes and DoFinal
functions:

Figure 24

However, not all the passwords might be encrypted using AES-GCM. In the case of older versions of
Chrome, the threat actor tries to decrypt the passwords using the ProtectedData.Unprotect API:

Figure 25

As we can see in figure 26, the process computes a string containing "action_url", "username_value", and
the decrypted “password_value” field that was obtained using the 1st method of decryption or the 2nd
method of decryption, respectively:

8/15

Figure 26

The credentials exfiltration occurs, in the same way, using an IMAP command to the C2 server.

The binary checks if the directory “Mozilla\Firefox\Profiles\” can be located in the AppData folder (see
figure 27).

Figure 27

The malware is looking for a file called “cookies.sqlite” in the profile folders. The “cookies.sqlite” database
is copied to a file called “fc”:

Figure 28

The sample runs the "SELECT * FROM moz_cookies" SQL query to retrieve the Firefox cookies:

9/15

Figure 29

A new dictionary is created having the keys as “host” with values “name=value;”, as shown in the figure
below.

Figure 30

The dictionary is serialized to JSON and will be exfiltrated via IMAP.

The executable verifies if the following files can be identified in the profile folders:

logins.json

key4.db

cert9.db

signons.sqlite

key3.db

cert8.db

Figure 31

10/15

If any of the above files exist, it is copied to the current directory, and its content is encoded using
Base64. The file location and the Base64-encoded content are exfiltrated using the IMAP protocol.
Finally, the newly created files are deleted using File.Delete:

Figure 32

The File.Exists function is used to check if the file “\Microsoft\Edge\User Data\Default\Login Data” exists
in the Local AppData directory:

Figure 33

The above file is copied to a new file called “ep”, as highlighted in figure 34.

Figure 34

The sample executes the following SQL query that extracts usernames and encrypted passwords from
the “logins” table:

Figure 35

The “password_value” field is decrypted by calling the decrypt function that was also used to decrypt the
Chrome credentials:

11/15

Figure 36

In the case of older versions of Microsoft Edge, the process tries to decrypt the passwords using the
ProtectedData.Unprotect function:

Figure 37

The malware creates a string containing "action_url", "username_value", and the decrypted
“password_value” field that was obtained using one of the two decryption methods:

Figure 38

The executable verifies if the file “\Microsoft\Edge\User Data\Default\Network\Cookies” can be found in
the Local AppData folder (see figure 39).

Figure 39

File.Copy is used to copy the above file to a file called “ec”:

12/15

Figure 40

The following SQL query is run by the malware, which extracts some fields from the “cookies” table:

Figure 41

The binary extracts the Base64-encoded key that was encrypted with DPAPI from
“%LocalApplicationData%\Microsoft\Edge\User Data\Local State”. The key is decrypted via a function call
to ProtectedData.Unprotect:

Figure 42

The “encrypted_value” field is decrypted using the AES key extracted above by calling the ProcessBytes
and DoFinal methods:

Figure 43

The function result is a dictionary containing the relevant information that is serialized using
JsonConvert.SerializeObject:

13/15

Figure 44

All the files that were copied to the current directory are deleted using the File.Delete function:

Figure 45

The malicious process sets Normal attributes for a file called “SQLite.Interop.dll,” which Malwarebytes
found that it’s downloaded from the C2 server along with the initial executable. The DLL file is deleted
using File.Delete and another deletion function implemented by the malware:

Figure 46

14/15

The implementation of the deletion function consists of creating a cmd.exe process that deletes the DLL
file shown above:

Figure 47

The process deletes the initial executable and then exits:

Figure 48

Indicators of Compromise
C2 server

162.241.216.236

SHA256

2318ae5d7c23bf186b88abecf892e23ce199381b22c8eb216ad1616ee8877933

Processes spawned

cmd.exe “/C Del <Files>”

YARA rule to detect the threat
rule CredoMap_APT28

{

meta:

15/15

author = "Vlad Pasca - SecurityScorecard"

Date = "2022-09-16"

strings:

$s1 = "\\cookies.sqlite" fullword wide

$s2 = "SQLite.Interop.dll" fullword wide

$s3 = "Subject:" fullword wide

$s4 = "$ LOGIN" fullword wide

$s5 = "/C Del" fullword wide

condition:

(uint16(0) == 0x5A4D) and (4 of ($s*))

}

