
1/10

www.ptsecurity.com /ww-en/analytics/pt-esc-threat-intelligence/hellhounds-operation-lahat/

Hellhounds: operation Lahat
Positive Technologies ⋮ ⋮ 11/30/2023

Introduction

In 2023, our Positive Technologies Computer Security Incident Response Team (PT CSIRT) discovered that a certain
power company was compromised by the Decoy Dog trojan. According to the PT CSIRT investigation, Decoy Dog
has been actively used in cyberattacks on Russian companies and government organizations since at least
September 2022. This trojan was previously discussed by NCIRCC, Infoblox, CyberSquatting, and Solar 4RAYS.

However, the sample we found on the victim’s host was a new modification of the trojan, which the adversaries
altered in such a way as to make it harder to detect and analyze.

As far as we can tell, the APT group Hellhounds that uses Decoy Dog only targets organizations located in Russia.
Remarkably, the attackers were using the command-and-control (C2) server maxpatrol[.]net to impersonate Positive
Technologies MaxPatrol products. Positive Technologies products contain all indicators of compromise mentioned
in this article in their databases.

First Stage (Decoy Dog Loader)

When investigating the incident, we found a 9 KB executable on path /usr/bin/dcrond. It was protected by a modified
version of the UPX packer, with the signature UPX! replaced with 37 13 03 00. At the moment of our investigation,
only one antivirus engine could detect the packer, while some malware samples were not detectable by any engine.
The modified UPX can be detected by a public YARA rule from the JPCERT/CC research.

Figure 1. Verdicts of antivirus engines

Unlike the standard UPX tool, which unpacks the executable, this modification unpacks a shellcode that is written
in the assembly language and uses only Linux system calls. The modified UPX header is followed by an encrypted
configuration that contains the path to the encrypted file with the main payload, and the configuration is followed
by the compressed shellcode:

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/hellhounds-operation-lahat/?utm_source=pt&utm_medium=article&utm_campaign=hellhounds-operation-lahat-part-2&utm_content=esc
https://safe-surf.ru/upload/ALRT/ALRT-20230906.1.pdf
https://insights.infoblox.com/resources-whitepaper/infoblox-whitepaper-decoy-dog-is-no-ordinary-pupy-distinguishing-malware-via-dns
https://t.me/CyberSquattingChannel
https://rt-solar.ru/solar-4rays/
https://blogs.jpcert.or.jp/en/2022/03/anti_upx_unpack.html
https://upx.github.io/

2/10

Figure 2. Fragment of the Decoy Dog loader

The loader operates in the system and disguises itself as the legitimate cron service. We also discovered samples
masquerading as the legitimate irqbalance service and lib7.so library.

[Unit]

Description=Daemon to execute scheduled commands

Documentation=man:dcrond(8)

[Service]

Type=forking

ExecStart=/usr/bin/dcrond

Restart=always

In attacks in 2022, the original malware samples were disguised as the atd service and systemd-readahead-
stop.service. The samples were located in the /usr/bin/atd directory or the /usr/bin/container directory:

[Unit]

Description=Deferred execution scheduler

Documentation=man:atd(8)

[Service]

Type=forking

ExecStart=/usr/bin/atd

Restart=always

[Install]

WantedBy=multi-user.target

[Unit]

Description= systemd-redhead is a service that collects disk usage patterns at boot

time. systemd-readahead-stop.service is a service that replays this access data

3/10

collected at the subsequent boot.

[Service]

Type=forking

ExecStart=/usr/bin/container

Restart=always

[Install]

WantedBy=multi-user.target

The loader first checks whether it is being debugged. For this, it reads /proc/self/status and checks that the value
of TracerPid is 0. If the TracerPid value is different from 0, the loader replaces itself with /bin/sh using the execve
system call.

After ensuring that it is not being debugged, the loader attempts to read each of the following files containing the
compromised host’s identifiers and calculates an MD5 hash of the first file existing in the file system:

/etc/machine-id
/var/lib/dbus/machine-id
/var/db/dbus/machine-id
/usr/local/etc/machine-id
/sys/class/dmi/id/product_uuid
/sys/class/dmi/id/board_serial
/etc/hostid
/proc/self/cgroup

The loader uses the obtained MD5 hash as a key to decrypt the configuration and then the main payload, which are
encrypted using the 128-bit CLEFIA algorithm.

At this stage of our research, it became clear that this malware sample was designed to target a specific host and
that the adversaries had previously accessed that host to get the identifier and add it to the configuration.

Second Stage (Decoy Dog)
The main payload of the analyzed malware sample is stored in the file system at /usr/share/misc/pcie.cache. The
decrypted payload is a modified version of Pupy RAT known as Decoy Dog.

Pupy RAT is a cross-platform multifunctional backdoor and an open-source post-exploitation tool, mostly written
in Python. Pupy supports Windows and Linux and partially supports Android and macOS. It features an all-in-memory
execution guideline and leaves a minimal footprint. Pupy RAT can maintain a connection to the C2 server using
multiple transports, migrate into processes by leveraging the reflective injection technique, and remotely load Python
(.py, .pyc) packets and compiled Python C (.pyd, .so extensions) from memory.

While the development of Pupy RAT stopped two years ago, Decoy Dog is actively being developed. The key
improvements in Decoy Dog as compared to Pupy RAT are:

The client was upgraded from Python 2.7 to Python 3.8, which means all code was rewritten under Python 3.8.
This explains why the number of modules was reduced, leaving only those modules that are actually used.
New features for injecting code into Java virtual machines were added.
The following new transports were added:

— BOSH (Bidirectional-streams Over Synchronous HTTP), with combination with ECPV and RC4—
instead of HTTP transport
— lc4 (combination of ECPV and RC4 used for a local client or server over TCP)
— lws4 (combination of ECPV and RC4 used for a local client or server over WebSockets)
— ws4 (the same as the original ws, but the RSA and AES combination is replaced by ECPV and RC4)
— dfws4 (the same as the original dfws, but the RSA and AES combination is replaced by ECPV
and RC4)

A new feature was added to enable encrypted dynamic configuration files to be downloaded and saved
to the disk.
A new launcher called "special" was added (it establishes a local connection using the IP address and port
or file socket).
Fault tolerance was increased by means of backup C2 servers with specific domains defined and the use of
DGA.

The analyzed sample used the C2 server z-uid.lez2yae2.dynamic-dns[.]net, which was specified in the configuration
included in the executable. Here is a fragment of the configuration:

https://en.wikipedia.org/wiki/CLEFIA
https://github.com/n1nj4sec/pupy

4/10

Figure 3. Fragment of the Decoy Dog RAT configuration

The trojan also gets the dynamic (current) configuration from the /var/lib/misc/mpci.bin file. The file is encrypted with
the 128-bit AES algorithm in Counter (CTR) mode (the 128-bit key is also encrypted using the elliptic curve
brainpoolP384r1) and contains new C2 servers:

m-srv.daily-share.ns3[.]name;
f-share.duckdns[.]org.

The public key used to decrypt the AES key is stored in the configuration inside the executable.

The configuration of the analyzed sample also contains a scriptlet called "telemetry" which is started each time the
backdoor is launched. This scriptlet is used to send telemetry data (information about the infected system)
to mindly.social (social media powered by the open-source engine Mastodon) via the service API. Here are the
contents of the telemetry data:

{

 'cid': <backdoor ID from the configuration>,

 'user': <username>,

 'hostname': <host name>,

 'node': <MAC address as a 48-bit number>,

 'platform': <platform>,

 'node': <MAC address as a 48-bit number>,

 'pid': <backdoor process ID>,

 'ppid': <backdoor parent process ID>,

 'cwd': <work directory>,

 'proc_arch': <architecture of the running backdoor process>,

 'exec_path': <path to the running backdoor process>,

 'uac_lvl': <UAC protection level>,

 'intgty_lvl': <backdoor process integrity level>,

 'machine_key': <MD5 hash of the system ID>,

 'proxy': <default proxy server connection string>,

 'external_ip': <external IP address as a 32-bit number>,

 'internal_ip': <internal IP address as a 32-bit number>,

 'boottime': <system boot date and time (Unix time)>

}

The transmitted data is encrypted in the same way as the dynamic configuration file and with the same public key.
This means that, even if the data is intercepted, it is impossible to decrypt it without knowing the private key.

The data is transmitted using an API key stored in the code in cleartext. However, the adversaries restricted access
to the API key by making it read-only. In other words, obtaining the API key will not allow you to read any data.

https://joinmastodon.org/

5/10

Figure 4. Fragment of the Decoy Dog RAT code

Nonetheless, we managed to find out that the telemetry data of the infected hosts is sent to the account with the
username @lahat, which is where our research got its name.

Figure 5. Profile of the user @lahat in mindly.social

Apart from being the primary C2 channel, the analyzed sample also functioned as a server using an additional local
channel to read data from the file socket /var/run/ctl.socket.

Decoy Dog supports a domain generation algorithm (DGA) that generates domain names (DGA domains) when the
connection over the primary C2 channel is lost.

If the bootstrap-domains option is enabled in the configuration, one of the main domains is used for name generation.
Otherwise, the malware generates either a subdomain for one of the top-level domains specified in the configuration

6/10

or a domain under one of the specified zones (the top-level domain dynamic-dns.net is used by default). In the
configuration of the analyzed sample, the duckdns.org and dynamic-dns.net domains are selected.

A backup domain is generated as the first half of the hexadecimal representation of the MD5 hash calculated from the
string with the current date in format and the public key used for encrypting communication with the C2 server.

Then, an MD5 hash is calculated from the generated domain (or one of the main domains if the bootstrap-domains
option is enabled), after which two characters from the first half of the hexadecimal representation are appended
to the left of the domain name. This results in a set of nine domains to which the malware attempts to connect. For
example, for the domain m-srv.daily-share.ns3[.]name, the following eight domains will be generated:

6cm-srv.daily-share.ns3[.]name
78m-srv.daily-share.ns3[.]name
7fm-srv.daily-share.ns3[.]name
b1m-srv.daily-share.ns3[.]name
98m-srv.daily-share.ns3[.]name
d5m-srv.daily-share.ns3[.]name
2fm-srv.daily-share.ns3[.]name
08m-srv.daily-share.ns3[.]name

This is the code that generates domains:

import datetime, hashlib

WELL_KNOWN_ZONES = ('dynamic-dns.net',)

def make_emergency_related_domains(domain):

 domain_bytes = domain

 if isinstance(domain_bytes, bytes):

 domain = domain.decode()

 else:

 domain_bytes = domain.encode()

 prefix_hash = hashlib.md5(domain_bytes).hexdigest()[:16]

 for x in range(len(prefix_hash) // 2):

 yield prefix_hash[x * 2:x * 2 + 2] + domain

class EmergencyDomains(object):

 __slots__ = ('key', 'zones', 'beacon_domains', '_zone_id', '_emergency_loop')

 def __init__(self, key, beacon_domains=None, zones=None):

 self.key = key

 self.zones = zones or WELL_KNOWN_ZONES

 if not isinstance(self.zones, (list, tuple, set)):

 self.zones = tuple((self.zones,))

 self.beacon_domains = beacon_domains

 self._zone_id = 0

 self._emergency_loop = self._emergency_loop_generator()

 def _emergency_loop_generator(self):

 if self.beacon_domains:

 for domain in self.beacon_domains:

 yield domain

 yield self._domain_of_the_day()

 def iterate(self):

 try:

 while True:

 yield next(self._emergency_loop)

 except StopIteration:

 self._emergency_loop = self._emergency_loop_generator()

 def _domain_of_the_day(self):

 now = datetime.datetime.utcnow()

 ts_formatted = now.strftime('%Y%m%d')

7/10

 if not isinstance(ts_formatted, bytes):

 ts_formatted = ts_formatted.encode()

 formatted_key = self.key

 if not isinstance(formatted_key, bytes):

 formatted_key = formatted_key.encode()

 domain_hash = hashlib.md5()

 domain_hash.update(ts_formatted)

 domain_hash.update(formatted_key)

 domain_part = domain_hash.hexdigest()[:16]

 zone = self.zones[self._zone_id]

 self._zone_id = (self._zone_id + 1) % len(self.zones)

 return domain_part + '.' + zone

Here is a detailed chart showing how Decoy Dog works:

Figure 6. Decoy Dog flowchart

Victims

According to our data, at least 20 organizations located in Russia were compromised using Decoy Dog. The
breakdown of the victims by industry looks as follows:

Government Information technology Space industry Energy sector Construction Education
Transport and logistics Retail Security Telecommunication

© Positive Technologies

Figure 7. Victims by industry

At present, the APT group Hellhounds that uses the malware is actively targeting organizations in Russia, so our
research continues. We still don't know the ultimate goals of these threat actors but in one incident they used Decoy
Dog to attack a telecom operator in Russia and managed to put some of its services out of operation. This was
reported by Solar 4RAYS researchers as part of their presentation "Thanos' blip for the telecom operator" at SOC-
Forum 2023.

Conclusion

https://forumsoc.ru/upload/iblock/f7c/6ncp0iit9pxcth1taxfku9varczadc5b.pdf

8/10

After materials on the first version of Decoy Dog were published, the malware authors went to a lot of effort to hamper
its detection and analysis both in traffic and in the file system.

A significant number of victims proves once again that Linux systems are often underprotected. When working
on incident investigation projects, we rarely see additional monitoring systems (auditd) and antivirus tools on hosts
running on Linux.

Authors: Stanislav Pyzhov, Aleksandr Grigorian (Positive Technologies)

The authors would like to thank the incident response and threat intelligence teams of the PT Expert Security Center
for their help in preparing this article.

Verdicts of our products

PT Sandbox

apt_linux_ZZ_DecoyDog__Trojan__FirstStage
apt_linux_ZZ_DecoyDog__Backdoor__Pupy
apt_linux_ZZ_DecoyDog__Backdoor__EncryptedPayload
apt_mem_ZZ_DecoyDog__Backdoor

PT Network Attack Discovery

SUSPICIOUS [PTsecurity] Possible DecoyDog DNS Tunneling sid: 10010052
SUSPICIOUS [PTsecurity] Possible DecoyDog DNS Tunneling sid: 10010053

IOCs

File indicators

Name MD5 SHA-256
Decoy Dog Loader
_lib7.so 8292f151b40308b31277165ea37541a9 57ed4aa89eb7f04eb1d88c038d2eb979d5082872fb41b4ea1c8b
.lib7.so 6685ea769026e8831b67e4d8f0606e65 d73889d26fa37deee733a871dbd39dd54d6079ef286172699af58
- 1fd1d550b549c9c14031080380b4b0b7 8130de2602bfba78875dec200282dde736aa0558369bff8fd8797f
dcrond b83dffed692e165ad0274b63a6c7f1cb e218ab7b3ab64e93373661558f9093d7f2a344e6d4fdd245b3556
container 9671607c162cd3037da08508d2d3f3a3 2f44da49c7deb865312265c17004b7ee1744e8af4667219b276b2
systemd-inputd 7974a843acdf22b32a13256ba7f56baa 4c0b3dd3de24099be2685e8fe19f80599fb9596ec0bafcf29f1cf5d
smartmond bcbf98042bf9796e50f16e68c4255f85 dc6bdfb15624adce5c9e4978d1a38e98e539d0f73304692bea4e7
epel-modular-
update.solvx 2e272a6d04e6f28145f5d07f97bb51a7 4750aef958598d156c47fa48bb2dea707dec8586a9fc7ae3b4483

irqballanced 536be89b71cd273db8a79b0bc2074ce6 0b43038fd6c46427d2bf0964aab3bb96f42de504fbda5071031fec
Decoy Dog RAT
(version 1)
- bb04bac638e35775b93ddfa30f0a3b09 4996180b2fa1045aab5d36f46983e91dadeebfd4f765d69fa50eba
- 5e55d48b930b75ac3df3d2b3f9db1b07 a1704832392c67a0a2c79fd52422226b5d9df0e40cf5373044954
- c4d377c3fcd231adcc2d7b5e7e701fc9 0375f4b3fe011b35e6575133539441009d015ebecbee78b578c3e
JniAccelCsv.Linux.amd64 ff09a325e7e739cfc8ed0bac0838581a ec01b358f82ad43e04b80ae6e1366516b4e62718da64d68a8324
JniAccelCsv.Linux.amd64 917836dc595074bf57f14e3d9cc4f766 4d3814f0ce7537756b1dd3096773bc57a7b22f61ab5262f8d6f6a7
atd d8ce9e4b5d4443b368ab226913af87f9 6c8f413111f1abfee788dad4ee7cca37e0c2597cca66d155af958c
atd e7e7ff7450d9655d71d281fbb5d59f6f e6b88a0710d74330c31590718ad563f4788760c8607c414765aa
- ee09f7610b5213ed5e3b85c7457858c3 637d602d5b6cf33f5c7236f335245df02e535c76ff6e0014839c557
_bareos.cfg 58b1c162d66194b26d7d462a0f80e28d d189e0150f42d2a2e40fefcec6973fcbc4a8b1a1757a358d13df35
- fa8443fdde409b830f77f18c0ef5a44d 6a06619b21f20094a77bfc9af3fc4dbecfacdbe038f017604399ce8
- 4c999714034ae431adb2776cd930b518 a1c116042e81280e408e859ab8eba8237bb1f31cad00814d6a40
Decoy Dog RAT
(version 2)
pcie.cache 8147c66144990691e2d9d870fb921475 4f9ff5ec62bba44d18f18323ef674e49515da976011c33049bce1d
pcie.cache a9675ccc238c2de8c673879a63975d80 5d7866865554afa00ce44db77bf419a21bead64b5ed3394aa23f7
pcie.cache de81b0ebc983d4a23395a35c759fc84e c13b1a591561800163154b72415cfb3283eae253772fed1ca2bd4
pcie.cache 7aafa110d681067787d5382a6cc55e48 10f7fc4a3dbb07de3a73124cc02469d2123824960da02c51f9c53
containerd 2ccc492a1a977e694bd5ced7cee35a8d d67e2641d7f423e868b2ca62f809ccad83f87081aa1e9aa62d9c6
.mem_cache 6323e21d0cd0787c52fc71e7a3420e28 5f9c971b77f69d6337ed591aa50ef271757456038a1aad1a6f3d1

File paths

/usr/bin/atd
/usr/bin/container
/usr/bin/dcrond

9/10

/usr/sbin/containerd
/usr/sbin/smartmond
/usr/share/misc/hwrng.cache
/usr/share/misc/pcie.cache
/var/lib/misc/mpci.bin
/var/lib/misc/sata.bin
/var/lib/polkit-1/localauthority/.cache
/var/run/ctl.socket

Network indicators

acrm-11331.com
ads-tm-glb.click
allowlisted.net
cbox4.ignorelist.com
f-share.duckdns.org
maxpatrol.net
m-srv.daily-share.ns3.name
vcs.dns04.com
z-uid.lez2yae2.dynamic-dns.net
mindly.social (legitimate social media)
ertelecom.org
webrtc.foo
atlas-upd.com
hsdps.cc
194.87.68.65
185.126.239.60
185.22.152.227

File signatures

rule PTESC_apt_linux_ZZ_DecoyDog__Trojan__FirstStage{

 strings:

 $f1 = "mmap failed"

 $s1 = "/etc/machine-id"

 $s2 = "/product_uu=bo"

 condition:

 uint32be (0) == 0x7F454C46 and all of ($f*) and any of (

$s*) and filesize < 100KB

}

rule PTESC_apt_linux_ZZ_DecoyDog__Backdoor__Pupy__v1{

 strings:

 $x1 = "reflectively inject a dll into a process." fullword

ascii

 $x2 = "ld_preload_inject_dll(cmdline, dll_buffer, hook_exit)

-> pid" fullword ascii

 $x3 = "LD_PRELOAD=%s HOOK_EXIT=%d CLEANUP=%d exec %s

1>/dev/null 2>/dev/null" fullword ascii

 $x4 = "reflective_inject_dll" fullword ascii

 $x5 = "ld_preload_inject_dll" fullword ascii

 $x6 = "get_pupy_config() -> string" fullword ascii

 $x7 = "[INJECT] inject_dll. OpenProcess failed." fullword

ascii

 $x8 = "reflective_inject_dll" fullword ascii

 $x9 = "reflective_inject_dll(pid, dll_buffer,

isRemoteProcess64bits)" fullword ascii

 $x10 = "linux_inject_main" fullword ascii

 $j1 = "jvm.PreferredClassLoader" fullword ascii

 $j2 = "jvm.JNIEnv capsule is invalid" fullword ascii

 $j3 = "JVM was not loaded yet" fullword ascii

 $j4 = "Info about parent JVM" fullword ascii

 condition:

 uint32be (0) == 0x7F454C46 and (2 of ($x*) and any of (

$j*)) and filesize < 5000KB

}

10/10

rule PTESC_apt_linux_ZZ_DecoyDog__Backdoor__EncryptedPayload{

 strings:

 $signature = { C8 01 00 00 9A 00 00 00 08 00 00 01 }

 condition:

 $signature at 0 and filesize > 3MB and filesize < 5MB

}

MITRE TTPs

ID Name Description
Initial
Access

T1190 Exploit Public-Facing
Application Adversaries compromise publicly available web services

T1199 Trusted Relationship Adversaries move across related systems
T1078 Valid Accounts Adversaries use legitimate accounts to log in via SSH
T1021.004 Remote Services: SSH Adversaries connect to a compromised host over SSH
Persistence

T1543.002 Create or Modify System
Process: Systemd Service

Decoy Dog gained a foothold on the system using dcrond.service
or atd.service

Defense
Evasion

T1480.001 Execution Guardrails:
Environmental Keying

The adversaries used machine-id of the victim's host to encrypt the
main payload and configuration file

T1140 Deobfuscate/Decode Files
or Information

The APT group encrypted its components using CLEFIA to protect
them from discovery and analysis

T1027.002
Obfuscated Files
or Information: Software
Packing

The APT group used a modified UPX algorithm to protect the
malware from discovery and analysis

Discovery

T1082 System Information
Discovery

The adversaries obtained machine-id of the infected host to compile
samples of the Decoy Dog loader, which will only work on that host

Command
and Control

T1568.002
Dynamic Resolution:
Domain Generation
Algorithms

The APT group developed a domain generation algorithm (DGA)

T1568.001 Dynamic Resolution: Fast
Flux DNS The APT group used DDNS services

T1071.004 Application Layer
Protocol: DNS

DNS tunneling is the main method for communication between
Decoy Dog RAT and the C2 server

Impact

T1485 Data Destruction The APT group destroyed the Linux and Windows infrastructure
in the incident at the telecom company

