
1/16

unit42.paloaltonetworks.com /pensive-ursa-uses-upgraded-kazuar-backdoor/

Over the Kazuar’s Nest: Cracking Down on a Freshly Hatched
Backdoor Used by Pensive Ursa (Aka Turla)
Daniel Frank, Tom Fakterman ⋮ ⋮ 10/31/2023

By Daniel Frank and Tom Fakterman

October 31, 2023 at 6:00 AM

Category: Malware

Tags: Advanced WildFire, APT, backdoor, Cortex XDR, Cortex XSIAM, incident response, Kazuar, next-generation
firewall, Pensive Ursa, threat prevention, Turla, Uroburos

This post is also available in: 日本語 (Japanese)

Executive Summary

While tracking the evolution of Pensive Ursa (aka Turla, Uroburos), Unit 42 researchers came across a new,
upgraded variant of Kazuar. Not only is Kazuar another name for the enormous and dangerous cassowary bird,
Kazuar is an advanced and stealthy .NET backdoor that Pensive Ursa usually uses as a second stage payload.

Pensive Ursa is a Russian-based threat group operating since at least 2004, which is linked to the Russian Federal
Security Service (FSB).

The Ukrainian CERT reported in July 2023 that this version of Kazuar was targeting the Ukrainian defense sector.
The threat group behind this variant was going after sensitive assets such as those found in Signal messages, source
control and cloud platforms data.

Since Unit 42’s discovery of Kazuar in 2017, we have seen it in the wild only a handful of times, targeting mostly
organizations in the European government and military sectors. The Sunburst backdoor has been tied to Kazuar by
code resemblance, which demonstrates its complexity level. Since late 2020, we had not seen new Kazuar samples
in the wild – yet reports suggested Kazuar was under constant development.

As the code of the upgraded revision of Kazuar reveals, the authors put special emphasis on Kazuar’s ability to
operate in stealth, evade detection and thwart analysis efforts. They do so using a variety of advanced anti-analysis
techniques and by protecting the malware code with effective encryption and obfuscation practices.

This article provides a deep technical analysis of Kazuar’s capabilities. We are sharing this research to provide
detection, prevention and hunting recommendations to help organizations strengthen their overall security posture.
An additional list of artifacts will be provided in an appendix linked to our GitHub page.

Palo Alto Networks customers receive protections from and mitigations for the threats mentioned in this article in the
following ways:

Next-Generation Firewall with the Advanced Threat Prevention security subscription can help block the
malware C2 traffic

https://unit42.paloaltonetworks.com/pensive-ursa-uses-upgraded-kazuar-backdoor/?web_view=true
https://unit42.paloaltonetworks.com/author/daniel-frank/
https://unit42.paloaltonetworks.com/author/tom-fakterman/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/tag/advanced-wildfire/
https://unit42.paloaltonetworks.com/tag/apt/
https://unit42.paloaltonetworks.com/tag/backdoor/
https://unit42.paloaltonetworks.com/tag/cortex-xdr/
https://unit42.paloaltonetworks.com/tag/cortex-xsiam/
https://unit42.paloaltonetworks.com/tag/incident-response/
https://unit42.paloaltonetworks.com/tag/kazuar/
https://unit42.paloaltonetworks.com/tag/next-generation-firewall/
https://unit42.paloaltonetworks.com/tag/pensive-ursa/
https://unit42.paloaltonetworks.com/tag/threat-prevention/
https://unit42.paloaltonetworks.com/tag/turla/
https://unit42.paloaltonetworks.com/tag/uroburos/
https://unit42.paloaltonetworks.jp/pensive-ursa-uses-upgraded-kazuar-backdoor/
https://unit42.paloaltonetworks.com/turla-pensive-ursa-threat-assessment/
https://www.justice.gov/usao-edny/pr/justice-department-announces-court-authorized-disruption-snake-malware-network
https://cert.gov.ua/article/5213167
https://unit42.paloaltonetworks.com/unit42-kazuar-multiplatform-espionage-backdoor-api-access/
https://thehackernews.com/2021/01/researchers-find-links-between-sunburst.html
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information


2/16

Organizations can engage the Unit 42 Incident Response team for specific assistance with this threat and
others
The Cortex XDR and XSIAM platform detects and prevents the threats mentioned in this article
The Advanced WildFire machine-learning models and analysis techniques have been reviewed and updated in
light of this new Kazuar variant.

Related Unit 42 Topics Backdoors, Pensive Ursa

Table of Contents

Kazuar Overview
 Latest Kazuar Variant Detailed Technical Analysis

 Metadata
 Initialization

 Architecture
 Core Functionality

 Communication With the Command and Control
 Anti-Analysis Checks

 Anti-Dumping
 Honeypot Check

 Strengthening Kazuar’s Connection to Pensive Ursa
 Conclusion

 Cortex XDR Detection and Prevention
 Protections and Mitigations

 Indicators of Compromise
 Additional References

Kazuar Overview
Kazuar is known for being an advanced and stealthy .NET backdoor that Pensive Ursa usually uses as a second
stage payload, delivered together with other tools that the threat group commonly uses.

The recent campaign that the Ukrainian CERT reported unveiled the multi-staged delivery mechanism of Kazuar,
together with other tools such as the new Capibar first-stage backdoor. Our technical analysis of this recent variant –
seen in the wild after years of hiatus – showed significant improvements to its code structure and functionality.

This post will detail previously undocumented features, including:

Comprehensive system profiling - Extensive data collection.
Credential theft of cloud and other sensitive applications - Theft of cloud application accounts, source control
and Signal messaging application.
Extended set of commands - A total of 45 supported commands to execute, received from another Kazuar
node or the command and control (C2) server.
Enhanced task automation - A range of automated tasks that the attacker could turn on/off.
Variable encryption schemes - Implementation of different encryption algorithms and schemes.
Injection modes - Multiple injection modes, allowing Kazuar to run from different processes and execute
different features.

Since at least 2018, variants of Kazuar changed their obfuscation methods and methodically modified its compilation
timestamps. Some variants used the ConfuserEx obfuscator to encrypt strings, and others used a custom method. In
the Kazuar variant analyzed in this blog, the authors went a step further, implementing multiple custom methods for
string encryption.

Unlike with previous variants, the authors only focused on targeting the Windows operating system.

Clarification note: While analyzing Kazuar’s code, we used dnSpy to export the code into an integrated development
environment (IDE) and decrypted the strings using a custom script. This allowed us to edit separate .cs files and edit
some of the method names into meaningful ones. We have interpreted the method names that appear in the
screenshots.

Latest Kazuar Variant Detailed Technical Analysis

Metadata

Reports from other research organizations have shown that the authors of Kazuar have manipulated their samples’
timestamps since at least 2018. This new variant’s compilation timestamp is Thursday, November 20, 2008 10:11:18
AM GMT. Unlike other publicly available variants, this is the first time the authors went back as far as 2008 when
faking the timestamp.

https://start.paloaltonetworks.com/contact-unit42.html
https://www.paloaltonetworks.com/resources/datasheets/advanced-wildfire
https://unit42.paloaltonetworks.com/tag/backdoor/
https://unit42.paloaltonetworks.com/tag/pensive-ursa/
https://cert.gov.ua/article/5213167
https://github.com/dnSpy/dnSpy
https://securelist.com/sunburst-backdoor-kazuar/99981/
https://attack.mitre.org/techniques/T1070/006/


3/16

Kazuar also contains hard-coded, hashed identifiers for the Agent version and BuildID as well as an Agent label.
These can be used as variant identifiers, as shown in Figure 1.

Figure 1. Kazuar’s sample basic configuration information.

Initialization

Executing Assembly Check

When executing Kazuar, it uses the Assembly.Location property to receive its own file path and check its name.
Kazuar will continue execution only if the returned value is an empty string, as shown in Figure 2. The
Assembly.Location property returns an empty string when loading the file from a byte array.

This check appears to be a simple form of an anti-analysis mechanism, to ensure that the execution of the malware
was done by the intended loader and not by other means or software.

Kazuar will execute if its filename matches a specific hard-coded hashed name (using the FNV algorithm). This
behavior is probably meant for debugging purposes, letting the authors avoid using the loader each time they debug
the malware.

Figure 2. Checking the Kazuar variant’s assembly name.

Operational Root Directory Creation

Kazuar creates a new directory to store its configuration and log data. It uses %localappdata% as the main storage
path and determines its root directory from a list of hard-coded paths (See Appendix).

Kazuar chooses which root directory, folder names, filenames and file extensions to use based on the machine
globally unique identifier (GUID), as shown in Figure 3. Although these names might seem randomly generated at a
first glance, the usage of the GUID means they will keep the same name for each execution of the malware on the
same infected machine.

Figure 3. The method in charge of returning an index for the paths
array.

Like in previous variants, Kazuar uses a structured directory scheme to save its log files and other data such as
individual configuration files and keylogger data. Directory naming is pseudorandom and chosen based on hashing.
Examples include the custom implementation of the FNV hashing algorithm seen in previous variants, and other
manipulations on the GUID value. You can find a list of the directories in their plaintext names in the Appendix.

It is also worth mentioning that there is a currently unreferenced option to create a file called wordlist in the code. This
file could give us a clue about a feature not yet implemented, perhaps using a wordlist for directories, filenames or
password brute forcing.

Configuration Files

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.location?view=net-7.0
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://learn.microsoft.com/en-us/dotnet/api/system.guid?view=net-7.0
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md


4/16

The malware creates a separate main configuration file that includes data including the following:

C2 servers
Injection mode
Other operational configuration data

Figure 4 shows a snippet from this file below. You can find the encryption methods for Kazuar’s configuration files in
the Appendix.

Figure 4. Snippet of the configuration file.

Mutex Name Generation

Kazuar is using a mutex to check its injection into another process. Kazuar generates its mutex name by XORing the
current process ID with the hard-coded value 0x4ac882d887106b7d and then XORing it with the machine's GUID, as
depicted in Figure 5. This means that several Kazuars can operate in tandem on the same device, just not injected
into the same process.

Figure 5. Mutex name generation.

Architecture

Setting Kazuar’s Injection Modes

The new version of Kazuar uses what it describes in the configuration as “injection modes” as shown in Table 1. The
default mode is inject.

Configuration
file mode

Description Inbound
traffic

Outbound
traffic

Additional
functionality

https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md


5/16

name threads

inject
Default mode, injects into explorer.exe
Creates a pipe communication channel and
serves as a proxy for other Kazuar instances

Named
pipe

Named
pipe

Event Log
Monitor
Keylogging
Peeps
Automated
tasks
Anti-
Dumping

zombify

Injects into the user’s default browser or
svchost.exe
Creates a named pipe communication channel
and serves as a proxy for other Kazuar instances

Named
pipe HTTP

Anti-
Dumping

combined In case the default inject method fails, it executes via
the same method as zombify N/A N/A N/A

remote
Creates a named pipe communication channel and
serves as a proxy for other Kazuar instances, no C2
communication

Named
pipe

Named
pipe

Event Log
Monitor
Automated
tasks

single

Creates a named pipe communication channel
and serves as a proxy for other Kazuar instances
This mode enables C2 communication to receive
commands via HTTP

Named
pipe or
HTTP

Named
pipe or
HTTP

Event Log
Monitor
Keylogging
Peeps
Automated
tasks

Not in User
Interactive
Mode

In case Kazuar’s execution is in a user interactive
mode, which could occur when executing Kazuar as a
service or on a machine with no GUI such as a server.

Named
pipe

Named
pipe

Automated
tasks
WMI
consumer
Anti-
Dumping

Table 1. Kazuar injection modes and descriptions.

In zombify mode, Kazuar is injected into the user’s default browser and has a fallback mechanism to inject itself to
svchost.exe in case the query for the default browser fails. Figure 6 shows that the term zombify addresses process
injection in general by Kazuar’s authors.

Figure 6. A snippet of Kazuars’ code injection in zombify mode.

Multithreading Model

Kazuar operates in a multithreading model, while each of Kazuar’s main functionalities operates as its own thread. In
other words, one thread handles receiving commands or tasks from its C2, while a solver thread handles execution of
these commands. This multithreading model enables Kazuar’s authors to establish an asynchronous and modular
flow control. Figure 7 shows the task solver flow.



6/16

Figure 7. Kazuar’s task-solving mechanism diagram.

The Task Solver Component - Kazuar’s Puppeteer

Kazuar receives new tasks, solves them and writes the output into result files. A solver thread is handling new tasks
received from the C2 servers or another Kazuar node. The task content is then encrypted and written to disk into a
task file.

Each task file implements a hybrid encryption scheme:

1. Using RNGCryptoServiceProvider to generate two byte-arrays containing random numbers, which are 16 and
32 bytes long respectively.

Using the first array as an AES (Rijndael) initialization vector (IV).
Using the second array as an AES key.

2. Generating an HMACMD5 hash based on the result’s content from memory, prior to its encryption and writing to
disk, using the array described in the first bullet above as the key.

3. Encrypting the HMACMD5 hash, AES key and IV with the hard-coded RSA key, and writing the encrypted
BLOB to the beginning of the file. By using the fast AES algorithm to encrypt larger objects such as the result’s
contents, and using the slower RSA encryption to conceal the AES key and IV, Kazuar improves its
performance. This also disables the option of recovering infected files only from disk, since the symmetric key
is encrypted using an asymmetric key.

4. Using the AES encryption to encrypt the result file’s contents.

As shown in Figure 8, once a task is complete, the generated result file will be saved to disk.

https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?view=net-7.0
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.hmacmd5?view=net-7.0


7/16

Figure 8. A snippet of Kazuar’s method to encrypt and write a result file.

In addition to the aforementioned encrypted data, Kazuar writes the following fields to the beginning of the result file:

1. Four zero bytes (we believe this serves as a sort of a delimiter)
2. Generated result identifier
3. Length of the encrypted GUID, using the same XOR algorithm as in the initialization part (the encrypted

message here is “System info at [datetime] (-07)”)
4. The encrypted GUID itself
5. RSA encrypted HMACMD5 hash + IV + AES key
6. The AES encrypted task content

Figure 9 shows the encrypted result file content from disk.

Figure 9. An encrypted result file content from disk.

Strings Encryption

Kazuar’s code includes a high volume of strings that are related to functionality and debugging. When revealed in
plain text, they shed light on the inner workings and functionality of Kazuar. To avoid the scenario of researchers
creating strings-based indicative YARA and hunting rules, Kazuar’s strings are encrypted. It decrypts each string at
runtime.

Kazuar uses a variation of a Caesar Cipher for the string encryption/decryption algorithm. In this algorithm, Kazuar
implements a dictionary that simply swaps the key and value of each member. Recent Kazuar variants implemented
only one dictionary, while the new variant implements multiple dictionaries, each containing 80 pairs of characters as
shown in Figure 10.

https://en.wikipedia.org/wiki/Caesar_cipher


8/16

Figure 10. One of the classes containing the
dictionary used for string decryption.

Figure 11 shows a loop iterating over a given string, and checking if the ordinal value of a given character is in the
dictionary keys of the relevant class. If it is, Kazuar swaps the key and value and appends it to the crafted string.
Otherwise, it keeps the original character.

In addition to the string obfuscation, the authors have given unmeaningful names to the classes and methods in the
code, to make analysis more difficult.

Figure 11. The loop that creates the deobfuscated string.

One of the strings decoded by Kazuar returns the value “Invalid pong responce” as shown in Figure 12. It seems that
one of the malware coders forgot to switch the Russian C for an English S.

Figure 12. The typo in the “response” string.

Core Functionality

In a fashion typical to Pensive Ursa, to avoid takedowns, Kazuar uses hijacked legitimate websites for its C2
infrastructure. In addition, as mentioned in the Injection Modes section, Kazuar also supports communication over
named pipes. It uses both mechanisms to receive remote commands, or tasks (as described in the code).

Supported C2 Commands

Kazuar supports 45 different tasks it can receive from its C2, as shown in Table 2. This is yet another development in
Kazuar’s code, as previous research hadn’t documented some of these tasks. By comparison, Kazuar’s first variant
analyzed back in 2017 supported only 26 C2 commands.

We have grouped Kazuar’s commands into the following categories:

Host data collection
Extended forensic data collection
File manipulation
Arbitrary command execution
Interaction with Kazuar’s configuration
Registry querying and manipulation
Scripts execution (VBS, PowerShell, JavaScript)
Custom network requests
Credentials and sensitive information stealing

Command Description

sindex Searches for properties of files with the following extensions: .txt, .ini, .config, .vbs, .js, .ps1, .doc,
.docx, .xls, .xlsx, .ppt, .pptx under folders in the C:\Users\ path.

scrshot Takes a screenshot of the window of a specified process
move Moves a file from a source path to a destination path
info Gets system information about one or multiple of the fields (described in Appendix)
steal Steals data from various browsers and applications (full list ID in Appendix)

https://www.recordedfuture.com/turla-apt-infrastructure
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md


9/16

run Executes a specified executable with supplied arguments, save the output to a temporary file,
and upload the file to the C2 server.

schlist Gets data about scheduled tasks using the Schedule.Service COM object
config Updates Kazuar’s configuration file

netuse Connects or removes network resources from the machine using the WNetAddConnection2 and
WNetCancelConnection2 WinAPIs

log Adds a custom log to the log file
delegate Sends a command to another Kazuar implant on a remote system using a PIPE
eventlog Gets Windows Event log entries

get Uploads files from a specified directory to Kazuar’s C2 servers, choosing which files to upload
based on their modified, accessed and created timestamps.

autoruns Checks various possibilities for software to have persistence in the infected machine (checks
described in Appendix)

put Writes received data to a specified file on the system.
regwrite Sets a registry key/value.
autoslist Lists the number of files that were created under the Autos functionality 
vbs Executes a VBScript
psh Executes a PowerShell Script
sleep Sets Kazuar to sleep for a specified amount of time
regdelete Deletes a registry key/value
timelimit Sets a time limit for a task from the server
dlllist Gets all loaded modules of a specified process
autosget Sends files created by the Autos functionality to the C2
wmiquery Executes a WMI Query
dotnet Executes a .NET method received from the C2
tasklist Gets a list of running processes 

find Finds a specified directory and lists its files. It appears the actor can specify which files to list
based on their modified, accessed and created timestamps as well.

peep Executes a command related to the peeps functionality, which we have described in the peeps
section.

forensic Checks the system for multiple forensic artifacts (see Appendix)
kill Kills a process by name or by process identifier (PID)
regquery Queries a registry key
chakra Executes Javascript using ChakraCore 
http Creates a crafted HTTP request
pipelist Gets open pipe list for a specific machine
jsc Executes JavaScript
wmicall Calls a WMI method
autosdel Deletes files created by the Autos functionality 

del Deletes a specified file OR folder. Allows the attacker to supply a flag to securely delete a file by
overwriting the file with random data before deleting it.

nbts Crafts a NetBIOS request

copy Copies a specified file to a specified location. The attacker is able to overwrite the destination file
if it already exists.

upgrade Downloads an upgrade to the malware
cmd Executes a command via cmd.exe

unattend Steals files related to various windows configuration or cloud applications credentials (full list of
files is included in Appendix)

autosclear Clears the Autos log list of files 

Table 2. Kazuar’s supported C2 commands.

Cloud, Source Control and Messaging Apps Credential Theft

Kazuar has the capability to attempt to steal credentials from many artifacts in the infected computer, by receiving the
commands steal or unattend from the C2.

These artifacts include multiple well-known cloud applications.

Kazuar can attempt to steal sensitive files that contain credentials for these applications. Artifacts targeted by Kazuar
include Git SCM (a source control system that is popular among developers), as shown in Figure 13, and Signal (an
encrypted messaging service for private instant messaging). We have included the full description of the artifacts in
the Appendix.

https://learn.microsoft.com/en-us/windows/win32/api/winnetwk/nf-winnetwk-wnetaddconnection2a
https://learn.microsoft.com/en-us/windows/win32/api/winnetwk/nf-winnetwk-wnetcancelconnection2a
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://github.com/chakra-core/ChakraCore
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md


10/16

Figure 13. Code snippet of Git SCM credentials Kazuar may attempt to steal.

Comprehensive System Profiling

When Kazuar is initially spawning a unique solver thread, the first task it automatically executes is the extensive
collection and profiling of the targeted system, named by Kazuar’s authors as first_systeminfo_do. As part of this
task, Kazuar will collect extensive information about the infected machine and will send it to the C2. This includes
information on the operating system, hardware and network. The Appendix includes the entirety of what the attackers
collected.

Kazuar saves this data into an info.txt file and saves the execution logs to a logs.txt file. As mentioned in the Task
Solver section, we can see the result in memory. In this case, it’s an archive, as depicted in Figure 14.

Figure 14. The result of the first_systeminfo_do archive in memory.

Besides the two aforementioned text files, as part of this task, the malware takes a screenshot of the user’s screen.
Figure 15 shows the zipping of all of these files into one archive before being encrypted and sent to the C2.

Figure 15. The result of the first_systeminfo_do archive extracted memory, prior to encryption.

Creating Automated Tasks (Autos)

Kazuar has the ability to set up automated tasks that will run at specified intervals to gather information from the
infected machines. Figure 16 shows an example of this functionality as documented in Kazuar’s configuration.

These automated tasks include the following:

Gathering system information (described in the section on Comprehensive System Profiling)
Taking screenshots
Stealing credentials (listed in full in the Appendix)
Getting forensics data (see Appendix)
Getting auto-runs data (see Appendix)
Getting files from specified folders.
Getting a list of LNK files
Stealing emails using MAPI

https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://en.wikipedia.org/wiki/MAPI


11/16

Figure 16. A snippet of Kazuar’s configuration of the
Autos function.

Monitoring Active Windows (Peeps)

Kazuar has the ability to let attackers set up what they called “peep rules” in the configuration. Although Kazuar does
not come with these rules set out of the box, according to the malware’s code, it appears that this functionality
enables the attacker to monitor the windows of specified processes. This allows the attacker to track user activity of
interest on the compromised machine.

Communication With the Command and Control

HTTP

Prior to establishing a communication channel with a C2 server, and in addition to the aforementioned anti-analysis
checks, Kazuar checks the configuration data-sending time intervals. This check includes determining whether it
should send data over the weekend or not.

Upon first communication, Kazuar sends the collected data (described in the Comprehensive System Profiling
section) in an XML format and expects to get an XML structured response back with a new task. Figure 17 shows the
HTTP request.

Kazuar uses a hard-coded value 169739e7-2112-9514-6a61-d300c0fef02d casted to a string and Base64 encoded
as the cookie.

Figure 17. HTTP POST command with an XML in the body sent to the C2.

Kazuar generates key names for the XML and Base64 encrypts the content prior to sending it to the C2. The content
of the XML contains:

Encrypted content of the result file
Result identifier
Pseudorandom 4-byte numbers, probably another type of identifier
An array with values pseudorandomly generated based on the machine’s GUID
The hard-coded GUID connection string 169739e7-2112-9514-6a61-d300c0fef02d
The machine’s unique GUID

Communication Using Named Pipes

In addition to direct HTTP communication with the C2, Kazuar has the ability to function as a proxy, to receive and
send commands to other Kazuar agents in the infected network. It is doing this proxy communication via named
pipes, generating their names based on the machine’s GUID.

Kazuar uses these pipes to establish peer-to-peer communication between different Kazuar instances, configuring
each as a server or a client. The named pipe communication supports the remote requests shown in Table 3.

Remote Request Kazuar’s Response Description
PING PONG Return a message with the current instance process information
TASK RESULT Start a received task and return a result

https://learn.microsoft.com/en-us/windows/win32/ipc/named-pipes


12/16

LOGS ERROR Retrieve error logs

Table 3. Kazuar requests and responses using named pipes.

Anti-Analysis Checks

Kazuar uses multiple anti-analysis techniques based on a series of elaborate checks, to ensure it is not being
analyzed. The authors programmed Kazuar to either continue if the coast is clear, or to remain idle and cease all C2
communication if it is being debugged or analyzed. We can group these checks into three main categories: honeypot,
analysis tools and sandbox.

Anti-Dumping

Because Kazuar is not designed to run as a standalone process but rather lives injected within another process,
dumping its code is possible from memory of the injected process. To prevent that from happening, Kazuar uses a
powerful feature of .NET, which is the System.Reflection Namespace. This gives Kazuar the ability to gather real-time
metadata about its assembly, methods and more.

Kazuar checks if it has set the antidump_methods setting to true, then overrides the pointers to its custom methods,
while ignoring generic .NET methods, essentially wiping them from memory (as Kazuar’s logged message states).
This ultimately prevents researchers from dumping an intact version of the malware.

Honeypot Check

One of the first things Kazuar specifically searches for is the existence of Kaspersky honeypot artifacts on the
machine. It uses a hard-coded list of specific process names and filenames to do this.

If Kazuar finds more than five of these files or processes, it will log that it found a Kaspersky honeypot. Figure 18
shows these filenames.

Figure 18. Filenames that Kazuar checks to find Kaspersky honeypot.

Analysis Tools Check

Kazuar has a list of hard-coded names of different popular analysis tools such as the following:

Process Monitor
X32dbg
DnSpy
Wireshark

It goes over the list of running processes, and if one of these tools is running, Kazuar will log that it found analysis
tools (see Appendix).

Sandbox Check

Kazuar has a list of hard-coded known sandbox libraries. It checks for the presence of certain DLLs that belong to
different sandbox services. If the malware finds these files, it determines that it is being executed in a lab (see
Appendix).

Event Log Monitor

Kazuar collects and parses events from the Windows event logs. Figure 19 shows Kazuar specifically looking for
events from the following antivirus/security vendors:

Kaspersky Endpoint Security
Symantec Endpoint Protection Client

https://learn.microsoft.com/en-us/dotnet/api/system.reflection?view=net-7.0
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md
https://github.com/PaloAltoNetworks/Unti42-Threat-Intelligence-Article-Information/blob/main/Appendix-for-article-on-Pensive-Ursa-using-Kazuar.md


13/16

Microsoft Windows Defender
Doctor Web

Same as with checking for Kaspersky’s honeypot, a plausible explanation would be that these security products are
popular with their victims.

Figure 19. Event logs that Kazuar collects from specific security products.

Strengthening Kazuar’s Connection to Pensive Ursa

As mentioned above, when composing its initial HTTP POST request to its C2, Kazuar uses the machines GUID or a
hard-coded GUID 169739e7-2112-9514-6a61-d300c0fef02d as a cookie, which is then type casted to string and
Base64 encoded.

Searching the latter value in its string format (169739e7211295146a61d300c0fef02d) yields a report [PDF] by the
Swiss CERT, which analyzes an attack carried out by Pensive Ursa against RUAG. RUAG Holding is a Swiss
company from the aerospace and defense sector.

In addition, Kazuar’s tasks and results architecture, including the hybrid AES + RSA encryption scheme and other
clear similarities in functionality, are the very image of Carbon’s modus operandi. It is mentioned both in the Swiss’s
CERT report and another report by ESET. Carbon is another second stage backdoor that was attributed multiple
times to Pensive Ursa, whose code was a fork of Snake, as mentioned by CISA.

These findings, along with the reports by multiple CERTs, further support the previous Unit 42 assumptions proposing
that Kazuar might be Carbon’s successor. Most importantly, these findings strengthen the attribution of Kazuar to
Pensive Ursa.

Conclusion

We examined the newest Kazuar malware variant that we detected in the wild. Notable features include the following:

Robust code and string obfuscation techniques
A multithreaded model for enhanced performance
A range of encryption schemes implemented to safeguard Kazuar’s code from analysis and to conceal its data
whether in memory, during transmission or on disk

All the aforementioned features are designed to provide the Kazuar backdoor a high level of stealth. Other
noteworthy characteristics of this malware are:

Its anti-analysis functionalities
Extensive system profiling capabilities
The specific targeting of cloud applications

This version of Kazuar also supports an array of over 40 distinct commands, half of which were previously
undocumented.

We encourage security practitioners and defenders to study this report and use the information provided to enhance
current detection, prevention and hunting practices to overall strengthen their security posture.

Cortex XDR Detection and Prevention

Figure 20 shows Cortex XDR detected and prevented the execution of Kazuar. As detailed in the technical analysis
section, by default Kazuar injects its code into explorer.exe. When configured to operate on detect mode, Cortex XDR
detects the malicious activity originating from the injected explorer.exe, as depicted in Figure 20 below.

Figure 20. Kazuar’s detection, shown in Cortex XDR in detect
mode.

https://www.govcert.ch/downloads/whitepapers/Report_Ruag-Espionage-Case.pdf
https://www.ruag.com/en
https://www.welivesecurity.com/2017/03/30/carbon-paper-peering-turlas-second-stage-backdoor/
https://unit42.paloaltonetworks.com/unit42-kazuar-multiplatform-espionage-backdoor-api-access/


14/16

Execution of native code by Kazuar for process injection and WMI execution triggered several alerts, as well as other
suspicious and uncharacteristic activity carried out by explorer.exe. We detailed the alerts, including the alert shown
in Figure 20, in Figure 21 below.

Figure 21. Kazuar’s execution alerts, shown in Cortex XDR in detect mode.

In addition, Figure 22 documents and details the directory and files that the malware created to store its configuration
and logs.

Figure 22. Kazuar’s execution alerts as seen in Cortex XDR on detect mode.

Finally, Figure 23 shows that when in prevent mode, Cortex XDR prevents the Kazuar malware executable and
triggers the alert pop-up accordingly.

Figure 23. Kazuar’s execution prevention alert as seen in Cortex XDR on
prevent mode.

Protections and Mitigations

The Cortex XDR platform detects and prevents the execution flow described in the screenshots included in the
previous section.

In addition to the classic detection, the unique SmartScore engine translates security investigation methods and their
associated data into a ML-driven hybrid risk scoring system. Figure 24 shows that the Kazuar variant and its related
incident detailed in this blog scored 97 out of 100 by SmartScore.

https://www.paloaltonetworks.com/blog/security-operations/beating-alert-fatigue-with-cortex-xdr-smartscore-technology/


15/16

Figure 24. The score given to Kazuar in SmartScore.

For Palo Alto Networks customers, our products and services provide the following coverage associated with this
group.

Cortex XDR and XSIAM detect user and credential-based threats by analyzing user activity from multiple data
sources including the following:

Endpoints
Network firewalls
Active Directory
Identity and access management solutions
Cloud workloads

Cortex XDR and XSIAM build behavioral profiles of user activity over time with machine learning. By comparing new
activity to past activity, peer activity and the expected behavior of the entity, Cortex XDR and XSIAM detect
anomalous activity indicative of credential-based attacks.

It also offers the following protections related to the attacks discussed in this post:

Prevents the execution of known malicious malware and also prevents the execution of unknown malware
using Behavioral Threat Protection and machine learning based on the Local Analysis module
Protects against credential gathering tools and techniques using the new Credential Gathering Protection
available from Cortex XDR 3.4
Protects against exploitation of different vulnerabilities including ProxyShell and ProxyLogon using the Anti-
Exploitation modules as well as Behavioral Threat Protection
Cortex XDR Pro and XSIAM detect postexploit activity, including credential-based attacks, with behavioral
analytics
Next-Generation Firewall with the Advanced Threat Prevention security subscription can help block the
malware C2 traffic via the following Threat Prevention signature: 86805
The Advanced WildFire machine-learning models and analysis techniques have been reviewed and updated in
light of this new Kazuar variant. Multiple products in the Palo Alto Networks portfolio leverage Advanced
WildFire to provide coverage against Kazuar variants and other threats.

If you think you might have been impacted or have an urgent matter, get in touch with the Unit 42 Incident Response
team or call:

North America Toll-Free: 866.486.4842 (866.4.UNIT42)
EMEA: +31.20.299.3130
APAC: +65.6983.8730
Japan: +81.50.1790.0200

Palo Alto Networks has shared these findings with our fellow Cyber Threat Alliance (CTA) members. CTA members
use this intelligence to rapidly deploy protections to their customers and to systematically disrupt malicious cyber
actors. Learn more about the Cyber Threat Alliance.

Indicators of Compromise
Kazuar SHA256

https://www.paloaltonetworks.com/cortex/cortex-xdr?_gl=1*13pmp8e*_ga*NzQyNjM2NzkuMTY2NjY3OTczNw..*_ga_KS2MELEEFC*MTY2OTczNjA2MS4zMS4wLjE2Njk3MzYwNjEuNjAuMC4w
https://www.paloaltonetworks.com/cortex/cortex-xsiam
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention?_gl=1*13pmp8e*_ga*NzQyNjM2NzkuMTY2NjY3OTczNw..*_ga_KS2MELEEFC*MTY2OTczNjA2MS4zMS4wLjE2Njk3MzYwNjEuNjAuMC4w
https://docs.paloaltonetworks.com/cortex/cortex-xdr/cortex-xdr-analytics-alert-reference/cortex-xdr-analytics-alert-reference/analytics-alerts-by-required-data-source
https://docs.paloaltonetworks.com/ngfw
https://docs.paloaltonetworks.com/advanced-threat-prevention/administration
https://www.paloaltonetworks.com/resources/datasheets/advanced-wildfire
https://start.paloaltonetworks.com/contact-unit42.html?_gl=1*13pmp8e*_ga*NzQyNjM2NzkuMTY2NjY3OTczNw..*_ga_KS2MELEEFC*MTY2OTczNjA2MS4zMS4wLjE2Njk3MzYwNjEuNjAuMC4w
https://www.cyberthreatalliance.org/


16/16

91dc8593ee573f3a07e9356e65e06aed58d8e74258313e3414a7de278b3b5233

Command and Control Servers

hxxps://www.pierreagencement[.]fr/wp-content/languages/index.php
hxxps://sansaispa[.]com/wp-includes/images/gallery/
hxxps://octoberoctopus.co[.]za/wp-includes/sitemaps/web/

RSA Keys

<RSAKeyValue>
<Modulus>7ondEZo8ZjYh+FP4h3PgJBU/yTlO+g8ZbCF0wx8eocnqxLS4YWI9hG3SI2hlEBz6J4vvxPCrs/jazekolaZLQnbyOCyH53I+We
</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>
<RSAKeyValue>
<Modulus>pyR0/srVS0gOZbNdK3iK+GvekQVkBq8brOVCuN/XcCz4WLJod9GhivDYrDtMXF6ZMGHKa2zAcQ+v2vltYW3X2BYCZ1sblE
</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>

Additional References

Get updates from 
 Palo Alto

Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

Please enter your email address!

Please mark, I'm not a robot!

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

