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XZ backdoor story – Initial analysis
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On March 29, 2024, a single message on the Openwall OSS-security mailing list marked an important discovery for
the information security, open source and Linux communities: the discovery of a malicious backdoor in XZ. XZ is a
compression utility integrated into many popular distributions of Linux.

The particular danger of the backdoored library lies in its use by the OpenSSH server process sshd. On several
systemd-based distributions, including Ubuntu, Debian and RedHat/Fedora Linux, OpenSSH is patched to use
systemd features, and as a result has a dependency on this library (note that Arch Linux and Gentoo are unaffected).
The ultimate goal of the attackers was most likely to introduce a remote code execution capability to sshd that no one
else could use.

Unlike other supply chain attacks we have seen in Node.js, PyPI, FDroid, and the Linux Kernel that mostly consisted
of atomic malicious patches, fake packages and typosquatted package names, this incident was a multi-stage
operation that almost succeeded in compromising SSH servers on a global scale.

The backdoor in the liblzma library was introduced at two levels. The source code of the build infrastructure that
generated the final packages was slightly modified (by introducing an additional file build-to-host.m4) to extract the
next stage script that was hidden in a test case file (bad-3-corrupt_lzma2.xz). These scripts in turn extracted a
malicious binary component from another test case file (good-large_compressed.lzma) that was linked with the
legitimate library during the compilation process to be shipped to Linux repositories. Major vendors in turn shipped
the malicious component in beta and experimental builds. The compromise of XZ Utils is assigned CVE-2024–3094
with the maximum severity score of 10.

The timeline of events
2024.01.19 XZ website moved to GitHub pages by a new maintainer (jiaT75)

 2024.02.15 “build-to-host.m4” is added to .gitignore
 2024.02.23 two “test files” that contained the stages of the malicious script are introduced

2024.02.24 XZ 5.6.0 is released
 2024.02.26 commit in CMakeLists.txt that sabotages the Landlock security feature

 2024.03.04 the backdoor leads to issues with Valgrind
 2024.03.09 two “test files” are updated, CRC functions are modified, Valgrind issue is “fixed”

 2024.03.09 XZ 5.6.1 is released
 2024.03.28 bug is discovered, Debian and RedHat notified

 2024.03.28 Debian rolls back XZ 5.6.1 to 5.4.5-0.2 version
 2024.03.29 an email is published on the OSS-security mailing list

 2024.03.29 RedHat confirms backdoored XZ was shipped in Fedora Rawhide and Fedora Linux 40 beta
 2024.03.30 Debian shuts down builds and starts process to rebuild it

 2024.04.02 XZ main developer recognizes the backdoor incident
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Backdoored source distributions

xz-5.6.0

MD5 c518d573a716b2b2bc2413e6c9b5dbde
SHA1 e7bbec6f99b6b06c46420d4b6e5b6daa86948d3b
SHA256 0f5c81f14171b74fcc9777d302304d964e63ffc2d7b634ef023a7249d9b5d875

xz-5.6.1

MD5 5aeddab53ee2cbd694f901a080f84bf1
SHA1 675fd58f48dba5eceaf8bfc259d0ea1aab7ad0a7
SHA256 2398f4a8e53345325f44bdd9f0cc7401bd9025d736c6d43b372f4dea77bf75b8

Initial infection analysis

The XZ git repository contains a set of test files that are used when testing the compressor/decompressor code to
verify that it’s working properly. The account named Jia Tan or “jiaT75“, committed two test files that initially appeared
harmless, but served as the bootstrap to implant backdoor.

The associated files were:

bad-3-corrupt_lzma2.xz (86fc2c94f8fa3938e3261d0b9eb4836be289f8ae)
good-large_compressed.lzma (50941ad9fd99db6fca5debc3c89b3e899a9527d7)

These files were intended to contain shell scripts and the backdoor binary object itself. However, they were hidden
within the malformed data, and the attacker knew how to properly extract them when needed.

Stage 1 – The modified build-to-host script

When the XZ release is ready, the official Github repository distributes the project’s source files. Initially, these
releases on the repository, aside from containing the malicious test files, were harmless because they don’t get the
chance to execute. However, the attacker appears to have only added the malicious code that bootstrap the infection
when the releases were sourced from https://xz[.]tukaani.org, which was under the control of Jia Tan.

This URL is used by most distributions, and, when downloaded, it comes with a file named build-to-host.m4 that
contains malicious code.

build-to-host.m4 (c86c8f8a69c07fbec8dd650c6604bf0c9876261f) is executed during the build process and
executes a line of code that fixes and decompresses the first file added to the tests folder:

Deobfuscated line of code in build-to-host.m4

This line of code replaces the “broken” data from bad-3-corrupt_lzma2.xz using the tr command, and pipes the
output to the xz -d command, which decompresses the data. The decompressed data contains a shell script that will
be executed later using /bin/bash, triggered by this .m4 file.

Stage 2 – The injected shell script

The malicious script injected by the malicious .m4 file verifies that it’s running on a Linux machine and also that it’s
running inside the intended build process.

Injected script contents

To execute the next stage, it uses good-large_compressed.lzma, which is indeed compressed correctly with XZ, but
contains junk data inside the decompressed data.
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The junk data removal procedure is as follows: the eval function executes the head pipeline, with each head
command either ignoring the next 1024 bytes or extracting the next 2048 or 724 bytes.

In total, these commands extracted 33,492 bytes (2048*16 + 724 bytes). The tail command then retains the final
31,265 bytes of the file and ignores the rest.

Then, the tr command applies a basic substitution to the output to deobfuscate it. The second XZ command
decompresses the transformed bytes as a raw lzma stream, after which the result is piped into shell.

Stage 3 – Backdoor extraction

The last stage shell script performs many checks to ensure that it is running in the expected environment, such as
whether the project is configured to use IFUNC (which will be discussed in the next sections).

Many of the other checks performed by this stage include determining whether GCC is used for compilation or if the
project contains specific files that will be used by the script later on.

In this stage, it extracts the backdoor binary code itself, an object file that is currently hidden in the same good-
large_compressed.lzma file, but at a different offset.

The following code handles this:

Partial command used by the last script stage

The extraction process operates through a sequence of commands, with the result of each command serving as the
input for the next one. The formatted one-liner code is shown below:

Formatted backdoor extraction one-liner

Initially, the file good-large_compressed.lzma is extracted using the XZ tool itself. The subsequent steps involve
calling a chain of head calls with the “eval $i” function (same as the stage 3 extraction).

Then a custom RC4-like algorithm is used to decrypt the binary data, which contains another compressed file. This
compressed file is also extracted using the XZ utility. The script then removes some bytes from the beginning of the
decompressed data using predefined values and saves the result to disk as liblzma_la-crc64-fast.o, which is the
backdoor file used in the linking process.

https://sourceware.org/glibc/wiki/GNU_IFUNC
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/04/11145253/XZ_backdoor_analysis_13.png
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Finally, the script modifies the function is_arch_extension_supported from the crc_x86_clmul.h file in liblzma, to
replace the call to the __get_cpuid function with _get_cpuid, removing one underscore character.

This modification allows it to be linked into the library (we’ll discuss this in more detail in the next section). The whole
build infection chain can be summarized in the following scheme:

Binary backdoor analysis

A stealth loading scenario

In the original XZ code, there are two special functions used to calculate the CRC of the given data: lzma_crc32 and
lzma_crc64. Both of these functions are stored in the ELF symbol table with type IFUNC, a feature provided by the
GNU C Library (GLIBC). IFUNC allows developers to dynamically select the correct function to use. This selection
takes place when the dynamic linker loads the shared library.

The reason XZ uses this is that it allows for determining whether an optimized version of the lzma_crcX function
should be used or not. The optimized version requires special features from modern processors (CLMUL, SSSE3,
SSE4.1). These special features need to be verified by issuing the cpuid instruction, which is called using the
__get_cpuid wrapper/intrinsic provided by GLIBC, and it’s at this point the backdoor takes advantage to load itself.

The backdoor is stored as an object file, and its primary goal is to be linked to the main executable during
compilation. The object file contains the _get_cpuid symbol, as the injected shell scripts remove one underscore
symbol from the original source code, which means that when the code calls _get_cpuid, it actually calls the
backdoor’s version of it.

Backdoor code entry point

Backdoor code analysis

The initial backdoor code is invoked twice, as both lzma_crc32 and lzma_crc64 use the same modified function
(_get_cpuid). To ensure control over this, a simple counter is created to verify that the code has already been
executed. The actual malicious activity starts when the lzma_crc64 IFUNC invokes _get_cpuid, sees the counter
value 1 indicating that that the function has already been accessed, and initiates one final step to redirect to the true
entry point of this malware.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/04/11145446/XZ_backdoor_analysis_14.png
https://sourceware.org/glibc/wiki/GNU_IFUNC
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Backdoor initialization

To initialize the malicious code, the backdoor first initializes a couple of structures that hold core information about the
current running process. Primarily, it locates the Global Offset Table (GOT) address using hardcoded offsets, and
uses this information to find the cpuid pointer inside it.

GOT modification code

The GOT contains the offsets of symbols, including the cpuid wrapper. The backdoor then swaps the pointers to the
main malware function, and calls it as if it were calling cpuid.

Core behavior

The main goal of the backdoor is to successfully hook specific functions that will allow it to monitor every connection
to the infected machine. The targeted functions include:

Targeted function Description

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/04/11145625/XZ_backdoor_analysis_01.png
https://en.wikipedia.org/wiki/Global_Offset_Table
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/04/11145711/XZ_backdoor_analysis_03.png
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RSA_public_decrypt Used by libcrypto to decrypt a ciphertext signed by a private key
EVP_PKEY_set1_RSA Used by libcrypto to set the RSA key of a given context
RSA_get0_key Used by libcrypto to retrieve an RSA key

However, hooking all these functions is not a simple and straightforward task for the backdoor. It involves accessing
many internal structures and manipulating process-specific structures until it achieves its goal, and it also needs to be
as stealthy as possible, which means that the malicious code contains multiple checks to avoid being analyzed.

Execution environment check

It first parses ld-linux (dynamic linker), which is primarily responsible for dynamically resolving symbol addresses in
memory. It also extracts various information about the environment and verifies that the current process the backdoor
is running in matches its execution criteria, which are:

The current process is /usr/bin/sshd
Check if the kill switch is present

It extracts the name of the current process from argv[0] and also parses all the process environment variables to see
if any of them are present in its internal string table. If a match is found, or the process is not sshd, the malware halts
its execution.

Process environment check

The only variable inside its own table is yolAbejyiejuvnup=Evjtgvsh5okmkAvj, which in this context serves as a kill
switch.

The trie structure

One of the distinctive features of the backdoor is the use of a single trie structure for string operations. Instead of
directly comparing strings or using string hashes to match a particular constant (for example, the name of a library
function), the code performs a trie lookup, and checks if the result is equal to a certain constant number. For example,
the magic value for the ELF header results in the trie returning 0x300, and the name of the system function is
matched with a return value of 0x9F8. Trie is not just used for comparisons: certain functions that use pointers to
strings (for example, ssh-2.0) search for these strings in the host binary using the trie, so there will be no suspicious
data in the backdoor’s body.

The implementation of the trie uses 16-byte bitmasks, each half corresponding to the byte input ranges 0x00-0x3F
and 0x40-0x7F, and 2-byte trie leaf nodes, 3 bits of which are flags (direction, termination) and the rest is reserved
for the value (or the location of the next node).

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/04/11150105/XZ_backdoor_analysis_15.png
https://en.wikipedia.org/wiki/Trie
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Part of the trie lookup function that performs the bitmap match

Symbol resolver

There are at least three symbol resolver-related routines used by the backdoor to locate the ELF Symbol structure,
which holds information such as the symbol name and its offset. All symbol resolver functions receive a key to be
searched in the trie.

Symbol resolver example

One of the backdoor resolver functions iterates through all symbols and verifies which one has the desired key. If it is
found, it returns the Elf64_Sym structure, which will later be used to populate an internal structure of the backdoor
that holds all the necessary function pointers. This process is similar to that commonly seen in Windows threats with
API hashing routines.

The backdoor searches many functions from the libcrypto (OpenSSL) library, as these will be used in later encryption
routines. It also keeps track of how many functions it was able to find and resolve; this determines whether it is
executing properly or should stop.

Another interesting symbol resolver abuses the lzma_alloc function, which is part of the liblzma library itself. This
function serves as a helper for developers to allocate memory efficiently using the default allocator (malloc) or a
custom one. In the case of the XZ backdoor, this function is abused to make use of a fake allocator. In reality, it
functions as another symbol resolver. The parameter intended for “allocation size” is, in fact, the symbol key inside
the trie. This trick is meant to complicate backdoor analysis.

Symbol resolver using a fake allocator structure

The backdoor dynamically resolves its symbols while executing; it doesn’t necessarily do so all at once or only when
it needs to use them. The resolved symbols/functions range from legitimate OpenSSL functions to functions such as
system, which is used to execute commands on the machine.

The Symbind hook

As mentioned earlier, the primary objective of the backdoor initialization is to successfully hook functions. To do so,
the backdoor makes use of rtdl-audit, a feature of the dynamic linker that enables the creation of custom shared
libraries to be notified when certain events occur within the linker, such as symbol resolution. In a typical scenario, a
developer would create a shared library following the rtdl-audit manual. However, the XZ backdoor opts to perform a
runtime patch on the already registered (default) interfaces loaded in memory, thereby hijacking the symbol-resolving
routine.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/04/11150150/XZ_backdoor_analysis_16.png
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dl-audit runtime patch

The maliciously crafted structure audit_iface, stored in the dl_audit global variable within the dynamic linker’s
memory area, contains the symbind64 callback address, which is invoked by the dynamic linker. It sends all the
symbol information to the backdoor control, which is then used to obtain a malicious address for the target functions,
thus achieving hooking.

Hooking placement inside the Symbind modified callback

The addresses for dl_audit and dl_naudit, which holds the number of audit interfaces available, are obtained by
disassembling both the dl_main and dl_audit_symbind_alt functions. The backdoor contains an internal
minimalistic disassembler used for instruction decoding. It makes extensive use of it, especially when hunting for
specific values like the *audit addresses.

dl_naudit hunting code

The dl_naudit address is found by one of the mov instructions within the dl_main function code that accesses it.
With that information, the backdoor hunts for access to a memory address and saves it.

It also verifies if the memory address acquired is the same address as the one accessed by the
dl_audit_symbind_alt function on a given offset. This allows it to safely assume that it has indeed found the correct
address. After it finds the dl_naudit address, it can easily calculate where dl_audit is, since the two are stored next
to each other in memory.

Conclusion
In this article, we covered the entire process of backdooring liblzma (XZ), and delved into a detailed analysis of the
binary backdoor code, up to achieving its principal goal: hooking.

It’s evident that this backdoor is highly complex and employs sophisticated methods to evade detection. These
include the multi-stage implantation in the XZ repository, as well as the complex code contained within the binary
itself.

There is still much more to explore about the backdoor’s internals, which is why we have decided to present this as
Part I of the XZ backdoor series.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/04/11150425/XZ_backdoor_analysis_11.png
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Kaspersky products detect malicious objects related to the attack as HEUR:Trojan.Script.XZ and Trojan.Shell.XZ.
In addition, Kaspersky Endpoint Security for Linux detects malicious code in SSHD process memory as
MEM:Trojan.Linux.XZ (as part of the Critical Areas Scan task).

Indicators of compromise

Yara rules

1

2

3

4
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rule liblzma_get_cpuid_function {

   meta:

description = "Rule to find the malicious get_cpuid function CVE-2024-3094"

            author = "Kaspersky Lab"

   strings:

        $a = { F3 0F 1E FA 55 48 89 F5 4C 89 CE 53 89 FB 81 E7 00 00 00 80 48 83 EC 28 48 89 54 24 18
48 89 4C 24 10 4C 89 44 24 08 E8 ?? ?? ?? ?? 85 C0 74 27 39 D8 72 23 4C 8B 44 24 08 48 8B 4C 24 10
45 31 C9 48 89 EE 48 8B 54 24 18 89 DF E8 ?? ?? ?? ?? B8 01 00 00 00 EB 02 31 C0 48 83 C4 28 5B 5D
C3 }  

    condition:

        $a

}

Known backdoored libraries

Debian Sid liblzma.so.5.6.0
 4f0cf1d2a2d44b75079b3ea5ed28fe54

 72e8163734d586b6360b24167a3aff2a3c961efb
 319feb5a9cddd81955d915b5632b4a5f8f9080281fb46e2f6d69d53f693c23ae

Debian Sid liblzma.so.5.6.1
 53d82bb511b71a5d4794cf2d8a2072c1

 8a75968834fc11ba774d7bbdc566d272ff45476c
 605861f833fc181c7cdcabd5577ddb8989bea332648a8f498b4eef89b8f85ad4

Related files
 d302c6cb2fa1c03c710fa5285651530f, liblzma.so.5

 4f0cf1d2a2d44b75079b3ea5ed28fe54, liblzma.so.5.6.0
 153df9727a2729879a26c1995007ffbc, liblzma.so.5.6.0.patch

 53d82bb511b71a5d4794cf2d8a2072c1, liblzma.so.5.6.1
 212ffa0b24bb7d749532425a46764433, liblzma_la-crc64-fast.o

Analyzed artefacts
 35028f4b5c6673d6f2e1a80f02944fb2, bad-3-corrupt_lzma2.xz

 b4dd2661a7c69e85f19216a6dbbb1664, build-to-host.m4
 540c665dfcd4e5cfba5b72b4787fec4f, good-large_compressed.lzma
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