
1/28

www.zscaler.com /blogs/security-research/warhawk-new-backdoor-arsenal-sidewinder-apt-group-0

WarHawk: the New Backdoor in the Arsenal of
the SideWinder APT Group

Recently, Zscaler ThreatLabz discovered a new malware being used by the SideWinder APT threat group
in campaigns targeting Pakistan: a backdoor we’ve called “WarHawk.” SideWinder APT, aka Rattlesnake
or T-APT4, is a suspected Indian Threat Actor Group active since at least 2012, with a history of targeting
government, military, and businesses throughout Asia, particularly Pakistan. The newly discovered
WarHawk backdoor contains various malicious modules that deliver Cobalt Strike, incorporating new
TTPs such as KernelCallBackTable Injection and Pakistan Standard Time zone check in order to ensure
a victorious campaign.

Zscaler’s ThreatLabz research team has performed an in-depth analysis of the WarHawk backdoor and
its use in threat campaigns below.

Key Features of this Attack
SideWinder APT campaign targets Pakistan with a new backdoor named “WarHawk”
The WarHawk Backdoor consists of four modules:

Download & Execute Module
Command Execution Module
File Manager InfoExfil Module
UploadFromC2 Module

WarHawk is commissioned to deliver Cobalt Strike as the final payload which has been
downloaded and executed using the Download & Execute Module.
The custom Cobalt Strike loader used by the SideWinder APT leverages the KernelCallBackTable
Process injection (a technique previously used by FinFisher and Lazarus APT) to load the Cobalt

https://www.zscaler.com/blogs/security-research/warhawk-new-backdoor-arsenal-sidewinder-apt-group-0

2/28

Strike beacon, along with a Time Zone check that makes sure that the loader is executed only
when under Pakistan Standard Time.
The SideWinder APT makes use of ISO Files bundled with a LNK file, a decoy PDF displaying
copies of cybersecurity advisories released by the Pakistan Cabinet Division (used as a lure), and
the WarHawk backdoor which is executed by the LNK File.
We discovered the ISO file hosted on the legitimate website of Pakistan's National Electric Power
Regulatory Authority “nepra[.]org[.]pk” which may indicate a compromise of their web server.
We were able to attribute this campaign to the SideWinder APT based on the reuse of network
infrastructure that has previously been used by SideWinder for various espionage activities against
Pakistan.

Campaign Analysis
In the month of September 2022, we came across an ISO File “32-Advisory-No-32.iso” hosted on the
official website of the Pakistan’s National Electric Power Regulatory Authority “nepra[.]org[.]pk.”
NEPRA is commissioned to provide safe, reliable, efficient and affordable electric power to the electricity
consumers of Pakistan. It is possible that this ISO file was uploaded to the server due to web server
compromise.

ISO URL: https[:]//nepra[.]org[.]pk/css/32-Advisory-No-32[.]iso

Fig 1. National Electric Power Regulatory Authority Website

https://lh3.googleusercontent.com/HIa9PKSP2eni41GJnuAl9z4hkXFfrgRuVMUJBJGptoSUaRvo0_91Tsf84EFGqcSTvplfOlj04rOMNhMSxw9EAVv90drH0z0LjTrky8AD1vtjXaIMF3_cvl2BFoHGmjN7vA2B-fyeukue83GI4ec4KQT4VPrF2FyDTwridJXLWzYO5dWOs-5aqAzNQw

3/28

We then downloaded the ISO File from the above mentioned URL which consisted of the following
bundled files.

32-Advisory-No-32-2022.lnk - Malicious LNK File
32-Advisory-No-32-2022.pdf - Decoy PDF
RtlAudioDriver.exe - Malicious Binary

 Fig 2. Contents of the Malicious ISO File

The .LNK File had a PDF icon to lure the victim into execution. Once the .LNK File is executed, it runs the
malicious binary “RtlAudioDriver.exe” along with the decoy PDF “32-Advisory-No-32-2022.pdf” to
distract the victims. It does so with the help of the command shown in the following screenshot.

Fig 3. Execution of Malicious Binary & Decoy PDF via the LNK File

Following is the Decoy PDF executed by the LNK File with the Subject: Phishing Site - Masqueraded
Links (Advisory No. 32) in the screenshot below

https://lh6.googleusercontent.com/zqObp9bveKxAFZTWSsP8Ffy4xGa4AQwdSb9RJSHBEMLTimF2zlqCzTQX2VTWire1qkJPrPOiOocpjOzfqZaHycXAhWgKurt69OwDcIcb3oDOsZbXqAhkOJJMPadXIhl5gp7EcyFEiz4iaO7Hdl7_FqjlTdkPMBVbjsM0_mvTCOxljGkSKQ6z_xaceg

4/28

 Fig 4. Decoy PDF

The content for the PDF was copied from an actual advisory previously released by the Cabinet Division
of Pakistan Government regarding the “Masqueraded Links used by the Malicious Actors in Phishing
Campaigns” on their official website cabinet[.]gov[.]pk

Link:
 https[:]//cabinet[.]gov[.]pk/SiteImage/Misc/files/NTISB%20Advisories/2022/32-Advisory-No-32-2022[.]pdf

Fig 5. Original Advisory on Pakistan Government Cabinet Division Website

Alongside the Decoy PDF, the Malicious binary “RtlAudioDriver.exe'' is also executed by the LNK File.

A few days after this initial discovery, ThreatLabz came across another related ISO File named “33-
Advisory-No-33-2022.pdf.iso” which similarly copied a real “Advisory No. 33” from the Pakistan Cabinet
Website as a lure. This ISO similarly consisted of three files, including aWindows Shortcut file
commissioned to execute the binary “MSbuild.exe” and a decoy PDF “33-Advisory-No-33-2022.pdf” to
fool the victims as shown in the screenshot below.

https://lh5.googleusercontent.com/WEIRzzwU6_CgXSnFUuLSJd0d6nSJkfmGMOrLhbfSh88q5di-eC6FfswobFi6XbLdlDwIsIBfQTHm_VuygDOsWPUyIqPy4ou4JRpJzTbHezfIGk2_j6NZaT7nyHHo_Guaa8A3e0vpkTvB6YPDNhR9hxbtEfRTCVslwkyH4hrpJUkw8W4odGXeYwacNg
https://lh5.googleusercontent.com/xyzOKQhr3MLUChT4dlkJPkezWMQZQZnVerz0X_6dD3xixZYlItJATTPl9QmrOAWDnpOZP2i2d102LquG9QJY2f1K6zyq38yfS8fkBrh6yq1PFpxNUYw0dGMhQcxBbgzcj3tEDKnierFwK8CxJKunTk-4g9jY1drDsAblgUgFJ5PG1-LY2h7Due1k5w

5/28

Fig 6. 33-Advisory-No-33-2022 Campaign

Upon analyzing both the binaries “RtlAudioDriver.exe” and “MsBuild.exe,” we discovered that this was a
new backdoor added to the arsenal of the SideWinder APT Group. We termed it “WarHawk” Backdoor
based on the CnC panel title, as shown in the below screenshot. In this case, the “MsBuild” binary is the
newer version of the backdoor, with a few additional features compared to “RtlAudioDriver” (the older
one). Below, we will share our in-depth analysis to understand the inner workings of the WarHawk
Backdoor.

 Fig 7. WarHawk CnC Panel

Analysis - WarHawk Backdoor

https://lh5.googleusercontent.com/J4nlwqtkNZxRlOzj4RWKw9LgbfB2RquTk0WnMxuAXexReXc2xfQQDca0QDryXVYXq7Mt1nJfg7CMMK4IhHZBJjtudlRWfRpa7Tmg_rrDMT2-P2nlQiLqheU-WSetSkfDkmMbMYY3I7sceBaofCPSEKXsKAnHBFL-8QoaL2jpdf8YFLj-fpFiFV_xdA
https://lh5.googleusercontent.com/Kz6kZJ9JSzda3WiixSAkwrEjQhDE4o6Ti_wp2CyYSfYl2U1ekhpXTPgu7k-L9srHFj86Sv23AOz7nYsHQicoYNG6Exs2_XZba_cTYVkqoDYu4z-_Xy8MSmYlsShUgo06XI5HMxo0cerfTa0LkNJjPvxhvb0U-Zss-EdTGImPUbaXkkStlaC7qW5gNw

6/28

The “WarHawk Backdoor” disguises itself as legit applications to lure unsuspecting victims into
execution, as shown in the screenshot below.

Fig 8. WarHawk Backdoor disguises as legit applications

Once executed, the WarHawk first enumerates the base address of the Kernel32.dll by iterating the
InMemoryOrderModuleList linked list present in the Process Environment Block (PEB). The instructions it
uses are shown in the screenshot below.

https://lh5.googleusercontent.com/9PyOtymwhv439cgHE-1uIHhmwijtqvSM3y2vb6iZVwHYoOvldK3zpDRqRkpLnsVyqvGM9kONZ7EW2lJiCaI0vafYN5R6yuoERKacquzRsZ2p8vXquDFuhcyDgMlg4I4WdOLE265BXf0OaTD6FnSDr6X2cUkcxklJerJcwJPP4O9k6xLrODrUMYkozQ

7/28

Fig 9. Enumerate Base Address of Kernel32.dll via PEB

Once the base address of Kernel32.dll is enumerated, WarHawk then decrypts a set of API & DLL names
using a String Decryption Routine which takes the Encrypted Hex Bytes as an input and then subtracts
each byte with the Key: "0x42" in order to decrypt the string.

8/28

Fig 10. String Decryption Routine - WarHawk

Leveraging the decryption logic, we wrote a string decryptor for the WarHawk backdoor through which we
were able to decrypt the following Strings from the Encrypted Hex Blobs:

LoadLibraryA GetUserNameA GetCurrentHwProfileA
Advapi32 GetProcAddress GetComputerNameA

 Fig 11. Decrypted Strings from the WarHawk String Decryptor

Initially the WarHawk decrypts the LoadLibraryA and GetProcAddress API Names, then loops through all
the exported functions from the Export Table and compares them with the decrypted function names. If
the comparison matches, it fetches the address of the corresponding function name—in this case,
LoadLibraryA() and GetProcAddress().

9/28

Fig 12. Fetches the Address of the Decrypted Function Names

Next, it decrypts the string “Advapi32'' and loads the Advapi32.dll into the virtual memory with the help of
LoadLibraryA(). It then retrieves the address of the GetCurrentHWProfileA() function via the
GetProcAddress() from the Advapi32.dll. Here, the GetCurrentHWProfileA string is decrypted via a
similar string decryption routine. After decryption, it executes the GetCurrentHWProfileA() to retrieve the
GUID (Globally Unique Identifier) for the hardware profile.

Fig 13. Retrieves the GUID for the hardware profile using GetCurrentHWProfileA

The retrieved GUID is then concatenated with the _hwid parameter in the following JSON format:

{ "_hwid": "{GUID}" }

As shown in the screenshot below:

https://lh4.googleusercontent.com/hyEhbEH8E1Sxrkhh-84fmjY2avdfHvpNLlwOLYKyawM6CuacvgqO92As-WAxjaMjevtsn_wsOf7O0g7Llub6kjOKoCzN4omQo_cnGAvwI26pTTLrnQ_2QubV2co3Gh5flOiwPox048CtfzSVdVJi2L1cKxgIzK3bKkfebrccd9uaDRIJoKF6yYHshQ
https://lh6.googleusercontent.com/B5pZjyPI9FHHz-HNkzd14oKwezOhl-lRGgRvYTFP63xVJ_Rx6KxqVZEQ2qJekRYZXvPnLYgqYeH6uKvDvTxHRaHqBQagvv35XHFr8Yl1iCCdjc_oBiDCiQgtWXmA-zgvITcPqNt_FJaWE9dYn2jXjMmcuf0ZuIR92d1T1_dAqhU7PiYduFYd_JXzCg
https://lh3.googleusercontent.com/6o5JjuSIiegg9M5j0CpTxexVHj2OSE-qErI3ioc5-EB7uMz-AGasVetVuq0k-vXnd9vKwqkyP8Mq8_gYlnSrSCrAf8o66Ydtdq0UTCipCn-8lW9Eqbg1PrKgdRMHW8ctZdJapuRuLG6cMraOjLV6B1CkREyV1xLnHrgSSqcleinR6CX5kkTbr1RNBQ

10/28

 Fig 14. GUID concatenated with the _hwid parameter

Further, the WarHawk Backdoor sends across an initial beacon POST request to the hardcoded
Command & Control Server “146[.]190[.]235[.]137” using the HTTPSendRequestW() with the GUID in
the JSON format as its parameters and the request URL “/wh/glass.php,” as shown and explained in the
screenshot below:

Fig 15. Initial Beacon Request to the CnC Server with the GUID

Now it reads the response via InternetReadFile(). If the response is “0” in the newer sample and “1” in
the older sample, it gathers the following System Information as mentioned below and then sleeps for 2
seconds:

Retrieves the Computer/NetBios Name via GetComputerNameA()
Retrieves the UserName via GetUserNameA()
Retrieves the Windows Product Name from the “SOFTWARE\Microsoft\Windows
NT\CurrentVersion\ProductName” Registry Key via the RegQueryValueExA()

Once all of the above mentioned system information has been gathered it is arranged in the following
JSON format using the similar wsprintf() method explained previously:

{ "_hwid": "{GUID}", "_computer": "Computer_Name", "_username": "User_Name", "_os":
"Windows_Product_Name" }

It then sends across the System information in the JSON format to the Command & Control server using
the HTTPSendRequestW(), as shown and explained in the screenshot below:

Fig 16. Gathered System Information sent across to the CnC server

https://lh3.googleusercontent.com/xJCmrzZQxDzuzhCgkMH8300LeqVyapt7Yrz_8Fe_IrHBDzQbc4RhZvly2-NFNecJT_EvRxR1I7UBYn4sY1DiNDdu2mHfmvnIQSowXx--lGd5LyFV-ZJ0prBnVkINGRFiYx66bRkdBU9bC1iuyXw9hUcniXW-GXgPvK9ZLnlV_1kzmhUbFQ9ygwX71Q
https://lh3.googleusercontent.com/4r1ppdymfkHo98EkOi1fG1OHmup8BXeEqBHRkRCgkzsGkhzhKmtun4xXgecFJ2r1OqJd06nz7WEoqSgcveO6mu0u4zBQj40YRHTDMr-UlzOrzVNg-uedd1sSzEcnMrT4Qyj2zQV1kwNW7u6rwHz4b5hFctJdg7AZUqG700BRCaGsjFR-v3J8jaeqBw

11/28

After sending the System Information, it sends a JSON ping request to the Command and Control server
as shown in the screenshot below, using the similar WinINet functions:

Fig 17. JSON Ping Request to the CnC Server

If the response to the JSON ping request is “del” as shown in the screenshot below, WarHawk skips the
main malicious functions and sends across a “_del”: “true” request to the Command and Control and
then exits the process as shown in Fig 19.

Fig 18. JSON Ping Request to the CnC Server

Fig 19. Sends DEL Request and Exits the Process

If the response to the JSON ping request is not “del”, the WarHawk Backdoor executes the backdoor
modules integrated in WarHawk:

Download & Execute Module

This module is responsible for downloading and executing additional payloads from the remote URL
provided by the CnC server. At first, the WarHawk sends across a task initiation request to the Command
and Control as shown in the screenshot below. This request is in the JSON format using a similar
Send_Req function incorporating the WinINet functions.

https://lh5.googleusercontent.com/c80Z2ip0o2wDKdKMB2PFrINOIO8L7wRkeZY7HefOFXyPaLaahW12MWnjUW7i0R4PK5n1zn65DJ2apFtX4GWKZ_l65BhYYvFiCvq91ThMADNNyPshWx_hG-iSbVF5Rl2S6_3fKDmd5pPNaRR4FJwUJsVCLTvlOjOJKZkekXTvJfDnpyfMxJmuxNUxGA
https://lh6.googleusercontent.com/pLTdOElzRb4LgkIPd8vrlx97RDjYb398ZsX31VU4CimSAwlk6kF4P2Y58giaKWSsjWol2v_LTdYGmDTCg-lQQOYJAYGxojdBL8o1NJW_aHbo3LSXI5SoTl15UbzMjMR29L-7yxGjvVc4lqmChFX57YhxSu48IP-hBDVIgCnY2PeHAw3uDiqZlixFEQ

12/28

Fig 20. WarHawk Task Initiation Request

The CnC responds to this request in the following JSON format with the id, type, and remote URL:

{ "_task": "true", "_id": "id_no", "_type": "type_no", "_url": "Remote_URL" }

In the below screenshot, we can see the response from the CnC. It contains a remote URL that leads to
the Stage-2 payload, which would be downloaded and executed further by the backdoor.

Fig 21. Response to Task Initiation Request consisting of the Remote URL

Once the JSON response is received, the WarHawk then parses the parameters _id, _type and _url using
an ultralight weight JSON parser library “cJSON,” as shown below.

Fig 22. Parse JSON Response parameters using cJSON

Further it checks the parsed _type parameter. If _type value is “1” the backdoor downloads the
additional payload from the parsed _url parameter containing the Remote URL, with the help of the

https://lh4.googleusercontent.com/mzxstDlTAttt5bGXKisl_pVU_RentLatJQol1hyOjroA08guAQSvZ_4-By0jir52lInuTlPt8j8MlqLWdFwJz_MdrcJNXzyAg_VJg8PKzNwdmzrcX0y1o8kspBm6KMj8qamTqqZded1883wPVGj7RA7Umdx4BGdfcK2Po2LBvVw-KnQ6a9-WbCtLIw
https://lh3.googleusercontent.com/PSmyzsz084ktOHxGT4RQ5Z3ao67wP6pIcfMwlgn4hUpHjjuW9c4G4hSxvirjU4Mg6H4fWrtPQ53JrryxGibH7eyAZXt4e-BL17-fcTSSi-aY727d9E9Wy6hb7MMu31wVIj9cV_QQjLqe94kqwdZnt66opSOlPvDGZHsXbkDRbcy3FQbbNCf-JL6-8A
https://lh5.googleusercontent.com/Kly12ew2PH5ZaN7gohKqdy4qzQ1w7vVZBmsgjX9BSd-uN_Hoxh_FhItJxHHAKiyesaDzymveCxzmRH2XuaxWlCFgG3PMlhEP_urvGJudHGLK7zViihKpFCkBtRB3-3lPjkQKRHjaNHBWKHrCWs5_qM7Dc4LoCw1K5Loz_NFjLyAFz1PVAFaZ_5gvvQ

13/28

URLDownloadToFileA function, into the Temp directory where the filename is randomly generated and
concatenated with the extension provided in the remote URL. Once the payload is downloaded the
backdoor executes the downloaded payload with the help of the ShellExecuteA() function.

If the _type is “2” then the payload must be a “Dynamic Link Library,” as in this case the payload is
downloaded via URLDownloadToFileA and then loaded into the virtual memory using LoadLibrary().

Finally, if the _type is “3,” then the process is similar to the _type value “1”. The only difference is that
the process exits at the end through the ExitProcess() function.

Fig 23. Download and Execute Additional Payloads from the Remote URL

Once the Stage-2 payload is downloaded and executed on the infected machine and the task is
completed, the WarHawk sends across a Task Completion request to the Command and Control server in
the following manner:

https://lh3.googleusercontent.com/5t5FITvCb1UuCOXqwRu9bnEWoUwzLyO4tsuo23EXLWOvXIUBz1CooLNQW7j-rmTHuOQ408VRQoaz9cDPvfA5ae1oEgAWoQ9_EXfhwv741v7fkg6Qfq9xIVyBTMsXNngwa0mHvomaTnmAvPDZuxj-L0NoJkp7hPLmeFaTReOCm3OWCTN_pqAwuLjt6w

14/28

Fig 24. WarHawk Task Completion Request

Thus, in the following manner the additional payloads are downloaded and executed from the Remote
URL served from the CnC server. In this case there are multiple payloads which are downloaded and
executed by the WarHawk backdoor which are analyzed later in the blog.

Command Execution Module
The command execution module is responsible for execution of system commands on the infected
machine received from the Command & Control. WarHawk starts by sending across the Command
Execution Initiation request with the GUID of the system as shown in the screenshot below.

Fig 25. WarHawk Command Execution Initiation Request

The response to this Initiation request consists of the command to be executed. Let’s analyze the routine
assuming that the received command is “whoami”. The received command is passed as an argument to
the CMD.exe process which has been spawned using ShellExecuteA. The command arguments passed
to the CMD.exe process can be seen in the screenshot below.

https://lh5.googleusercontent.com/TlTTWvlbKNbdTQv0VQdK39TpMVr9RxIWODTrWgOtBlxfgZk9ZSdWPd1ysuRrFuXcZrE1tT5xmyvcSlfvoYzFaAw53nMHdIh8w8N6NKrvuv2-9fqt8aXC2PInfQ2ljgEMEceiCTZ4J38nCd-r5I-8djlqe4ljHPHR9sema2FxL4HsIU-skWXuJqV3CQ
https://lh5.googleusercontent.com/bDrM2bA7Q9xS1WuJl78_PGNiK42fhQqghZzC7gpI1n85xfDGyeGfNXOQ8o8Iciu_BT8KdGowYUH2AG3oLH0A3M0AVLarvDQsrvtjKFnY5VL_DyWWMHZFrXUBX9LauvGjqillTAeGne0ts17_BdN_XQq582MleWA724AoBQ6QPUdcEBa47l7vwCos4w

15/28

Fig 26. WarHawk Command Execution

In this case, the output of the command received from the CnC “whoami” is stored in a “.bin” file in the
Temp directory where the file name is generated using a random name generator function, as shown
above.

Further, this “.bin” file in the Temp Directory is read using ReadFile() and then deleted to clear its tracks.
The command output content is then base64 encoded, arranged in the following JSON format, and then
sent across to the Control Control server 146[.]190[.]235[.]137 using HttpSendRequestW():

{ "_hwid": "GUID", "_cmd_done": "true", “_response”:”base64enc_cmd_output”}

Fig 27. Sending Command Output response to CnC Server

If there is no output of the command executed on the machine, it sets the _response parameter as “0” in
the JSON response.

Thus, in the following manner the WarHawk performs the command execution routine where it receives
the commands from the Command and Control and the backdoor executes them and sends the output to
the CnC in an base64 encoded platform. Here the routine executes in a loop until the response to the
JSON Ping request is not “del,” allowing the Threat actors to execute multiple commands on the infected
machine.

File Manager InfoExfil Module

The following module is responsible for gathering and sending across the File Manager information by
initially sending across an Module initiation request to the CnC server as shown below:

https://lh5.googleusercontent.com/0MCpyBqd5vqhqskADh6T77Kz7cjFKyua2ImkyJqJMrUev6TbZJy0MemfjhojfxoFx6LCUA1c1QZ7sXiTcosiw94Up9tPugyZJD9cTqt7TlIha3vyKnRgRQjiT_bhfD_MqSidhS6k8DGNzyWlkG6xw9sv-BLhGIzB8PQT_wYMiYmG5eEZlaPPRqX6qw
https://lh3.googleusercontent.com/rRJ662FwWFSTEQ5jd5tSrcaCccp-oWWPBHxkiH2EkjonbgtdPUJvkLs7o_08Vn4K1oyH2oLIyPuZyivLDIXB_BnEzq9i_Cb0zGVQlVsxcUEz2GSpp5RUPWBaAM70ixHnIKRo8aWAsV38dBtRKkySy4EtHhISdJA5Nmi10yRmgLISDssXzy0_Dk-Zag

16/28

Fig 28. File Manager Initiation Request

Now if the response to the initiation request is “drive” the WarHawk determines the drive type by looping
through the drive letters from A-Z. Itfirst checks whether the drive exists with the help of
PathFileExistsA(); if it exists, it then fetches the drive type using GetDriveTypeA() such as DRIVE_FIXED
or DRIVE_REMOVABLE as shown and explained in the below screenshot:

Fig 29. Determine Drive Type

After this, the gathered information consisting of the existing drives and their types is sent across to the
CnC in the following JSON format:

Fig 30. Drive Information sent across to CnC in JSON Format

Further if the response to the initiation request is a Directory Path such as “C:\Dump\,” then the
backdoor searches in the following directory for files and folders recursively using FindFirstFileA() and
FindNextFileA(). Whilst performing the recursion it fetches the File Name, File size, Modification date, File
Type, and then towards the end sends across all the information to the CnC Server in the JSON format:

https://lh5.googleusercontent.com/kWkaBLZc9AgHjjkt9urM-Gpccv7jcwQCpmgdQXAuD3UVvGkGzmOakPQmuk8fnDEqYpjdqDJ5jI1UvgQy-scWW0Q6kY9bQE4FEOoHQRxPYXBEJ5MTiHXiX0YmTVUG_Lmti0lHoWYtE2WNkfU9ig3wi6fuGjYKpJoZQ8KJs2w0nAalQpDIi96gpyJw6Q
https://lh4.googleusercontent.com/yy0RjyJG66uLlbsXz4EiVmob_q9Tallc0o7dvyfY5CGN88uD6gNrugIlEZHXAz5sgwPki7EFsTUAbJkucMte63EJtwibimoNsz9JWCBnC64apX9Wv72O5vrXI0EsuU9_37JL8hCMXKmpJTYFqvKeg1BlT10f8cFP56f9_OPsRnr9BhL15qKU7j43Bg
https://lh6.googleusercontent.com/zgkpAVBRqrUNTiN7VNftRQhyE9wIU1RGTMbdI5HfHVy9YM8yRrIP9U9w3cWFRrfVoEaMUYQbNITGzi55SCWZ27gr_Gcy_biuXBPzGvxNW4fCxXEXWSlLi6zA6gBqviJsUbC5ol4N4aRC-rUgG7h6OOm3lKd9QwLeLXVLZG0A3DYYBbhdxcqWf0YCfA

17/28

Fig 31. WarHawk sends across File/Folder information to CnC in JSON Format

UploadFromC2 Module

The following module is a new feature added in the latest WarHawk Backdoor (MsBuild.exe), allowing
the threat actor to upload files on the infected machine from the Command and Control Server. Initially
the UploadFromC2 Module sends across a routine initiation request to the CnC server in the following
JSON format:

Fig 32. UploadFromC2 Module initiation request

The response to this request should be a JSON response received from the CnC server consisting of
following two parameters:

1. _upload - File name of the target file to be uploaded on the infected machine from the CnC server
2. _path - Path where the target uploaded file is to be saved on the infected machine

Further the JSON response is parsed using the previously used cJSON Library, and then the _upload
value is concatenated with the hardcoded CnC URL: http[:]\\146[.]190[.]235[.]137\wh. For example, if
_upload = “stage2.exe,” the final URL becomes http[:]\\146[.]190[.]235[.]137\wh\stage2.exe. The
WarHawk then downloads the file from the final CnC URL: http[:]\\146[.]190[.]235[.]137\wh\stage2.exe
using URLDownloadToFileA() and writes it to the current directory using the same file name “stage2.exe”
(or, if the _path value exists, it writes the downloaded file to that path as shown in the routine below):

https://lh4.googleusercontent.com/kQNQCapo9SpOdnw0aBkN3z4wfP_t54lRJkNMXjpbXv_QGtfQmeCQqc509Ds0egHB5wEMRY3Mc3RF5TkOgLP3beoKVJ7SRO0cpSGfZD_I8i_55oV_yUIFz09Qu3To-Mt41W0FvBcIqHaD50D1WpcG97cKtOwXChhPKPUKxaWAXc0lZpMLObMoSzA88A
https://lh5.googleusercontent.com/UPr706czGlxrTgj16TCiHfhdNPF7EDJe_3mWzjP_Kv0wZZ8j6KsMG98SL1yZU0gN91f5HhQnAwRN0eE5hRaMbD1atQpT2isFiyRXQ_NDTcp1Twiz9XTJrd6QjnibLkbFTSK15f1hkP47Iez3N6gLiGB2qW2Mb0BaJjfzr_eAjRbHcMvXlR-U6Lt30Q

18/28

Fig 33. UploadFromC2 Module Routine

As can be seen from the screenshot, if the file has been downloaded successfully the WarHawk backdoor
then sends a JSON request to the CnC Server with “_uploadstatus”:“true” and if not sends across
“_uploadstatus”:”false”.

In the following way the WarHawk Backdoor performs its espionage activities by incorporating various
modules.

Stage 2 Analysis

Based on the analysis of the WarHawk backdoor, we are aware that the backdoor has the capability to
download and execute additional payloads. While tracking the SideWinder’s espionage campaign we
came across WarHawk downloading three additional Stage-2 Payloads from the Command and Control
at the time of writing this blog. Below, we analyze the Stage-2 Payloads downloaded by WarHawk.

Snitch.exe - Cobalt Strike Loader using KernelCallbackTable Process Injection

The WarHawk downloads and executes the Cobalt Strike Loader using the Download & Execution
Module from CnC URL: http[:]//146[.]190[.]235[.]137/Snitch.exe. Once executed the Loader performs the
following Anti-Analysis checks:

Anti-Sandbox:

https://lh4.googleusercontent.com/SbcXhaXh64Ioeg9YvsDsgUSbs6svX04MXCS37s3h0TxqpTSuJVyWAxGTpqHqSo_e90BMmIqwzCChYdHXU2RUKsj_ZwJ4X_LOVk7iRx8BzgZxer1_fCKln3gt3_bUYZxKttscrL3eIZx5GNnjpTbElmrE1Wd5T11OITOy1irM91lHpOBnGQ3j_Fkh7w

19/28

- Checks whether the Numbers of Processors are at least two using GetSystemInfo()

- Checks Minimum RAM using GlobalMemoryStatusEx()

- Checks whether the Hard Disk drive size is greater than 40GB via sending a
IOCTL_DISK_GET_DRIVE_GEOMETRY control code to the PhysicalDrive0 via DeviceIoControl

Time-Zone Check: The Loader performs the Time Zone Check using
GetDynamicTimeZoneInformation(), It inspects whether the time zone under which the code
executed is “Pakistan Standard Time;” if not, the loader does not perform any malicious actions
and exits the process. From this check we can deduce that the malware is specifically targeted
towards Pakistan by the SideWinder APT Group:

Fig 34. Anti-Analysis Checks

Once all the Anti-Analysis Checks are satisfied, the loader then unhooks the NTDLL.dll (hooked) by
mapping another fresh copy of NTDLL using MapViewOfFile() in memory and then replaces the .text
section of the hooked NTDLL with the .text section of the fresh NTDLL. This technique allows the Loader
to evade Userland API hooks placed on the Native API’s by EDRs.

https://lh3.googleusercontent.com/65C8FAW2zAI1S30fgLlE_-HSvKqnZfrqyts_K5XSJD5RR7rxJ0Yf24ZGW3EpKykzinZnysF7Gi3zCIvlcmokfP8huI03jRJHNZFgeUoNGgv5SsMDM1_Iq9JVWJKMi7Fk95Sd1OCO_3NYvqOH-YUX4vo6MOqclT5MA3i07u34nrnThatofLS5jX52fw

20/28

Fig 35. NTDLL UnHooking

Further the loader performs the KernelCallbackTable Process Injection in order to inject shellcode into
a remote process. This technique was previously used by FinFisher and Lazarus APT Group, but now is
also used by SideWinder APT. The process injection code in this case has been reused from the
following blog as can be seen in the screenshot below:

Fig 36. Reused KernelCallbackTable Process Injection Routine

Now once initiated the Loader injects the shellcode in the remote process “notepad.exe” and then
executes the payload when the SendMessageW function is called with WM_COPYDATA, which in turn

https://lh5.googleusercontent.com/_xP8lidDRSZ-Yh9G5-OK-HVo0AzJ40nVrhaLO3hf_r5Wdpx7fs_4rn9zm83GxmOMYUGkQRpjT87OK5X1BFhRruPxO0Vnunp7QIc8pOSH9ujPzu3YaRkyZeUNinSESbB8ljMFzMrvguYexr9IsxvgYxCqcBmyBUMnzgC7KmtatC79cqZxATUdLm5wHg
https://captmeelo.com/redteam/maldev/2022/04/21/kernelcallbacktable-injection.html
https://lh6.googleusercontent.com/9zhsNAkwLuaH5ciyukYFkcNyFp2rTJ-dZl99W0XEDnSANyjIffhmOl2HztSbtDvqW4DufhmxH9u4k_hjV8SYji_qj0A6CeJ-0oDhJjVvKKbKshjcLZPEItK1QAC0KHo93Po6Hztwl6B-1mtTN41HIarUp86GWFzcTHbDV2evaCK7eHGbtmuSKYL77g

21/28

invokes fnCOPYDATA which points to the address of the payload. The following sample was crashing
once executed but upon patching a few instructions related to WaitForInputIdle() function we were able to
execute it seamlessly and then debug the shellcode which then decrypted and loaded the embedded
binary in the virtual memory. We further dumped the loaded binary which was a Cobalt Strike Beacon as
seen in the screenshot below:

Fig 37. Cobalt Strike Beacon Injected into the Remote Process via KernelCallbackTable Process
Injection

Further we found multiple similar CS Loaders and extracted the configuration for the Cobalt Strike
Beacons:

Beacon Type: Hybrid HTTP DNS

Cobalt Strike C2: fia-gov[.]org

https://lh6.googleusercontent.com/OE0e-80hEgAg6ADG6b_LH8LFj83wHrjIxGAxuyrOPSxO65ZS8fO2lffqWRYNhqY1OX5emEqLDelEGiteW3UMroeJGzSerWafPsRmahIWBStthGlhxzICg2Bg44DF13bZhwGGDtr9jDAJgvjW7AdK9SFbaf_SXGoavHQ6t6j7wq9dhtROSxBxh-xYXw

22/28

Fig 38. Cobalt Strike Configuration - 1

OneDrive.exe and DDRA.exe - Cobalt Strike Beacons

Along with the CS Loader, both of these payloads were also downloaded and executed from the CnC
Server URL: http[:]//146[.]190[.]235[.]137/OneDrive.exe and http[:]//146[.]190[.]235[.]137/DDRA.exe. We
extracted the configuration for both the Cobalt Strike beacons with similar CnC servers as seen in the
screenshot below:

DDRA.exe -

Beacon Type: Hybrid HTTP DNS

Cobalt Strike C2: fia-gov[.]org

https://lh3.googleusercontent.com/u4x7YGkW38fxkZ8I9-Fo4vddfUVJUNTTX4j-b7NaeBENwSOnU0IBpYeitdQ_lpmAUsAxaVD6GBk-AuxQXA-P_vqvt9Hw5nn0PjL1Osq8ZjTcQ1M24vGlEYAEBYeaMcDIbYwOu_leG3A-N9_SLwgxg04-YRZHcYnmuO7UqmIJU1T32YScugVNh8SVXA

23/28

Fig 39. Cobalt Strike Configuration - 2

OneDrive.exe
 Beacon Type: Hybrid HTTP DNS

Cobalt Strike C2: fia-gov[.]org

https://lh3.googleusercontent.com/EYc5pj554Txe_DvHwWzt79vh9_US7TwiiZkg394HrwCEgVtGLk4bJ0CMKmpIbT_D4HtyeUdDBz3XS8uVIHJE6Sa3dcytIUlMolUQgSNK5f-OMzWUbkBQXqM5J9bP0AeBsFqGaD7qDzhn5r82vUO5wrANNi0OPMK4ywokuYRKjRcJ6kY9Pv1IUgBhIw

24/28

Fig 40. Cobalt Strike Configuration - 3

The CnC server domain: fia-gov[.]org used by the SideWinder APT mimics the domain name of
Pakistan’s Federal Investigation Agency fia[.]gov[.]pk which is the premier agency of Pakistan at
national level to investigate federal crimes.

 Also we found another similar CS Loader sample with the CnC server as: customs-lk[.]org, in this case
it mimics the domain name of Sri Lanka Customs customs[.]gov[.]lk, possibly a SideWinder campaign
targeting Sri Lanka. The “campaign_id” in this case is similar to the CS Loader analyzed previously as
can be seen in the screenshot below.

https://lh5.googleusercontent.com/GgrKlsZcNoHRaso4FBpfjb6dPFp-J3QH2X6FFxheA1o4ZGsBGiIcDWwvlQapz6_Bgl2QnfZJx5EzRL0g_2T_A_ptqArbRacLW1TunNKZxyF0AOd6EAOal2Rkrcv7vrUEF_bbDKKKWcZ1jXC2s3IdRu6Pc7C3jIG5O-GKTpXFRTOV1afOKtdQpWmg4w

25/28

Fig 41. Cobalt Strike Configuration - 4

Attribution to SideWinder APT
SideWinder APT is reckoned as a Indian Threat Actor Group predominantly targeting Pakistan. We were
able to attribute the following campaign to the SideWinder APT based on the network infrastructure as
shown below in the graph.

26/28

Fig 42. SideWinder Network Infrastructure

As can be seen in the above screenshot, the IP: 3[.]239[.]29[.]103 hosts the domains “fia-gov[.]org” and
“customs-lk[.]org” which were the CnC servers for the Cobalt Strike beacons in the following campaign
as shown earlier. Now if we take a look at the following other domains hosted on the same IP:

nationalhelpdesk[.]pk
mofa-pk[.]org
sngpl[.]org[.]pk

These domains were previously reported and were actively used by the SideWinder APT Group for
espionage campaigns. Based on the reuse of the network infrastructure we can deduce that this
WarHawk campaign is also performed by the SideWinder APT Group targeting Pakistan.

The indicators listed below also assist us in determining that the campaign is targeted at Pakistan:

 ISO files hosted on the Pakistan’s National Electric Power Regulatory Authority website
Advisories released by the Pakistan’s Cabinet Division used as a lure
Time Zone check for “Pakistan Standard Time” which makes sure that the malware is only
executed under Pakistan Standard Time.

Zscaler Sandbox Coverage:

https://lh3.googleusercontent.com/DgjDCPzxRWLtOPWdCUdG4_OqNleERPMYnYtv1JsghSsr8RYKrbxPIRCoEfu-0NurFKP_oPgFitl_eJnG6xyB-ULbO_JthZgUUEp3y9AR5CXbI7FsHtfkv75Ymtw61Hk0HUW7xyZWmfP8DqGqoDezX4YU10Fn0fUJBhF1ZvUZix61oHB5VuFoqhr_tQ

27/28

Fig. 43 The Zscaler Cloud Sandbox successfully detected the WarHawk backdoor

Win32.Backdoor.WarHawk

Conclusion
The SideWinder APT Group is continuously evolving their tactics and adding new malware to their
arsenal in order to carry out successful espionage attack campaigns against their targets. The Zscaler
ThreatLabz team will continue to monitor these attacks to help keep our customers safe

MITRE ATT&CK TTP MAPPING

ID TACTIC TECHNIQUE
T1566 Initial Access Phishing
T1190 Initial Access Exploit Public Facing Application
T1204 Execution User Execution
T1059 Execution Command and Scripting Interpreter
T1140 Defense Evasion Deobfuscate/Decode Files or Information
T1564 Defense Evasion Hide Artifacts
T1055 Defense Evasion Process Injection
T1071.001 Command and Control Application Layer Protocols - Web Protocols
T1041 Exfiltration Exfiltration over C2 Channel

IoCs:

https://lh3.googleusercontent.com/uUx_OUO7AYvJm9YuVG0QKsWREHAV8hAhvJrmTvQ43LZ2sgLuoMoAZ_nmX9ci7iHr2HuSef__cNdC4XLnJ0SSlEXEgB4-CKmmF7ow-4gpecJhW2ZYHmkEdDVcWr0WcBHBVJ-HaPtag6rf-vKOWVwuHbZOK8zO24Kkl1tjhDMuGCjqoawLkdiZPzUOgA
https://threatlibrary.zscaler.com/threats/ba452190-bc26-4e88-a7d3-3631adf82aa1

28/28

ISO:

32-Advisory-No-32.iso: d510808a743e6afc705fc648ca7f896a

URL: nepra[.]org[.]pk/css/32-Advisory-No-32[.]iso

33-Advisory-No-33-2022.pdf.iso: 63d6d8213d9cc070b2a3dfd3c5866564

WarHawk Backdoor:

WarHawk_v1: 8f9cf5c828cb02c83f8df52ccae03e2a
 WarHawk_v1.1: 5cff6896e0505e8d6d98bff35d10c43a

CnC: 146[.]190[.]235[.]137/wh/glass[.]php

Cobalt Strike:

Snitch.exe CS Loader: ec33c5e1773b510e323bea8f70dcddb0

URL: 146[.]190[.]235[.]137/Snitch[.]exe

OneDrive.exe CS Beacon: d0acccab52778b77c96346194e38b244
 URL: 146[.]190[.]235[.]137/OneDrive[.]exe

DDRA.exe CS Beacon: 40f86b56ab79e94893e4c6f1a0a099a1

URL: 146[.]190[.]235[.]137/DDRA[.]exe

Cobalt Strike CnC:fia-gov[.]org &customs-lk[.]org

