
1/14

decoded.avast.io /martinchlumecky/png-steganography/

PNG Steganography Hides Backdoor
⋮ 11/10/2022

by Threat Intelligence Team

Our fellow researchers from ESET published an article about previously undocumented tools infiltrating high-profile
companies and local governments in Asia. The tools, active since at least 2020 are designed to steal data. ESET
dubbed them Worok. ESET monitored a significant break in activity from May 5, 2021 to the beginning of 2022.
Nevertheless, when Worok became active again, new targeted victims – including energy companies in Central Asia
and public sector entities in Southeast Asia – were infected to steal data based on the types of the attacked
companies.

The researchers from ESET described two execution chains and how victims’ computers are compromised. The
initial compromise is unknown, but the next stages are described in detail, including describing how the final payload
is loaded and extracted via steganography from PNG files. However, the final payload has not been recovered yet.
Detailed information about Worok, chains, and backdoor commands can be found in the ESET’s article Worok: The
big picture.

Our analysis aims to extend the current knowledge of ESET research. We have captured additional artifacts related
to Worok at the end of the execution chain. The PNG files captured by our telemetry confirm that the purpose of the
final payload embedded in these is data stealing. What is noteworthy is data collection from victims’ machines using
DropBox repository, as well as attackers using DropBox API for communication with the final stage.

Compromise Chain
We intend to remain consistent with the terminology set by ESET’s research. Our research also has not discovered
the whole initial compromise of the malware. However, we have a few new observations that can be part of an
infiltrating process.

Figure 1 illustrates the original compromise chain described by ESET. In some cases, the malware is supposedly
deployed by attackers via ProxyShell vulnerabilities. In some corner cases, exploits against the ProxyShell
vulnerabilities were used for persistence in the victim’s network. The attackers then used publicly available exploit
tools to deploy their custom malicious kits. So, the final compromise chain is straightforward: the first stage is
CLRLoader which implements a simple code that loads the next stage (PNGLoader), as reported by ESET.

Figure 1. Worok compromise chain

Initial Compromise

The specific initial attack vector is still unknown, but we found four DLLs in compromised machines containing the
code of CLRLoader. Our detections captured a process tree illustrated in Figure 2.

https://decoded.avast.io/martinchlumecky/png-steganography/
http://10.10.0.46/data-production/pdf_1669063701_8e633f.html
https://www.welivesecurity.com/2022/09/06/worok-big-picture/
https://www.welivesecurity.com/2022/09/06/worok-big-picture/

2/14

Figure 2. Process tree running CLRLoader

This process tree was observed for WLBSCTRL.DLL, TSMSISrv.DLL, and TSVIPSrv.DLL. The mutual process that
executes the DLLs is svchost -k netsvcs. Therefore, the initial process is SvcHost introducing a Windows
service. The DLL files help us to identify two Windows services, namely IKE and AuthIP IPsec Keying Modules
(IKEEXT) and Remote Desktop Configuration (SessionEnv). Both services are known for their DLL hijacking of DLL
files missing in the System32 folder by default, SCM and DLL Hijacking Primer.

Lateral movement

The DLL hijacking in the System32 folder is not a vulnerability by itself because the attackers need administrator
privileges to write into it. However, we assume the existence of an implemented reverse shell with administrator
privileges as a consequence of the initial compromise. In that case, the attacker can efficiently perform the lateral
movement via Service Control Manager (SVCCTL).

In short, the attackers place the hijacked DLL files into %SYSTEMROOT%\System32 and then start an appropriate
service remotely.

List of abused Windows services and their DLL files:

IKE and AuthIP IPsec Keying Modules
C:\Windows\System32\WLBSCTRL.dll

Remote Desktop Configuration
C:\Windows\System32\TSMSISrv.dll

C:\Windows\System32\TSVIPSrv.dll

The second observed DLL hijacked is related to VMware machines. The attackers can misuse the hijacking of
vmGuestLib.dll, which is used by the WMI Performance Adapter (WmiApSrv) service to provide performance
information.

On system start, WmiApSrv loads vmStatsProvider.dll, which tries to call vmGuestLib.dll from
%ProgramFiles%\VMware\VMware Tools\vmStatsProvider\win32 as the first one. However, the original
library is located at %SYSTEMROOT%\System32. Hence, if the attackers place vmGuestLib.dll into the
%ProgramFiles% location, it also leads to DLL hijacking.

These two approaches are probable scenarios of how CLRLoader can be executed, and the compromise chain
shown in Figure 1 launched. The elegance of this approach is that attackers do not have to create a new service that
may reveal suspicious activities. The attackers abuse only export functions of hijacked DLLs, whose empty
reimplementation does not cause an error or any other indicator of compromise. Moreover, the persistence of
CLRLoader is ensured by the legitim Windows services.

CLRLoader

CLRLoader is a DLL file written in Microsoft Visual C++. It implements the DllMain method, which is responsible for
loading the next stage (.NET variant of PNGLoader). The rest of the exported functions correspond to the interfaces
of the hijacked DLLs, but the implementation of the export functions is empty. So, invoking this function does not
cause a crash in the calling processes. Just for completeness, the hijacked files also contain digital signatures of the
original DLL files; naturally, the signature is invalid.

CLRLoader is activated by calling LoadLibraryExW from an abused process/service. LoadLibraryExW is called
with zero dwFlags parameters, so the DllMain is invoked when the malicious DLL is loaded into the virtual address
space. An example of the CLRLoader code can be seen in Figure 3.

https://posts.specterops.io/lateral-movement-scm-and-dll-hijacking-primer-d2f61e8ab992

3/14

Figure 3. DllMain of hijacked DLL

CLRLoader checks the presence of the .NET DLL file containing PNGLoader, creates a mutex, and finally executes
PNGLoader via CorBindToRuntimeEx API.

We recognized two variants of PNGLoader with the entry points as follow:

Jsprofile.Jspfilter (Setfilter)

pngpcd.ImageCoder (PngCoder)

PNGLoader
The second stage (PNGLoader) is loaded by CLRLoader or, as reported by ESET, by PowHeartBeat. We do not
see any code deploying PNGLoader on infiltrated systems yet, but we expect to see it in a similar manner as the
lateral movement.

PNGLoader is a loader that extracts bytes from PNGs files and reconstructs them into an executable code.
PNGLoader is a .NET DLL file obfuscated utilizing .NET Reactor; the file description provides information that mimics
legitimate software such as Jscript Profiler or Transfer Service Proxy.

The deobfuscated PNGLoader code includes the entry point (Setfilter) invoked by CLRLoader. There is a
hardcoded path loader_path that is searched for all PNG files recursively. Each .png file is verified to the specific
bitmap attributes (height, width) and steganographically embedded content (DecodePng). The Setfilter method is
shown in Figure 4.

Figure 4. The Setfilter method of PNGLoader

The steganographic embedding relies on one of the more common steganographic techniques called least-significant
bit (LSB) encoding. In general, this method embeds the data in the least-significant bits of every pixel. In this specific
implementation, one pixel encodes a nibble (one bit per each alpha, red, green, and blue channel), i.e. two pixels

4/14

contain a byte of hidden information, as illustrated in Figure 5. While this method is very easy to detect by a simple
statistical analysis, such change in pixel value is hardly perceivable by the naked eye.

Figure 5. Byte reconstruction from 2 pixels

The steganographically embedded content is then extracted in four steps as follows.

The first 16 bytes (32 pixels) of the PNG file are extracted, and the first 8 bytes must match a magic number.
This check is performed due to the computational complexity necessary to pull the rest of the pixels (approx.
hundreds of thousands of pixels). The following 8 bytes then represent the length of the embedded payload.
The following extracted data is an encrypted payload in Gzip format.
The extracted payload is decrypted using a multiple-byte XOR hard-coded in PNGLoader.
The result of XORing is Gzip data that is un-gzipped.

The result of these steps is the final payload steganographically embedded in the PNG file.

Steganographically Embedded Payload

If PNGLoader successfully processes (extract → decode → unpack) the final payload, it is compiled in runtime and
executed immediately. Our telemetry has picked up two variants of PNGLoader working with the magic numbers
recorded in Figure 6.

Figure 6. Data structure embedded in PNG bitmap

The first payload implementation is a PowerShell script, as demonstrated by the code fragment of PNGLoader in
Figure 7. Like our ESET colleagues, we have no sample of this payload yet, but we expect a similar function as the
second payload implementation described below.

Figure 7. Code fragment of PNGLoader executing the PowerShell
payload

The second payload implementation is .NET C# compiled and executed via the CompileAssemblyFromSource
method of the CSharpCodeProvider class, see Figure 8.

5/14

Figure 8. Execution of C# payload embedded in PNG bitmap

The .NET C# payload has a namespace Mydropbox, class Program, and method Main. The namespace indicates
that the payload operates with DropBox. Our telemetry captured a few PNG files, including the steganographically
embedded C# payload.

PNG Files

At first glance, the PNG pictures look innocent, like a fluffy cloud; see Figure 9. Our telemetry has captured three
PNG pictures with the following attributes:

Size: 1213 x 270 (px)
Bit Depth: 8, Color Type: 6 (RGB + Alpha)

Figure 9. Malicious PNG file with steganographically embedded C# payload

As we mentioned before, malware authors rely on LSB encoding to hide malicious payload in the PNG pixel data,
more specifically in LSB of each color channel (Red, Green, Blue, and Alpha). Let us have a look at their bit-planes.
Figure 10shows one of the higher bit planes for each color channel; notice that each of these images looks far from
random noise. If we had a look at an image without data embedded in its LSB, we would usually see similar patterns.

6/14

Figure 10. One of the RGB bit-planes without hidden data

Now, to put it into contrast, let us have a look at LSB bit-planes. Figure 11 shows LSB bit-planes for every channel of
the PNG image with the embedded encrypted (and compressed) payload. Recall that both encryption and
compression should usually increase the entropy of the image. Therefore, it should be no surprise that LSB bit-planes
of such an image look like random noise. It is evident that the whole canvas of LSB bit-planes is not used.

Figure 11. Zero (LSB) bit-plains channels with embedded data

The payload occupies only pixels representing the payload size, and the rest are untouched; see the algorithm below.

7/14

In this specific case, the PNG files are located in C:\Program Files\Internet Explorer, so the picture does
not attract attention because Internet Explorer has a similar theme as Figure 12 shows.

Figure 12. Example of graphic Internet Explorer theme

DropBoxControl

At this time, we can extend the ESET compromise chain by the .NET C# payload that we call DropBoxControl –
the third stage, see Figure 13.

8/14

Figure 13. Extended compromise chain

DropBoxControl is a backdoor that communicates with the attackers via the DropBox service. Noteworthy, the
C&C server is a DropBox account, and whole communications, such as commands, uploads, and downloads, are
performed using regular files in specific folders. Therefore, the backdoor commands are represented as files with a
defined extension. DropBoxControl periodically checks the DropBox folder and executes commands based on the
request files. The response for each command is also uploaded to the DropBox folder as the result file.

The text below describes the individual DropBoxControl components and the whole backdoor workflow.

DropBox API

DropBoxControl implements the DropBox communication by applying the standard API via HTTP/POST. There is
a dedicated class, DropBoxOperation, wrapping the API with the method summarized in Table 1. A DropBox API
key, sent in the HTTP header, is hard-coded in the DropBoxControl sample but can be remotely changed.

DropBoxControl Method API
DropBox_FileDownload https://content.dropboxapi.com/2/files/download
DropBox_DataUpload https://content.dropboxapi.com/2/files/upload
DropBox_FileDelete https://api.dropboxapi.com/2/files/delete_v2
DropBox_GetFileList https://api.dropboxapi.com/2/files/list_folder
Table 1. DropBox API implemented by DropBoxControl

Commands

The attackers control the backdoor through ten commands recorded in Table 2.

Command Description
cmd Run cmd /c <param> & exit, the param is sent by the attackers.
exe Execute a defined executable with specific parameters.
FileUpload Download data from the DropBox to a victim’s machine.
FileDownload Upload data from a victim’s machine to the DropBox.
FileDelete Delete data from a victim’s machine.
FileRename Rename data from a victim’s machine.

FileView Sent file information (name, size, attributes, access time) about all victim’s files in a
defined directory

ChangeDir Set a current directory for the backdoor
Info Send information about a victim’s machine to the DropBox
Config Update a backdoor configuration file; see Configuration
Table 2. Backdoor commands

The Info command sends basic information about an infiltrated system as follows:

ClientId hard-coded in each DropBoxControl sample
Version of DropBoxControl sample (seen 1.1.2.0001)
Hostname of a victim’s machine
List of all victim’s IPs
Version and file size of explorer.exe
Windows architecture
List of hard drivers, including total size, available free space, and drive type
The current time of victim’s machine

Configuration

9/14

DropBoxControl, the object of this study, uses three files located on C:\Program Files\Internet Explorer.
The file names try to look legitimate from the perspective of the Internet Explorer folder.

ieproxy.dat

This file contains the DropBoxControl configuration that is encrypted. It configures four variables as follows:

DropboxId: API key used for authorization
Interval: how often the DropBox disk is checked
UpTime/DownTime: defines the time interval when the backdoor is active (seen 7 – 23)

See the example of the configuration file content:

Bearer WGG0iGT****AAGkOdrimId9***QfzuwM-nJm***R8nNhy,300,7,23

iexplore.log

The iexplore.log file is a log file of DropBoxControl which records most actions like contacting the DropBox,
downloading/uploading files, configuration loading, etc. Log entities are logged only if a sqmapi.dat file exists. The
login engine is curiously implemented since the log file is not encrypted and contains decrypted data of the
ieproxy.dat file.

Encryption

DropBoxControl encrypts the configuration file (actually without effect), and the DropBox communication. The
config file is encrypted using multi-byte XOR with a hard-coded key (owe01zU4). Although the API communication is
encrypted via HTTPS, data stored on the DropBox is encrypted by its own algorithm.

The data is encrypted using another hard-coded byte array (hexEnc), TaskId, and ClientId. Moreover, TaskId is
used as an index to the hexEnc array, and the index is salted with ClientId in each iteration; see Figure 14. It is
similar to the algorithm used by PowHeartBeat, as described in the ESET report.

Figure 14. Encryption algorithm used for DropBox files

DropBox Files

As we mentioned above, the communication between the backdoors and the attackers is performed using the
DropBox files. In general, DropBox files that contain valuable information are encrypted. Each file, in addition to the
data itself, also includes flags, the task type (command), and other metadata, as seen in Figures 15 and Table 3.

Figure 15. The file structure of DropBox files

Item Length Description
EncType 1 Flag – data in the file is encrypted
GzipType 1 Flag – data in the file is gzipped
TaskType 2 Command type
DataLen 4 Data length
Table 3. DropBox file header

Returning to the DropBox files, we explore a DropBox file structure of the DropBox account. A root folder includes
folders named according to the ClientId that is hard-coded in the DropBoxControl sample; more precisely, in the
PNG file.

Each client folder holds a time.txt file which includes a number that is a count of the backdoor iteration. One
iteration means contacting and processing an appropriate client folder in the DropBox repository.

The attackers specify the task type and eventual parameters. The task type and parameters are then packed using
the file header and uploaded into the appropriate client folder as a request file (.req). Further analysis found that the

10/14

backdoor processes its .req files and creates a result file (.res) as a response for each request file. The result file
has the same file structure shown in Figure 15, but data, data length, and task type have different values, since
returned data contains requested (stolen) information.

Comparing all DropBox folders (Figure 16), we determined the name of the request and result files in this form: [0-
9]+-[0-9]+. The filename is used for request/response identification and also for data encrypting.

For example, let’s use the request file name 31-1233.req. The IDMessage is 31-1233 and TaskId is 1233. So,
the data is encrypted using the ClientId and TaskId, plus hard-coded hexEnc; see Encryption.

Figure 16. List of DropBox files

DropBoxControl Workflow

We defined and described the basic functionality of DropBoxControl in the sections above. Therefore, we can
summarize all this knowledge into a backdoor workflow and outline the whole process of data collecting, uploading,
downloading, and communicating with the DropBox repository.

In the beginning, PNGLoader extracts the stenographically embedded DropBoxControl and invokes the Main
method of the C# Mydropbox.Program class. DropBoxControl then decrypts and loads the configuration file
containing the DropBox API key. Most of the actions are recorded in the log file.

If the current time is between UpTime and DownTime interval, DropBoxControl is active and starts the main
functionality. It contacts the DropBox repository and uploads the time.txt file into the client folder. If the time.txt
upload is successful, the backdoor downloads a list of all files stored in the client folder. The file list is iterated, and
each request (.req) file is downloaded and processed based on the tasks type (command). DropBoxControl
executes the command and creates the result file (.res) with the requested information. The resulting encrypted file
is uploaded back into the client folder. Finally, the processed request (.req) file is deleted.

Victimology

The victims we saw targeted in this campaign are similar to those that ESET saw. The victims of this campaign were
companies and government institutions in Asia and North America, namely Mexico. Vietnam and Cambodia are the
other countries affected by DropBoxControl. One of the DropBoxControl connections was monitored from an IP
associated with the Ministry of Economic Development of Russia.

Discussion

The third stage of the compromise chain is represented by the C# implementation of DropBoxControl. The
DropBoxControl functionality allows attackers to control and spy on victims’ machines. Moreover, the backdoor has
access to the Program Files folder, so we expect it to run under administrator privileges. The most common
command observed in log files is obtaining information about victims’ files, followed by data collecting.

The typical command for the data collecting is via the cmd command; see the example below:

rar.exe a -m5 -r -y -ta20210204000000 -hp1qazxcde32ws -v2560k Asia1Dpt-PC-c.rar

c:*.doc c:*.docx c:*.xls c:*.xlsx c:*.pdf c:*.ppt c:*.pptx c:*.jpg

c:*.txt >nul

11/14

The attacks focus on collecting all files of interest, such as Word, Excel, PowerPoint, PDF, etc. They recursively
search the files in the C:\ drive and pack them into an encrypted rar archive, split into multiple files.

Another command decrypted from the request file executes Ettercap, which sniffs live network connections using
man-in-the-middle attacks; see the command below:

ettercap.exe -Tq -w a.cap -M ARP /192.168.100.99/ //

The attackers can sniff network communications and intercept user credentials sent via, e.g., web pages.

In short, DropBoxControl is malware with backdoor and spy functionality.

DropBox Account

Our telemetry has captured these three DropBox APIs:

Bearer gg706X***************Ru_43QAg**********1JU1DL***********ej1_xH7e

Bearer ARmUaL***************Qg02vynP**********ASEyQa***********deRLu9Gx

Bearer WGG0iG***************kOdrimId**********ZQfzuw***********6RR8nNhy

Two keys are registered to “Veronika Shabelyanova” (vershabelyanova1@gmail[.]com) with Chinese
localization. The email is still active, as well as the DropBox repository. The user of the email is a Slavic transcription
of “Вероника Шабелянова”.

The third DropBox repository is connected with a Hong Kong user “Hartshorne Yaeko”
(yaekohartshornekrq11@gmai[l].com)

DropBox Files

We are monitoring the DropBox repositories and have already derived some remarkable information. The DropBox
accounts were created on 11 July 2019 based on README files created on account’s creation.

At this time, there is only one DropBox repository that seems to be active. It contains seven folders with seven
time.txt files, so there are seven active DropBoxControl instances, since the time.txt files have integers that
are periodically incremented; see DropBox Files. Moreover, the integer values indicate that the backdoors run
continuously for tens of days. Regarding the backdoor commands, we guess the last activity that sent request files
was on 1 June 2022, also for seven backdoors. Finally, the total count of folders representing infiltrated machines
equals twenty-one victims.

In April 2022, the attackers uploaded a Lua script implementing the nmap Library shortport searching for Telnet
services using s3270 to control IBM mainframes; see the script below.

Code Quality of DropBoxControl

While we usually refrain from commenting on the code quality, in this case it deserves mentioning as the code quality
is debatable at best and not every objection can be blamed on obfuscation.

12/14

The code contains a lot of redundant code; both duplicate code and code that serves no function. An indication of
unfamiliarity with C# is usage of one’s own implementation of serialization/deserialization methods instead of using
C# build-in functions. The threading code does not rely on usual synchronization primitives such semaphores,
mutexes, etc. but rather uses bool flags with periodic checks of thread states. The code also contains parts that are
presumably copied from API documentation. For instance, the implementation of DropBox_FileDownload contains
the same comment as in the DropBox documentation; see the illustration below.

Another weird quirk is the encryption method for the configuration file. The DropBoxControl author has attempted
to obfuscate the configuration in the ieproxy.dat file because the API key is sensitive information. However, when
the config file is decrypted and applied, the configuration content is logged into the iexplore.log file in plain text.

In other words, the whole DropBoxControl project looks like a school project. Authors do not adhere to usual
coding practices, rely on their own implementation of common primitives, and reuse code from documentation
examples. This leads us to an assessment that DropBoxControl authors are different from authors of CLRLoader
and PNGLoader due to significantly different code quality of these payloads.

Conclusion

The purpose of this study has been to confirm the assumptions of our fellow researchers from ESET published in the
article about the Worok cyberespionage group. Our research managed to extend their compromise chain, as we have
managed to find artifacts that fit the chain accompanying the samples in question.

We have described probable scenarios of how the initial compromise can be started by abusing DLL hijacking of
Windows services, including lateral movement. The rest of the compromise chain is very similar to the ESET
description.

The key finding of this research is the interception of the PNG files, as predicted by ESET. The stenographically
embedded C# payload (DropBoxControl) confirms Worok as the cyberespionage group. They steal data via the
DropBox account registered on active Google emails.

The prevalence of Worok’s tools in the wild is low, so it can indicate that the toolset is an APT project focusing on
high-profile entities in private and public sectors in Asia, Africa, and North America.

Appendix

DropBoxControl Log

[02:00:50]:[+]Main starts.

[02:00:50]:[+]Config exists.

[02:00:50]:[__]DecryptContent is 1,Bearer

gg706Xqxhy4*****************gQ8L4OmOLdI1JU1DL**********1ej1_xH7e#,300,7,23

[10:39:40]:[+]In work time.

[10:39:42]:[UPD] UploadData /data/2019/time.txt Starts!

[10:40:08]:[UPD] UploadData /data/2019/time.txt Success!

[10:40:10]:[UPD] UploadData Ends!

[10:40:10]:[+]Get Time.txt success.

[10:40:11]:[+] DropBox_GetFileList Success!

[10:40:11]:[DOWN] DownloadData /data/2019/31-3.req Starts!

[10:40:13]:[DOWN] DownloadData /data/2019/31-3.req Success!

[10:40:13]:[DOWN] DownloadData Ends!

[10:40:26]:[UPD] UploadData /data/2019/31-3.res Starts!

[10:40:27]:[UPD] UploadData /data/2019/31-3.res Success!

https://www.dropbox.com/developers/documentation/http/documentation#files-download

13/14

[10:40:27]:[UPD] UploadData Ends!

[10:40:27]:[DEL] Delete /data/2019/31-3.req Starts!

[10:40:28]:[DEL] Delete /data/2019/31-3.req Success!

[10:40:28]:[DEL] Delete Ends!

[10:40:28]:[DOWN] DownloadData /data/2019/31-4.req Starts!

[10:40:29]:[DOWN] DownloadData /data/2019/31-4.req Success!

[10:40:29]:[DOWN] DownloadData Ends!

[10:40:34]:[UPD] UploadData /data/2019/31-4.res Starts!

[10:40:36]:[UPD] UploadData /data/2019/31-4.res Success!

[10:40:36]:[UPD] UploadData Ends!

[10:40:36]:[DEL] Delete /data/2019/31-4.req Starts!

[10:40:36]:[DEL] Delete /data/2019/31-4.req Success!

[10:40:36]:[DEL] Delete Ends!

[10:40:36]:[DOWN] DownloadData /data/2019/31-5.req Starts!

[10:40:37]:[DOWN] DownloadData /data/2019/31-5.req Success!

[10:40:37]:[DOWN] DownloadData Ends!

[10:40:42]:[UPD] UploadData /data/2019/31-5.res Starts!

[10:40:43]:[UPD] UploadData /data/2019/31-5.res Success!

[10:40:43]:[UPD] UploadData Ends!

[10:40:43]:[DEL] Delete /data/2019/31-5.req Starts!

[10:40:44]:[DEL] Delete /data/2019/31-5.req Success!

[10:40:44]:[DEL] Delete Ends!

[10:40:44]:[DOWN] DownloadData /data/2019/31-7.req Starts!

[10:40:44]:[DOWN] DownloadData /data/2019/31-7.req Success!

[10:40:44]:[DOWN] DownloadData Ends!

[10:40:49]:[UPD] UploadData /data/2019/31-7.res Starts!

[10:40:50]:[UPD] UploadData /data/2019/31-7.res Success!

[10:40:50]:[UPD] UploadData Ends!

[10:40:50]:[DEL] Delete /data/2019/31-7.req Starts!

[10:40:52]:[DEL] Delete /data/2019/31-7.req Success!

[10:40:52]:[DEL] Delete Ends!

Task Type Values

Command Task Type
Cmd_Request 0x01
Cmd_Response 0x02
Exe_Request 0x03
Exe_Response 0x04
FileUpload_Request 0x05
FileUpload_Response 0x06
FileDownload_Request 0x07
FileDownload_Response 0x08
FileView_Request 0x09
FileView_Response 0x0A
FileDelete_Request 0x0B
FileDelete_Response 0x0C
FileRename_Request 0x0D
FileRename_Response 0x0E
ChangeDir_Request 0x0F
ChangeDir_Response 0x10
Info_Request 0x11
Info_Response 0x12
Config_Request 0x13
Config_Response 0x14

IOCs

PNG file with steganographically embedded C# payload

29A195C5FF1759C010F697DC8F8876541651A77A7B5867F4E160FD8620415977

9E1C5FF23CD1B192235F79990D54E6F72ADBFE29D20797BA7A44A12C72D33B86

AF2907FC02028AC84B1AF8E65367502B5D9AF665AE32405C3311E5597C9C2774

DropBoxControl

1413090EAA0C2DAFA33C291EEB973A83DEB5CBD07D466AFAF5A7AD943197D726

14/14

References

[1] Worok: The big picture
 [2] Lateral Movement — SCM and DLL Hijacking Primer

 [3] Dropbox for HTTP Developers

2022 Copyright © Avast Software s.r.o.

https://www.welivesecurity.com/2022/09/06/worok-big-picture/
https://posts.specterops.io/lateral-movement-scm-and-dll-hijacking-primer-d2f61e8ab992
https://www.dropbox.com/developers/documentation/http/documentation#files-download

