
1/22

www.welivesecurity.com
/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/

BlackLotus UEFI bootkit: Myth confirmed
⋮ 3/1/2023

Martin Smolár
1 Mar 2023 - 11:30AM

The first in-the-wild UEFI bootkit bypassing UEFI Secure Boot on fully updated UEFI systems is now a reality

The number of UEFI vulnerabilities discovered in recent years and the failures in patching them or revoking
vulnerable binaries within a reasonable time window hasn’t gone unnoticed by threat actors. As a result, the first
publicly known UEFI bootkit bypassing the essential platform security feature – UEFI Secure Boot – is now a reality.
In this blogpost we present the first public analysis of this UEFI bootkit, which is capable of running on even fully-up-
to-date Windows 11 systems with UEFI Secure Boot enabled. Functionality of the bootkit and its individual features
leads us to believe that we are dealing with a bootkit known as BlackLotus, the UEFI bootkit being sold on hacking
forums for $5,000 since at least October 2022.

UEFI bootkits are very powerful threats, having full control over the OS boot process and thus capable of disabling
various OS security mechanisms and deploying their own kernel-mode or user-mode payloads in early OS startup
stages. This allows them to operate very stealthily and with high privileges. So far, only a few have been discovered
in the wild and publicly described (e.g., multiple malicious EFI samples we discovered in 2020, or fully featured UEFI
bootkits such as our discovery last year – the ESPecter bootkit – or the FinSpy bootkit discovered by researchers
from Kaspersky).

UEFI bootkits may lose on stealthiness when compared to firmware implants – such as LoJax; the first in-the-wild
UEFI firmware implant, discovered by our team in 2018 – as bootkits are located on an easily accessible FAT32 disk
partition. However, running as a bootloader gives them almost the same capabilities as firmware implants, but without
having to overcome the multilevel SPI flash defenses, such as the BWE, BLE, and PRx protection bits, or the
protections provided by hardware (like Intel Boot Guard). Sure, UEFI Secure Boot stands in the way of UEFI bootkits,
but there are a non-negligible number of known vulnerabilities that allow bypassing this essential security
mechanism. And the worst of this is that some of them are still easily exploitable on up-to-date systems even at the
time of this writing – including the one exploited by BlackLotus.

Our investigation started with a few hits on what turned out to be the BlackLotus user-mode component – an HTTP
downloader – in our telemetry late in 2022. After an initial assessment, code patterns found in the samples brought us
to the discovery of six BlackLotus installers (both on VirusTotal and in our own telemetry). This allowed us to explore
the whole execution chain and to realize that what we were dealing with here is not just regular malware.

Following are the key points about BlackLotus and a timeline summarizing the series of events related to it:

It’s capable of running on the latest, fully patched Windows 11 systems with UEFI Secure Boot enabled.

https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/
https://www.welivesecurity.com/author/msmolar/
https://www.welivesecurity.com/author/msmolar/
https://www.bleepingcomputer.com/news/security/malware-dev-claims-to-sell-new-blacklotus-windows-uefi-bootkit/
https://twitter.com/ESETresearch/status/1275770256389222400?s=20
https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://securelist.com/finspy-unseen-findings/104322/
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/

2/22

It exploits a more than one year old vulnerability (CVE-2022-21894) to bypass UEFI Secure Boot and set up
persistence for the bootkit. This is the first publicly known, in-the-wild abuse of this vulnerability.
Although the vulnerability was fixed in Microsoft’s January 2022 update, its exploitation is still possible as the
affected, validly signed binaries have still not been added to the UEFI revocation list. BlackLotus takes
advantage of this, bringing its own copies of legitimate – but vulnerable – binaries to the system in order to
exploit the vulnerability.
It’s capable of disabling OS security mechanisms such as BitLocker, HVCI, and Windows Defender.
Once installed, the bootkit’s main goal is to deploy a kernel driver (which, among other things, protects the
bootkit from removal), and an HTTP downloader responsible for communication with the C&C and capable of
loading additional user-mode or kernel-mode payloads.

BlackLotus has been advertised and sold on underground forums since at least October 6th, 2022. In this
blogpost, we present evidence that the bootkit is real, and the advertisement is not merely a scam.
Interestingly, some of the BlackLotus installers we have analyzed do not proceed with bootkit installation if the
compromised host uses one of the following locales:

Romanian (Moldova), ro-MD
Russian (Moldova), ru-MD
Russian (Russia), ru-RU
Ukrainian (Ukraine) , uk-UA
Belarusian (Belarus), be-BY
Armenian (Armenia), hy-AM
Kazakh (Kazakhstan), kk-KZ

The timeline of individual events related to BlackLotus is shown in Figure 1.

Figure 1. Timeline of major events related to BlackLotus UEFI bootkit

As already mentioned, the bootkit has been sold on underground forums since at least October 6th, 2022. At this
point, we have not been able to identify, from our telemetry, the exact distribution channel used to deploy the bootkit
to victims. The low number of BlackLotus samples we have been able to obtain, both from public sources and our
telemetry, leads us to believe that not many threat actors have started using it yet. But until the revocation of the
vulnerable bootloaders that BlackLotus depends on happens, we are concerned that things will change rapidly should
this bootkit gets into the hands of the well-known crimeware groups, based on the bootkit’s easy deployment and
crimeware groups’ capabilities for spreading malware using their botnets.

Is this really BlackLotus?

There are several articles or posts summarizing information about BlackLotus (here, here and here and many
more…), all based on the information provided by the bootkit developer on underground hacking forums. So far, no
one has confirmed or disproved these claims.

Here is our summary of the claims from the available publications compared with what we discovered while reverse
engineering the bootkit samples:

BlackLotus’s advertisement on hacking forums claims that it features integrated Secure Boot bypass.
Adding vulnerable drivers to the UEFI revocation list is currently impossible, as the vulnerability affects
hundreds of bootloaders that are still used today. ✅

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21894
https://uefi.org/revocationlistfile
https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-1.-The-timeline-of-individual-events-related-to-BlackLotus-UEFI-bootkit.png
https://www.theregister.com/2022/10/13/blacklotus_malware_kaspersky/
https://www.linkedin.com/feed/update/urn:li:share:6986711231885713408/
https://www.bleepingcomputer.com/news/security/malware-dev-claims-to-sell-new-blacklotus-windows-uefi-bootkit/

3/22

True: It exploits CVE-2022-21894 in order to break Secure Boot and achieve persistence on UEFI-
Secure-Boot-enabled systems. Vulnerable drivers it uses are still not revoked in the latest dbx, at the time
of writing.

BlackLotus’s advertisement on hacking forums claims that the bootkit has built-in Ring0/Kernel
protection against removal. ✅

True: Its kernel driver protects handles belonging to its files on the EFI System Partition (ESP) against
closing. As an additional layer of protection, these handles are continuously monitored and a Blue Screen
Of Death (BSOD) triggered if any of these handles are closed, as described in the Protecting bootkit files
on the ESP from removal section.

BlackLotus’s advertisement on hacking forums claims that it comes with anti-virtual-machine (anti-VM),
anti-debug, and code obfuscation features to block malware analysis attempts. ✅

True: It contains various anti-VM, anti-debug, and obfuscation techniques to make it harder to replicate or
analyze. However, we are definitely not talking about any breakthrough or advanced anti-analysis
techniques here, as they can be easily overcome with little effort.

BlackLotus’s advertisement on hacking forums claims that its purpose is to act as an HTTP
downloader. ✅

True: Its final component acts as an HTTP downloader, as described in the HTTP downloader section
BlackLotus’s advertisement on hacking forums claims that the HTTP downloader runs under the
SYSTEM account within a legitimate process. ✅

True: Its HTTP downloader runs within the winlogon.exe process context.
BlackLotus’s advertisement on hacking forums claims it is a tiny bootkit with an on-disk size of only
80 kB. ✅

True: Samples we were able to obtain really are around 80 kB.

Based on these facts, we believe with high confidence that the bootkit we discovered in the wild is the BlackLotus
UEFI bootkit.

Attack overview

A simplified scheme of the BlackLotus compromise chain is shown in Figure 2. It consists of three main parts:

1. It starts with the execution of an installer (step 1 in Figure 2), which is responsible for deploying the bootkit’s
files to the EFI System partition, disabling HVCI and BitLocker, and then rebooting the machine.

2. After the first reboot, exploitation of CVE-2022-21894 and subsequent enrollment of the attackers’ Machine
Owner Key (MOK) occurs, to achieve persistence even on systems with UEFI Secure Boot enabled. The
machine is then rebooted (steps 2–4 in Figure 2) again.

3. In all subsequent boots, the self-signed UEFI bootkit is executed and deploys both its kernel driver and user-
mode payload, the HTTP downloader. Together, these components are able to download and execute
additional user-mode and driver components from the C&C server and protect the bootkit against removal
(steps 5–9 in Figure 2).

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-21894
https://uefi.org/revocationlistfile
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/additional_secure_boot_chain_implementations/machine_owner_key_mok

4/22

Figure 2. BlackLotus simplified execution overview

Interesting artifacts
Even though we believe this is the BlackLotus UEFI bootkit, we did not find any reference to this name in the samples
we analyzed. Instead, the code is full of references to the Higurashi When They Cry anime series, for example in
individual component names, such as higurashi_installer_uac_module.dll and higurashi_kernel.sys, and also in the
self-signed certificate used to sign the bootkit binary (shown in Figure 3).

https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-2.-BlackLotus-simplified-execution-overview.png
https://en.wikipedia.org/wiki/Higurashi_When_They_Cry

5/22

Figure 3. Self-signed certificate used by the BlackLotus bootkit

Additionally, the code decrypts but never uses various strings containing messages from the BlackLotus author (as
shown in Figure 4 – note, that hasherezade is a well-known researcher and author of various malware-analysis
tools), or just some random quotes from various songs, games, or series.

Figure 4. Example of messages left in the code by the BlackLotus author

Installation process

We start with analysis of the BlackLotus installers. The bootkit seems to be distributed in a form of installers that
come in two versions – offline and online. The difference between these two is in the way they obtain legitimate (but
vulnerable) Windows binaries, later used for bypassing Secure Boot.

In offline versions, Windows binaries are embedded in the installer
In online versions, Windows binaries are downloaded directly from the Microsoft symbol store. So far, we’ve
seen the following Windows binaries being abused by the BlackLotus bootkit:

https://msdl.microsoft.com/download/symbols/bootmgfw.efi/7144BCD31C0000/bootmgfw.efi
https://msdl.microsoft.com/download/symbols/bootmgr.efi/98B063A61BC000/bootmgr.efi
https://msdl.microsoft.com/download/symbols/hvloader.efi/559F396411D000/hvloader.efi

The goal of the installer is clear – it’s responsible for disabling Windows security features such as BitLocker disk
encryption and HVCI, and for deployment of multiple files, including the malicious bootkit, to the ESP. Once finished,
it reboots the compromised machine to let the dropped files do their job – to make sure the self-signed UEFI bootkit
will be silently executed on every system start, regardless of UEFI Secure Boot protection status.

Step 0 – Initialization and (potential) elevation

When the installer is executed, it checks whether it has enough privileges (at least admin required) to deploy the rest
of the files to the ESP and perform other actions requiring elevated process – like turning off HVCI or disabling
BitLocker. If it’s not the case, it tries to elevate by executing the installer again by using the UAC bypass method
described in detail here: UAC bypass via Program Compatibility assistant.

With the necessary privileges, it continues, checking the UEFI Secure Boot status by reading the value of the
SecureBoot UEFI variable using an available Windows API function, and determining the Windows version by directly
accessing the KUSER_SHARED_DATA structure fields NtMajorVersion and NtMinorVersion in memory. It does so to
decide whether or not bypassing UEFI Secure Boot is necessary to deploy the bootkit on the victim’s system (since
Secure Boot support was first added in Windows 8 and might not be enabled on any given machine).

https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-3.-Self-signed-certificate-used-by-the-BlackLotus-bootkit-1.png
https://twitter.com/hasherezade
https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-4.-Example-of-messages-left-in-the-code-by-the-BlackLotus-author.png
https://github.com/hfiref0x/UACME/issues/111
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/ntexapi_x/kuser_shared_data/index.htm

6/22

Before proceeding to the next steps, it renames the legitimate Windows Boot Manager (bootmgfw.efi) binary located
in the ESP:\EFI\Microsoft\Boot\ directory to winload.efi. This renamed bootmgfw.efi backup is later used by the bootkit
to launch the OS, or to recover the original boot chain if the “uninstall” command is received from the C&C server –
more in the C&C communication section.

Step 1 – Deploying files

If UEFI Secure Boot is enabled, the installer proceeds with dropping multiple files into the ESP:/EFI/Microsoft/Boot/
and ESP:/system32/ directories. While the former is a standard directory used by Windows, the latter is a custom
folder created by the installer.

A list of files dropped by the installer with a short explanation of the role of each file in the execution chain is provided
in Table 1. We will explain in detail how the execution chain works later; now just note that several legitimate
Microsoft-signed files are dropped along with the malicious ones.

Table 1. Files deployed by the BlackLotus installer on systems with UEFI Secure Boot enabled

Folder Filename Description

ESP:\EFI\Microsoft\Boot

grubx64.efi BlackLotus bootkit, malicious self-signed UEFI
application.

bootload.efi
Legitimate Microsoft-signed shim binary (temporary
name, later replaces bootmgfw.efi after CVE-2022-
21894 exploitation).

bootmgfw.efi
Legitimate, but vulnerable (CVE-2022-21894)
Windows Boot Manager binary, embedded in the
installer or downloaded directly from the Microsoft
Symbol Store.

BCD Attackers’ custom Boot Configuration Data (BCD) store
used in CVE-2022-21894 exploitation chain.

BCDR Backup of victim’s original BCD store.

ESP:\system32

hvloader.efi
Legitimate, but vulnerable (CVE-2022-21894)
Windows Hypervisor Loader binary, embedded inside
an installer or downloaded directly from the Microsoft
Symbol Store.

bootmgr.efi
Legitimate, but vulnerable (CVE-2022-21894)
Windows Boot Manager binary, embedded inside an
installer or downloaded directly from the Microsoft
Symbol Store.

mcupdate_AuthenticAMD.dll
Malicious self-signed native PE binary. This file is
executed by the hvloader.efi after successful CVE-
2022-21894 exploitation (on systems using an AMD
CPU).

mcupdate_GenuineIntel.dll
Malicious self-signed native PE binary. This file is
executed by the hvloader.efi after successful CVE-
2022-21894 exploitation (on systems using an Intel
CPU).

BCD Attackers’ custom BCD used in CVE-2022-21894
exploitation chain.

In cases when the victim is running a Windows version not supporting UEFI Secure Boot, or in the case when it’s
disabled, the deployment is quite straightforward. The only thing that is needed to deploy the malicious bootkit is to
replace the existing Windows Boot Manager (bootmgfw.efi) binary in the ESP:\EFI\Microsoft\Boot\ directory, with the
attackers’ own self-signed malicious UEFI application. Since UEFI Secure Boot is disabled (and thus no integrity
verification is performed during the boot), exploitation is not necessary and the UEFI firmware simply executes the
malicious boot manager without causing any security violations.

Step 2 – Disabling Hypervisor-protected Code Integrity (HVCI)

To be able to run custom unsigned kernel code later, the installer has to make sure that HVCI is disabled on the
system. One of our ESET colleagues wrote a very informative blogpost on this topic in 2022 (Signed kernel drivers –
Unguarded gateway to Windows’ core):

Virtualization-based security (VBS) offers several protection features with the most prominent one being Hypervisor-
Protected Code Integrity (HVCI), which also comes as a standalone feature. HVCI enforces code integrity in the
kernel and allows only signed code to be executed. It effectively prevents vulnerable drivers from being abused to
execute unsigned kernel code or load malicious drivers (regardless of the exploitation method used) and it seems
that malware abusing vulnerable drivers to load malicious code was one of the main motivations behind Microsoft
implementing this feature.

As shown in Figure 5, to disable this feature, the installer sets the Enabled registry value under the
HypervisorEnforcedCodeIntegrity registry key to zero.

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-21894
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-21894
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/boot-options-in-windows
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-21894
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-21894
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-21894
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-21894
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2022-21894
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://www.welivesecurity.com/2022/01/11/signed-kernel-drivers-unguarded-gateway-windows-core/
https://www.microsoft.com/en-us/security/blog/2021/01/11/new-surface-pcs-enable-virtualization-based-security-vbs-by-default-to-empower-customers-to-do-more-securely/

7/22

Figure 5. Hex-Rays decompiled code of BlackLotus installer function responsible for disabling HVCI

Step 3 – Disabling BitLocker

The next feature deactivated by the installer is BitLocker Drive Encryption. The reason for this is that BitLocker can
be used in a combination with Trusted Platform Module (TPM) to ensure that various boot files and configurations,
including Secure Boot, haven’t been tampered with since BitLocker drive encryption was configured on the system.
Considering that the installer modifies the Windows boot chain on a compromised machine, keeping BitLocker on for
systems with TPM support would lead to a BitLocker recovery screen at the next bootup and would tip the victim off
that the system had been compromised.

To disable this protection, the BlackLotus installer:

walks through all volumes under the Root\CIMV2\Security\MicrosoftVolumeEncryption WMI namespace and
checks their protection status by calling the GetProtectionStatus method of the Win32_EncryptableVolume WMI
class
for those protected by BitLocker, it calls the DisableKeyProtectors method with the DisableCount parameter set
to zero, meaning that the protection will be suspended until it is manually enabled

With the necessary protections disabled and all files deployed, the installer registers itself to be deleted during the
next system restart and reboots the machine to proceed to the exploitation of CVE-2022-21894.

Bypassing Secure Boot and establishing persistence

In this part, we take a closer look at how BlackLotus achieves persistence on systems with UEFI Secure Boot
enabled. As the execution chain we are about to describe is quite complex, we will first explain basic principles and
then dig deeper into technical details.

In a nutshell, this process consists of two key steps:

1. Exploiting CVE-2022-21894 to bypass the Secure Boot feature and install the bootkit. This allows arbitrary code
execution in early boot phases, where the platform is still owned by firmware and UEFI Boot Services functions
are still available. This allows attackers to do many things that they should not be able to do on a machine with
UEFI Secure Boot enabled without having physical access to it, such as modifying Boot-services-only NVRAM
variables. And this is what attackers take advantage of to set up persistence for the bootkit in the next step.
More information about exploitation can be found in the Exploiting CVE-2022-21894 section.

2. Setting persistence by writing its own MOK to the MokList, Boot-services-only NVRAM variable. By doing this, it
can use a legitimate Microsoft-signed shim for loading its self-signed (signed by the private key belonging to the
key written to MokList) UEFI bootkit instead of exploiting the vulnerability on every boot. More about this in
the Bootkit persistence section.

To make the detailed analysis in the next two sections easier, we will follow the steps shown in the execution
diagram, Figure 6.

https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-5.-Hex-Rays-decompiled-code-of-BlackLotus-installer-function-responsible-for-disabling-HVCI.png
https://learn.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://learn.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-6.-Bypassing-Secure-Boot-and-setting-up-persistence-using-MOK.png

8/22

Figure 6. Bypassing Secure Boot and setting up persistence using MOK

https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-6.-Bypassing-Secure-Boot-and-setting-up-persistence-using-MOK.png

9/22

Exploiting CVE-2022-21894

To bypass Secure Boot, BlackLotus uses the baton drop (CVE-2022-21894): Secure Boot Security Feature Bypass
Vulnerability. Despite its high impact on system security, this vulnerability did not get as much public attention as it
deserved. Although the vulnerability was fixed in Microsoft’s January 2022 update, its exploitation is still possible
because the affected binaries have still not been added to the UEFI revocation list. As a result, attackers can bring
their own copies of vulnerable binaries to their victims’ machines to exploit this vulnerability and bypass Secure Boot
on up-to-date UEFI systems.

Moreover, a Proof of Concept (PoC) exploit for this vulnerability has been publicly available since August 2022.
Considering the date of the first BlackLotus VirusTotal submission (see Figure 1), the malware developer has likely
just adapted the available PoC to their needs without any need of deep understanding of how this exploit works.

Let’s start with a brief introduction to the vulnerability, mostly summarizing key points from the write-up published
along with the PoC on GitHub:

Affected Windows Boot Applications (such as bootmgr.efi, hvloader.efi, winload.efi…) allow removing a
serialized Secure Boot policy from memory – before it gets loaded by the application – by using the
truncatememory BCD boot option.
This allows attackers to use other dangerous BCD options like bootdebug, testsigning, or nointegritychecks,
thus breaking Secure Boot.
There are various ways to exploit this vulnerability – three of them are published in the PoC repository.
As an example, one of the PoCs shows how it can be exploited to make the legitimate hvloader.efi load an
arbitrary, self-signed mcupdate_<platform>.dll binary (where <platform> can be GenuineIntel or AuthenticAMD,
based on the machine’s CPU.).

Now, we continue with describing how BlackLotus exploits this vulnerability (numbers in the list below describe
corresponding steps in Figure 6):

1. After the installer reboots the machine, the UEFI firmware proceeds with loading a first boot option. For
Windows systems, the first boot option is by default bootmgfw.efi located in the ESP:/EFI/Microsoft/Boot folder
on the ESP. This time, instead of executing the original victim’s bootmgfw.efi (which was previously renamed
winload.efi by the installer), the firmware executes the vulnerable one – deployed by the installer.

2. After bootmgfw.efi is executed, it loads the BCD boot options, previously modified by the installer. Figure 7
shows a comparison of the legitimate BCD and the modified one.

3. As you can see in Figure 7 (path underlined with green), the legitimate Windows Boot Manager would normally
load the Windows OS loader (\WINDOWS\system32\winload.efi) as a default boot application. But this time,
with the modified BCD, it continues with loading the vulnerable ESP:\system32\bootmgr.efi, with the
avoidlowmemory BCD element set to value 0x10000000 and the custom:22000023 BCD element pointing to
another attackers’ BCD stored in ESP:\system32\bcd. The explanation of using these elements can be found in
the published PoC:

The attacker needs to ensure the serialised Secure Boot Policy is allocated above a known physical address.

[…]

The avoidlowmemory element can be used to ensure all allocations of physical memory are above a specified
physical address.

  •  Since Windows 10, this element is disallowed if VBS is enabled, but as it is used during boot application
initialisation, before the serialised Secure Boot policy is read from memory, loading bootmgr and specifying a custom
BCD path (using bcdfilepath element aka custom:22000023) can be used to bypass this.

https://github.com/Wack0/CVE-2022-21894
https://uefi.org/revocationlistfile
https://github.com/Wack0/CVE-2022-21894
https://github.com/Wack0/CVE-2022-21894
https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-7.-Legitimate-BCD-store-BEFORE-vs-the-one-used-by-the-BlackLotus-installer-AFTER.png

10/22

Figure 7. Legitimate BCD store (BEFORE) vs the one used by the BlackLotus installer (AFTER)

4. In the next step, the executed ESP:\system32\bootmgr.efi loads that additional BCD located in
ESP:\system32\bcd. Parsed content of this additional BCD is shown in Figure 8.

Figure 8. Second BCD dropped by the BlackLotus installer – used to exploit CVE-2022-21894

5. Because of options loaded from the BCD file shown in Figure 8, bootmgr.efi continues with loading another
vulnerable Windows Boot Application deployed by the installer – ESP:\system32\hvloader.efi – which is the
Windows Hypervisor Loader. More importantly, additional BCD options are specified in the same BCD file (see
Figure 8):

1. truncatememory with value set to 0x10000000
2. nointegritychecks set to Yes
3. and testsigning, also set to Yes

And this is where the magic happens. As the serialized Secure Boot policy should be loaded in physical addresses
above 0x10000000 (because of avoidlowmemory used in previous steps), specifying the truncatememory element
will effectively remove it – thus, break the Secure Boot and allow the use of dangerous BCD options like
nointegritychecks or testsigning. By using these options, the attackers can make the hvloader.efi execute their own,
self-signed code.

6. To do this, the same trick as described in the PoC is used: during its execution, the legitimate hvloader.efi loads
and executes the mcupdate_{GenuineIntel| AuthenticAMD}.dll native binary from the <device>:\
<SystemRoot>\system32\ directory. Commented Hex-Rays decompiled code of the function from hvloader.efi
responsible for loading this mcupdate*.dll binary is shown in Figure 9. Note that hvloader.efi would normally
load this legitimate mcupdate*.dll binary from the <OS_partition>:\Windows\system32, but this time the
malicious attackers’ self-signed mcupdate*.dll is executed from a custom ESP directory previously created by
the installer (ESP:\system32). It’s caused by the BCD options device and systemroot used in the BCD from
Figure 8 specifying the current device as boot – meaning the ESP – and also specifying SystemRoot to be the
root (\) directory on this device.

https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-8.-Second-BCD-dropped-by-the-BlackLotus-installer-%E2%80%93-used-to-exploit-CVE-2022-21894.png
https://github.com/Wack0/CVE-2022-21894

11/22

Figure 9. Hex-Rays decompilation of the BtLoadUpdateDll function from the legitimate hvloader.efi, responsible for loading mcupdate_*.dll

7. Now, as the attackers’ own self-signed mcupdate*.dll is loaded and executed, it continues with executing the
final component in this chain – an embedded MokInstaller (UEFI Application) – see Figure 10 for details about
how it’s done.

Figure 10. Hex-Rays decompiled code of the malicious self-signed mcupdate*.dll binary

Bootkit persistence

https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-9.-Hex-Rays-decompilation-of-the-BtLoadUpdateDll-function-from-the-legitimate-hvloader.efi-responsible-for-loading-mcupdate_.dll_.png
https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-10.-Hex-Rays-decompiled-code-of-the-malicious-self-signed-mcupdate.dll-binary.png

12/22

Now, the MokInstaller can proceed with setting up persistence by enrolling the attackers’ MOK into the NVRAM
variable and setting up the legitimate Microsoft-signed shim binary as a default bootloader. Before proceeding to
details, a little theory about shim and MOK.

shim is a first stage UEFI bootloader developed by Linux developers to make various Linux distributions work with
UEFI Secure Boot. It’s a simple application and its purpose is to load, verify, and execute another application – in
case of Linux systems, it’s usually the GRUB bootloader. It works in a way that Microsoft signs only a shim, and the
shim takes care of the rest – it can verify the integrity of a second-stage bootloader by using keys from db UEFI
variable, and also embeds its own list of “allowed” or “revoked” keys or hashes to make sure that components trusted
by both – platform and shim developer (e.g. Canonical, RedHat, etc.,) – are allowed to be executed. In addition to
these lists, shim also allows the use of an external keys database managed by the user, known as the MOK list.
Figure 11 nicely illustrates how UEFI Secure Boot with MOK works.

This MOK database is stored in a Boot-only NVRAM variable named MokList. Without exploiting a vulnerability like
the one described above, physical access is required to modify it on a system with UEFI Secure Boot enabled (it’s
available only during boot, before the OS loader calls the UEFI Boot Services function ExitBootServices). However,
by exploiting this vulnerability, attackers are able to bypass UEFI Secure Boot and execute their own self-signed code
before a call to ExitBootServices, so they can easily enroll their own key (by modifying the MokList NVRAM variable)
to make the shim execute any application – signed by that enrolled key – without causing a security violation.

Figure 11. MOK boot process overview (image source)

8. Continuing with describing the flow from Figure 6 – step 8… The MokInstaller UEFI application continues with
setting up persistence for the BlackLotus UEFI bootkit and covering the tracks of exploitation by:

1. Restoring the victim’s original BCD store from the backup created by the installer and replacing the efi
with the legitimate Microsoft-signed shim, previously dropped to the ESP:\system32\bootload.efi by the
installer.

2. Creating a MokList NVRAM variable containing the attackers’ self-signed public key certificate. Note that
this variable is formatted in the same way as any other UEFI signature database variables (such as db or
dbx) and it can consist of zero or more signature lists of type EFI_SIGNATURE_LIST – as defined in the
UEFI Specification.

3. Deleting all files involved in exploitation from the attackers‘ ESP:\system32\ folder.
9. In the end, it reboots the machine to make the deployed shim execute the self-signed bootkit dropped to

\EFI\Microsoft\Boot\grubx64.efi by the installer (grubx64.efi is usually the default second-stage bootloader
executed by a shim on x86-64 systems).

Code performing the actions described in the last two steps is shown in Figure 12.

https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-11.-MOK-boot-process-overview.jpg
https://web.archive.org/web/20201026161357/https:/www.suse.com/media/presentation/uefi_secure_boot_webinar.pdf

13/22

Figure 12. Hex-Rays decompiled code – MokInstaller UEFI app setting up persistence for the BlackLotus bootkit

BlackLotus UEFI bootkit

Once the persistence is configured, the BlackLotus bootkit is executed on every system start. The bootkit’s goal is to
deploy a kernel driver and a final user-mode component – the HTTP downloader. During its execution, it tries to
disable additional Windows security features – Virtualization-Based Security (VBS) and Windows Defender – to raise
the chance of successful deployment and stealthy operation. Before jumping to the details about how that is done,
let’s summarize the basics about the kernel driver and HTTP downloader:

The kernel driver is responsible for
Deploying the next component of the chain – an HTTP downloader.
Keeping the loader alive in case of termination.
Protecting bootkit files from being removed from ESP.
Executing additional kernel payloads, if so instructed by the HTTP downloader.
Uninstalling the bootkit, if so instructed by the HTTP downloader.

The HTTP downloader is responsible for:
Communicating with its C&C.
Executing commands received from the C&C.
Downloading and executing payloads received from the C&C (supports both kernel payloads and user-
mode payloads).

The full execution flow (simplified), from the installer to HTTP downloader, is shown in Figure 13. We describe these
individual steps in more detail in the next section.

https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-12.-Hex-Rays-decompiled-code-%E2%80%93-MokInstaller-UEFI-app-setting-up-persistence-for-the-BlackLotus-bootkit.png
https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-13.-Diagram-showing-execution-of-the-BlackLotus-UEFI-bootkit-1.png

14/22

Figure 13. Diagram showing execution of the BlackLotus UEFI bootkit

BlackLotus execution flow

Execution steps are as follows (these steps are shown in Figure 13):

1. As a first step, the UEFI firmware executes the default Windows boot option, which is the file usually stored in
\EFI\Microsoft\Boot\bootmgfw.efi. As we described earlier (Bootkit persistence section, 8 .a), the MokInstaller
binary replaced this file with a legitimate signed shim.

2. When the shim is executed, it reads the MokList NVRAM variable, and uses the certificate previously stored
inside by the attackers to verify the second-stage bootloader – the self-signed BlackLotus UEFI bootkit located
in \EFI\Microsoft\Boot\grubx64.efi.

https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-13.-Diagram-showing-execution-of-the-BlackLotus-UEFI-bootkit-1.png

15/22

3. When verified, the shim executes the bootkit.
4. The bootkit starts with creating the Boot-only VbsPolicyDisable NVRAM variable. As described here, this

variable is evaluated by the Windows OS loader during boot and if defined, the core VBS features, such as
HVCI and Credential Guard will not be initialized.

5. In the following steps (5. a–e), the bootkit continues with a common pattern used by UEFI bootkits. It intercepts
the execution of components included in the typical Windows boot flow, such as Windows Boot Manager,
Windows OS loader, and Windows OS kernel, and hooks some of their functions in memory. As a bonus, it also
attempts to disable Windows Defender by patching some of its drivers. All this to achieve its payload’s
execution in the early stages of the OS startup process and to avoid detection. The following functions are
hooked or patched:

1. ImgArchStartBootApplication in bootmgfw.efi or bootmgr.efi:
This function is commonly hooked by bootkits to catch the moment when the Windows OS loader
(winload.efi) is loaded in the memory but still hasn’t been executed – which is the right moment to
perform more in-memory patching.

2. BlImgAllocateImageBuffer in winload.efi:
Used to allocate an additional memory buffer for the malicious kernel driver.

3. OslArchTransferToKernel in winload.efi:
Hooked to catch the moment when the OS kernel and some of the system drivers are already loaded in
the memory, but still haven’t been executed – which is a perfect moment to perform more in-memory
patching. The drivers mentioned below are patched in this hook. The code from this hook responsible for
finding appropriate drivers in memory is shown in Figure 14.

4. WdBoot.sys and WdFilter.sys:

BlackLotus patches the entry point of WdBoot.sys and WdFilter.sys – the Windows Defender ELAM

driver and the Windows Defender file system filter driver, respectively – to return immediately.
5. disk.sys:

The bootkit hooks the entry point of the disk.sys driver to execute the BlackLotus kernel driver in the early
stages of system initialization.

Figure 14. Hex-Rays decompiled code of OslArchTransferToKernel hook – patching Windows Defender drivers and searching for the disk.sys

6. Next, when the OS kernel executes the disk.sys driver’s entry point, the installed hook jumps to the malicious
kernel driver entry point. The malicious code in turn restores the original disk.sys to allow the system to function
properly and waits until the winlogon.exe process starts.

7. When the malicious driver detects that the winlogon.exe process has started, it injects and executes the final
user-mode component – the HTTP downloader – into it.

Kernel driver

The kernel driver is responsible for four main tasks:

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Sicherheit/SiSyPHus/Workpackage6_Virtual_Secure_Mode.pdf?__blob=publicationFile&v=1
https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-14.-Hex-Rays-decompiled-code-of-OslArchTransferToKernel-hook-%E2%80%93-patching-Windows-Defender-drivers-and-searching-for-the-disk.sys-entry-point.png

16/22

Injecting the HTTP downloader into winlogon.exe and reinjecting it in case the thread terminated.
Protecting bootkit files deployed on the ESP from being removed.
Disarming the user-mode Windows Defender process MsMpEngine.exe.
Communicating with the HTTP downloader and if necessary, performing any commands.

Let’s look at them one by one.

HTTP downloader persistence

The kernel driver is responsible for deployment of the HTTP downloader. When the driver starts, it waits until the
process named winlogon.exe starts, before taking any other actions. Once the process has started, the driver
decrypts the HTTP downloader binary, injects it into winlogon.exe’s address space, and executes it in a new thread.
Then, the driver keeps periodically checking whether the thread is still running, and repeats the injection if necessary.
The HTTP downloader won’t be deployed if a kernel debugger is detected by the driver.

Protecting bootkit files on the ESP from removal

To protect the bootkit’s files located on the ESP, the kernel driver uses a simple trick. It opens all files it wants to
protect, duplicates and saves their handles, and uses the ObSetHandleAttributes kernel function specifying the
ProtectFromClose flag inside HandleFlags (OBJECT_HANDLE_FLAG_INFORMATION) parameter to 1 – thus
protecting the handles from being closed by any other processes. This will thwart any attempts to remove or modify
the protected files. The following files are protected:

ESP:\EFI\Microsoft\Boot\winload.efi
ESP:\EFI\Microsoft\Boot\bootmgfw.efi
ESP:\EFI\Microsoft\Boot\grubx64.efi

Should a user try to delete these protected files, something like what is shown in Figure 15 will occur.

Figure 15. An attempt to delete the files protected by BlackLotus driver

As another layer of protection, in case the user or security software would be able to unset the protection flag and
close the handles, the kernel driver continuously monitors them, and causes a BSOD by calling the
KeBugCheck(INVALID_KERNEL_HANDLE) function if any of the handles don’t exist anymore.

Disarming the main Windows Defender process

The kernel driver also tries to disarm the main Windows Defender process – MsMpEng.exe. It does so by removing
all process’s token privileges by setting the SE_PRIVILEGE_REMOVED attribute to each of them. As a result, the
Defender process should not be able to do its job – such as scanning files – properly. However, as this functionality is
poorly implemented, it can be made ineffective by restarting the MsMpEng.exe process.

Communication with the HTTP downloader

The kernel driver is capable of communicating with the HTTP downloader by using a named Event and Section.
Names of the named objects used are generated based on the victim’s network adapter MAC address (ethernet). If a
value of an octet is lower than 16, then 16 is added to it. The format of the generated objects names might vary in
different samples. As an example, in one of the samples we analyzed, for the MAC address 00-1c-0b-cd-ef-34, the
generated names would be:

\BaseNamedObjects\101c1b: for the named section (only the first three octets of the MAC are used)
\BaseNamedObjects\Z01c1b: for the named event – same as for the Section, but the first digit of the MAC
address is replaced with Z

https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/ntobapi/object_handle_flag_information.htm
https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-15.-An-attempt-to-delete-the-files-protected-by-BlackLotus-driver.png

17/22

In case the HTTP downloader wants to pass some command to the kernel driver, it simply creates a named section,
writes a command with associated data inside, and waits for the command to be processed by the driver by creating
a named event and waiting until the driver triggers (or signals) it.

The driver supports the following self-explanatory commands:

Install kernel driver
Uninstall BlackLotus

A careful reader might notice the BlackLotus weak point here – even though the bootkit protects its components
against removal, the kernel driver can be tricked to uninstall the bootkit completely by creating the abovementioned
named objects and sending the uninstall command to it.

HTTP downloader

The final component is responsible for communication with a C&C server and execution of any C&C commands
received from it. All payloads we were able to discover contain three commands. These commands are very
straightforward and as the section name suggests, it’s mostly about downloading and executing additional payloads
using various techniques.

C&C communication

To communicate with its C&C, the HTTP loader uses the HTTPS protocol. All information necessary for the
communication is embedded directly in the downloader binary – including C&C domains and HTTP resource paths
used. The default interval for communication with a C&C server is set to one minute, but can be changed based on
the data from the C&C. Each communication session with a C&C starts with sending a beacon HTTP POST message
to it. In samples we analyzed, the following HTTP resource paths can be specified in the HTTP POST headers:

/network/API/hpb_gate[.]php
/API/hpb_gate[.]php
/gate[.]php
/hpb_gate[.]php

The beacon message data is prepended with a checkin= string, containing basic information about the compromised
machine – including a custom machine identifier (referred to as HWID), UEFI Secure Boot status, various hardware
information, and a value that seems to be a BlackLotus build number. HWID is generated from the machine MAC
address (ethernet) and a system volume serial number. The format of the message before encryption is as seen in
Figure 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

{

 "HWID":"%s",

 "Session":"%lu",

 "Owner":"%s",

 "IP":"%s",

 "OS":"%s",

 "Edition":"%s",

 "CPU":"%s",

 "GPU":"%s",

 "RAM":"%lu",

 "Integrity":"%lu",

 "SecureBoot":"%i",

 "Build":"%lu"

}

Figure 16. Format of beacon message

Before sending the message to the C&C, the data is first encrypted using an embedded RSA key, then URL-safe
base64 encoded. During the analysis, we found two different RSA keys being used in the samples. An example of
such an HTTP beacon request is shown in Figure 17.

18/22

Figure 17. Example of a beacon HTTP POST message (generated by a sample from
VirusTotal – the one with local IPs instead of real C&C addresses)

Data received from the C&C as a response to the beacon message should start with the two-byte magic value HP;
otherwise, the response is not processed further. If the magic value is correct, the data following the magic value is
decrypted using 256-bit AES in CBC mode with abovementioned HWID string used as the key.

After decryption, the message is similar to the beacon, a JSON-formatted string, and specifies a command identifier
(referred to as Type) and various additional parameters such as:

C&C communication interval
Execution method to use
Payload filename
Payload type based on file extension(.sys, .exe, or .dll supported)
Authentication token that is supposed to be used to request download of payload data
AES key used for decrypting the payload data

All supported commands and their descriptions are listed in Table 2.

Table 2. C&C commands

Command
Type Command Description

1 Download and execute a kernel driver, DLL, or a regular executable

2 Download a payload, uninstall the bootkit, and execute the payload – likely used to update
the bootkit

3 Uninstall the bootkit and exit

In these commands, the C&C can specify, whether the payload should first be dropped to disk before executing it, or
be executed directly in memory. In cases involving dropping the file to disk, the ProgramData folder on the OS
volume is used as the destination folder and filename and extension are specified by the C&C server. In the case of
executing files directly in memory, svchost.exe is used as an injection target. When the C&C sends a command
requiring kernel driver cooperation, or an operator wants to execute code in kernel-mode, the mechanism described
in the Communication with the HTTP downloader section is used.

Anti-analysis tricks

To make detection and analysis of this piece of malware harder, its author tried to limit visibility of standard file
artifacts, such as text strings, imports, or other unencrypted embedded data to a minimum. Below is a summary of
the techniques used.

String and data encryption
All strings used within the samples are encrypted using a simple cipher.
All embedded files are encrypted using 256-bit AES in CBC mode.
Encryption keys for individual files can vary from sample to sample.
In addition to AES encryption, some files are also compressed using LZMS.

Runtime-only API resolution
In all samples (when applicable), Windows APIs are always resolved exclusively during runtime and
function hashes instead of function names are used to find the desired API function addresses in

https://www.welivesecurity.com/wp-content/uploads/2023/03/Figure-17.-Example-of-a-beacon-HTTP-POST-message-generated-by-a-sample-from-VirusTotal-%E2%80%93-the-one-with-local-IPs-instead-of-real-CC-addresses.png

19/22

memory.
In some cases, a direct syscall instruction invocation is used to invoke the desired system function.

Network communication
Communicates using HTTPS.
All messages sent to the C&C by the HTTP downloader are encrypted using an embedded RSA public
key.
All messages sent from the C&C to the HTTP downloader are encrypted using a key derived from the
victim’s machine environment or using an AES key provided by the C&C.

Anti-debug and anti-VM tricks – if used, usually placed right at the beginning of the entry point. Only casual
sandbox or debugger detection tricks are used.

Mitigations and remediation
First of all, of course, keeping your system and its security product up to date is a must – to raise a chance that
a threat will be stopped right at the beginning, before it’s able to achieve pre-OS persistence.
Then, the key step that needs to be taken to prevent usage of known vulnerable UEFI binaries for bypassing
UEFI Secure Boot is their revocation in the UEFI revocation database (dbx) – on a Windows systems, dbx
updates should be distributed using Windows Updates.
The problem is that revocation of broadly used Windows UEFI binaries can lead to making thousands of
outdated systems, recovery images, or backups unbootable – and therefore, revocation often takes too long.
Note that revocation of the Windows applications used by BlackLotus would prevent installation of the bootkit,
but as the installer would replace the victim’s bootloader with the revoked one, it could make the system
unbootable. To recover in this case, an OS reinstall or just ESP recovery would resolve the issue.
If the revocation would happen after BlackLotus persistence is set, the bootkit would remain functional, as it
uses a legitimate shim with custom MOK key for persistence. In this case, the safest mitigation solution would
be to reinstall Windows and remove the attackers’ enrolled MOK key by using the mokutil utility (physical
presence is required to perform this operation due to necessary user interaction with the MOK Manager during
the boot).

Takeaways
Many critical vulnerabilities affecting security of UEFI systems have been discovered in the last few years.
Unfortunately, due the complexity of the whole UEFI ecosystem and related supply-chain problems, many of these
vulnerabilities have left many systems vulnerable even a long time after the vulnerabilities have been fixed – or at
least after we were told they were fixed. For a better image, here are some examples of the patch or revocation
failures allowing UEFI Secure Boot bypasses just from the last year:

First of all, of course, CVE-2022-21894 – the vulnerability exploited by BlackLotus. One year since the
vulnerability was fixed, vulnerable UEFI binaries are still not revoked, allowing threats such as BlackLotus to
stealthily operate on systems with UEFI Secure Boot enabled, thus providing victims a false sense of security.
Early in 2022, we disclosed several UEFI vulnerabilities that allow, among other things, disabling UEFI Secure
Boot. Many devices affected are not supported by the OEM anymore, thus not fixed (even though these
devices were not so old – like 3-5 years at the time of vulnerability disclosure). Read more in our blogpost:
When “secure” isn’t secure at all: High‑impact UEFI vulnerabilities discovered in Lenovo consumer laptops
Later in 2022, we discovered a few other UEFI vulnerabilities, whose exploitation would also allow attackers to
disable UEFI Secure Boot very easily. As pointed out by fellow researchers from Binarly, several devices listed
in the advisory were left unpatched, or not patched correctly, even few months after the advisory – leaving the
devices vulnerable. Needless to say, similar to the previous case, some devices will stay vulnerable forever, as
they have reached their End-Of-Support date.

It was just a matter of time before someone would take advantage of these failures and create a UEFI bootkit capable
of operating on systems with UEFI Secure Boot enabled. As we suggested last year in our RSA presentation, all of
this makes the move to the ESP more feasible for attackers and a possible way forward for UEFI threats – the
existence of BlackLotus confirms this.

ESET Research offers private APT intelligence reports and data feeds. For any inquiries about this service, visit
the ESET Threat Intelligence page.

IoCs

Files

SHA-1 Filename Detection Description
05846D5B1D37EE2D716140DE4F4F984CF1E631D1 N/A Win64/BlackLotus.A BlackLotus installer.
A5A530A91100ED5F07A5D74698B15C646DD44E16 N/A Win64/BlackLotus.A BlackLotus installer.
D82539BFC2CC7CB504BE74AC74DF696B13DB486A N/A Win64/BlackLotus.A BlackLotus installer.
16B12CEA54360AA42E1120E82C1E9BC0371CB635 N/A Win64/BlackLotus.A BlackLotus installer.
DAE7E7C4EEC2AC0DC7963C44A5A4F47D930C5508 N/A Win64/BlackLotus.A BlackLotus installer.
45701A83DEC1DC71A48268C9D6D205F31D9E7FFB N/A Win64/BlackLotus.A BlackLotus installer.

https://www.welivesecurity.com/2022/04/19/when-secure-isnt-secure-uefi-vulnerabilities-lenovo-consumer-laptops/
https://twitter.com/ESETresearch/status/1590279782318878720
https://binarly.io/posts/Firmware_Patch_Deep_Dive_Lenovo_Patches_Fail_to_Fix_Underlying_Vulnerabilities
https://support.lenovo.com/us/en/product_security/LEN-94952
https://www.rsaconference.com/Library/presentation/USA/2022/ESPecter%20First%20Real-World%20UEFI%20Bootkit%20Persisting%20on%20ESP
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=blacklotus-uefi-bootkit-myth-confirmed

20/22

SHA-1 Filename Detection Description
2CE056AE323B0380B0E87225EA0AE087A33CD316 N/A EFI/BlackLotus.B BlackLotus UEFI bootkit.
5A0074203ABD5DEB464BA0A79E14B7541A033216 N/A EFI/BlackLotus.B BlackLotus UEFI bootkit.
5DC9CBD75ABD830E83641A0265BFFDDD2F602815 N/A EFI/BlackLotus.B BlackLotus UEFI bootkit.
97AEC21042DF47D39AC212761729C6BE484D064D N/A EFI/BlackLotus.B BlackLotus UEFI bootkit.
ADCEEC18FF009BED635D168E0B116E72096F18D2 N/A EFI/BlackLotus.B BlackLotus UEFI bootkit.
DBC064F757C69EC43517EFF496146B43CBA949D1 N/A EFI/BlackLotus.B BlackLotus UEFI bootkit.

06AF3016ACCDB3DFE1C23657BF1BF91C13BAA757 N/A Win64/BlackLotus.B BlackLotus HTTP
downloader.

0C0E78BF97116E781DDE0E00A1CD0C29E68D623D N/A Win64/BlackLotus.B BlackLotus HTTP
downloader.

6D8CEE28DA8BCF25A4D232FEB0810452ACADA11D N/A Win64/BlackLotus.B BlackLotus HTTP
downloader.

74FF58FCE8F19083D16DF0109DC91D78C94342FA N/A Win64/BlackLotus.B BlackLotus HTTP
downloader.

ACC74217CBE3F2E727A826B34BDE482DCAE15BE6 N/A Win64/BlackLotus.B BlackLotus HTTP
downloader.

111C4998F3264617A7A9D9BF662D4B1577445B20 N/A Win64/BlackLotus.B BlackLotus HTTP downloader.
17FA047C1F979B180644906FE9265F21AF5B0509 N/A Win64/BlackLotus.C BlackLotus kernel driver.
1F3799FED3CF43254FE30DCDFDB8DC02D82E662B N/A Win64/BlackLotus.C BlackLotus kernel driver.
4B882748FAF2C6C360884C6812DD5BCBCE75EBFF N/A Win64/BlackLotus.C BlackLotus kernel driver.
91F832F46E4C38ECC9335460D46F6F71352CFFED N/A Win64/BlackLotus.C BlackLotus kernel driver.
994DC79255AEB662A672A1814280DE73D405617A N/A Win64/BlackLotus.C BlackLotus kernel driver.
FFF4F28287677CAABC60C8AB36786C370226588D N/A Win64/BlackLotus.C BlackLotus kernel driver.

71559C3E2F3950D4EE016F24CA54DA17D28B9D82 N/A EFI/BlackLotus.C
BlackLotus Boot
Configuration Data (BCD)
store dropped by BlackLotus
installer.

D6D3F3151B188A9DA62DEB95EA1D1ABEFF257914 N/A EFI/BlackLotus.C
BlackLotus Boot
Configuration Data (BCD)
store dropped by BlackLotus
installer.

547FAA2D64B85BF883955B723B07635C0A09326B N/A EFI/BlackLotus.A BlackLotus CVE-2022-21894
exploitation payload loader.

D1BBAA3D408E944C70B3815471EED7FA9AEE6425 N/A EFI/BlackLotus.A BlackLotus CVE-2022-21894
exploitation payload loader.

0E6DD7110C38464ECAA55EE4E2FA303ADA0EDEFB N/A EFI/BlackLotus.A
BlackLotus CVE-2022-21894
exploitation payload –
MokInstaller EFI app.

D6BB89D8734B3E49725362DAE9A868AE681E8BD6 N/A EFI/BlackLotus.A
BlackLotus CVE-2022-21894
exploitation payload –
MokInstaller EFI app.

164BB587109CFB20824303AD1609A65ABB36C3E9 N/A Win64/BlackLotus.D BlackLotus installer UAC
bypass module.

Certificates

Serial number 570B5D22B723B4A442CC6EEEBC2580E8
Thumbprint C8E6BF8B6FDA161BBFA5470BCC262B1BDC92A359
Subject CN When They Cry CA
Subject O N/A
Subject L N/A
Subject S N/A
Subject C N/A
Valid from 2022-08-13 17:48:44
Valid to 2032-08-13 17:58:44

Network

IP Domain Hosting provider First seen Details

N/A xrepositoryx[.]name N/A 2022‑10‑17 BlackLotus C&C.
https://xrepositoryx[.]name/network/API/hpb_gate

N/A myrepositoryx[.]com N/A 2022‑10‑16 BlackLotus C&C.

https://myrepositoryx[.]com/network/API/hpb_gate

104.21.22[.]185 erdjknfweklsgwfmewfgref[.]com Cloudflare, Inc. 2022‑10‑06 BlackLotus C&C.

https://erdjknfweklsgwfmewfgref[.]com/API/hpb_g

164.90.172[.]211 harrysucksdick[.]com DigitalOcean, LLC 2022‑10‑09 BlackLotus C&C.

https://harrysucksdick[.]com/API/hpb_gate.php

185.145.245[.]123 heikickgn[.]com

frassirishiproc[.]com SIA VEESP 2022‑10‑12

BlackLotus C&C.

https://heikickgn[.]com/API/hpb_gate.php

https://frassirishiproc[.]com/API/hpb_gate.php

185.150.24[.]114 myrepository[.]name SkyLink Data
Center BV 2022‑10‑14 BlackLotus C&C.

myrepository[.]name/network/API/hpb_gate.php

21/22

IP Domain Hosting provider First seen Details

190.147.189[.]122 egscorp[.]net Telmex Colombia
S.A. 2022‑08‑24 BlackLotus C&C.

https://egscorp[.]net/API/hpb_gate.php

MITRE ATT&CK techniques

This table was built using version 12 of the MITRE ATT&CK framework.

Tactic ID Name Description

Resource
Develpment

T1587.002
Develop Capabilities:
Code Signing
Certificates

Some BlackLotus samples are signed with self-signed
certificate.

T1588.005 Obtain Capabilities:
Exploits

BlackLotus used publicly known exploit to bypass UEFI
Secure Boot.

Execution

T1203 Exploitation for Client
Execution

BlackLotus installers can exploit CVE-2022-21894 to achieve
arbitrary code execution on the systems with UEFI Secure
Boot enabled.

T1559 Inter-Process
Communication

BlackLotus HTTP downloader uses named section to pass
commands to the kernel-mode component.

T1106 Native API
BlackLotus HTTP downloader uses various native Windows
APIs to achieve code execution on the compromised
machine.

T1129 Shared Modules BlackLotus HTTP downloader can load and execute DLLs
received from the C&C server.

Persistence T1542.003 Pre-OS Boot: Bootkit BlackLotus bootkit is deployed on the EFI System Partition
and executed during the boot.

Privilege
Escalation

T1548.002
Abuse Elevation
Control Mechanism:
Bypass User Account
Control

BlackLotus installer attempts to escalate privileges by
bypassing User Account Control.

T1134.002
Access Token
Manipulation: Create
Process with Token

BlackLotus HTTP downloader can use WTSQueryUserToken
and CreateProcessAsUserW to execute downloaded
payloads within a new process with local system privileges.

Defense
Evasion T1622 Debugger Evasion

BlackLotus components use various techniques to detect
whether a kernel-mode or user-mode debugger is running on
a victim.

T1574 Hijack Execution Flow

BlackLotus bootkit hijacks various components included in the
early Windows boot process stages (Windows Boot Manager,
Windows OS loader, Windows kernel and specific drivers) to
avoid detection by deactivating various Windows security
features (VBS, Windows Defender) and stealthily execute its
kernel-mode and user-mode components

T1562 Impair Defenses BlackLotus components can disable BitLocker and Windows
Defender to avoid detection.

T1070.004 Indicator Removal:
File Deletion

BlackLotus installer deletes itself after successfully deploying
files to the EFI System partition. Also after successful CVE-
2022-21894 exploitation, BlackLotus removes traces of
exploitation by deleting all files included in exploitation chain
from EFI System Partition.

T1070.009 Indicator Removal:
Clear Persistence

BlackLotus can uninstall itself by removing all bootkit files
from the ESP and restoring original victim’s Windows Boot
Manager.

T1036.005
Masquerading: Match
Legitimate Name or
Location

BlackLotus attempts to hide its files deployed on the ESP by
using legitimate filenames, such as grubx64.efi (if UEFI
Secure Boot is enabled on compromised machine) or
bootmgfw.efi (if UEFI Secure Boot is disabled on
compromised machine).

T1112 Modify Registry BlackLotus installer modifies Windows registry to disable
Windows HVCI security feature.

T1027 Obfuscated Files or
Information

Almost all embedded strings in BlackLotus components are
encrypted using a custom combined cipher and decrypted
only when needed.

T1027.007
Obfuscated Files or
Information: Dynamic
API Resolution

BlackLotus components use dynamic API resolution while
using API names’ hashes instead of names.

T1027.009
Obfuscated Files or
Information:
Embedded Payloads

Almost all embedded files in BlackLotus components are
encrypted using AES.

T1542.003 Pre-OS Boot: Bootkit
BlackLotus bootkit is deployed on the EFI System Partition
and executed during the early OS boot stages, and thus is
capable of controlling the OS boot process and evading
detection.

T1055.012
Process Injection:
Dynamic-link Library
Injection

BlackLotus HTTP downloader can inject a DLL into a newly
created svchost.exe process using process hollowing.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v12/techniques/T1587/002/
https://attack.mitre.org/versions/v12/techniques/T1588/005/
https://attack.mitre.org/versions/v12/techniques/T1203/
https://attack.mitre.org/versions/v12/techniques/T1559/
https://attack.mitre.org/versions/v12/techniques/T1106/
https://attack.mitre.org/versions/v12/techniques/T1129/
https://attack.mitre.org/versions/v12/techniques/T1542/003/
https://attack.mitre.org/versions/v12/techniques/T1548/002/
https://attack.mitre.org/versions/v12/techniques/T1134/002/
https://attack.mitre.org/versions/v12/techniques/T1622/
https://attack.mitre.org/versions/v12/techniques/T1574/
https://attack.mitre.org/versions/v12/techniques/T1562/
https://attack.mitre.org/versions/v12/techniques/T1070/004/
https://attack.mitre.org/versions/v12/techniques/T1070/009/
https://attack.mitre.org/versions/v12/techniques/T1036/005/
https://attack.mitre.org/versions/v12/techniques/T1112/
https://attack.mitre.org/versions/v12/techniques/T1027/
https://attack.mitre.org/versions/v12/techniques/T1027/007/
https://attack.mitre.org/versions/v12/techniques/T1027/009/
https://attack.mitre.org/versions/v12/techniques/T1542/003/
https://attack.mitre.org/versions/v12/techniques/T1055/012/

22/22

Tactic ID Name Description

T1055.002
Process Injection:
Portable Executable
Injection

BlackLotus driver injects the HTTP downloader portable
executable into a winlogon.exe process.

T1014 Rootkit BlackLotus kernel driver protects the bootkit files on the ESP
from removal.

T1497.001
Virtualization/Sandbox
Evasion: System
Checks

BlackLotus employs various system checks including
checking sandbox-specific registry values, to detect and avoid
virtualization and analysis environments.

Discovery

T1622 Debugger Evasion
BlackLotus components use various techniques to detect
whether a kernel-mode or user-mode debugger is running on
a victim.

T1082 System Information
Discovery

BlackLotus collects system information (IP, GPU, CPU,
memory, OS version) on a compromised host.

T1614 System Location
Discovery

BlackLotus can exit if one of the following system locales is
identified on the compromised host: ro-MD, ru-MD, ru-RU, uk-
UA, be-BY, hy-AM, kk-KZ.

T1016
System Network
Configuration
Discovery

BlackLotus HTTP downloader can determine the public IP of
a compromised host by requesting api.ipify[.]org service.

T1016.001
System Network
Configuration
Discovery: Internet
Connection Discovery

BlackLotus HTTP downloader checks the internet connection
by querying Microsoft’s www.msftncsi[.]com/ncsi[.]txt

T1497.001
Virtualization/Sandbox
Evasion: System
Checks

BlackLotus employs various system checks including
checking sandbox-specific registry values, to detect and avoid
virtualization and analysis environments.

Command
and Control

T1071.001
Application Layer
Protocol: Web
Protocols

BlackLotus uses HTTPS for communication with its C&C.

T1132.001 Data Encoding:
Standard Encoding

BlackLotus encodes encrypted data in C&C communication
with URL-safe base64.

T1573.001
Encrypted Channel:
Symmetric
Cryptography

BlackLotus uses 256-bit AES in CBC mode to decrypt
messages received from its C&C.

T1573.002
Encrypted Channel:
Asymmetric
Cryptography

BlackLotus uses an embedded RSA public key to encrypt
messages sent to C&C.

1 Mar 2023 - 11:30AM

https://attack.mitre.org/versions/v12/techniques/T1055/002/
https://attack.mitre.org/versions/v12/techniques/T1014/
https://attack.mitre.org/versions/v12/techniques/T1497/001/
https://attack.mitre.org/versions/v12/techniques/T1622/
https://attack.mitre.org/versions/v12/techniques/T1082/
https://attack.mitre.org/versions/v12/techniques/T1614/
https://attack.mitre.org/versions/v12/techniques/T1016/
https://attack.mitre.org/versions/v12/techniques/T1016/001/
https://attack.mitre.org/versions/v12/techniques/T1497/001/
https://attack.mitre.org/versions/v12/techniques/T1071/001/
https://attack.mitre.org/versions/v12/techniques/T1132/001/
https://attack.mitre.org/versions/v12/techniques/T1573/001/
https://attack.mitre.org/versions/v12/techniques/T1573/002/

