
1/22

www.zscaler.com /blogs/security-research/dodgebox-deep-dive-updated-arsenal-apt41-part-1

DodgeBox: A deep dive into the updated arsenal of APT41 | Part
1
Yin Hong Chang, Sudeep Singh ⋮ ⋮ 7/10/2024

Security Research

July 10, 2024 - 19 min read

Introduction
This is Part 1 of our two-part technical deep dive into APT41’s new tooling, which includes DodgeBox and
MoonWalk. For details about MoonWalk, go to Part 2.

In April 2024, Zscaler ThreatLabz uncovered a previously unknown loader called DodgeBox. Upon further
analysis, striking similarities were found between DodgeBox and variants of StealthVector, a tool associated with
the China-based advanced persistent threat (APT) actor APT41 / Earth Baku. DodgeBox is a loader that
proceeds to load a new backdoor named MoonWalk. MoonWalk shares many evasion techniques implemented
in DodgeBox and utilizes Google Drive for command-and-control (C2) communication.

This two-part blog series aims to provide detailed technical analysis of both the DodgeBox loader and the
MoonWalk backdoor. The goal is to assist blue teams in comprehending this emerging threat and offer insights
into our attribution of the threat. Part 1 will offer an in-depth examination of the DodgeBox loader, highlighting its

https://www.zscaler.com/blogs/security-research/dodgebox-deep-dive-updated-arsenal-apt41-part-1
https://undefined/blogs?type=security-research
https://undefined/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2


2/22

distinct characteristics and resemblances to StealthVector while Part 2 will delve into the intricacies of the
MoonWalk backdoor.

Key Takeaways
APT41, a China-based nation state threat actor known for its campaigns in Southeast Asian countries,
has recently been observed deploying an advanced and upgraded version of StealthVector. We have
named this new variant DodgeBox.
DodgeBox incorporates various evasive techniques such as call stack spoofing, DLL sideloading, DLL
hollowing and environmental guardrails. These techniques work together to significantly decrease the
chances of detection by security defenses.
Upon analyzing DodgeBox, we discovered significant resemblances to the well-known StealthVector
loader used by APT41. These similarities, combined with the distinct utilization of DLL side loading and
the acquisition of telemetry data from targeted countries, have led us to attribute this new loader to APT41
/ Earth Baku with a moderate level of confidence.

Technical Analysis

Attack chain

APT41 employs DLL sideloading as a means of executing DodgeBox. They utilize a legitimate executable
(taskhost.exe), signed by Sandboxie, to sideload a malicious DLL (sbiedll.dll). This malicious DLL, DodgeBox,
serves as a loader and is responsible for decrypting a second stage payload from an encrypted DAT file
(sbiedll.dat). The decrypted payload, MoonWalk functions as a backdoor that abuses Google Drive for
command-and-control (C2) communication. The figure below illustrates the attack chain at a high level.

https://undefined/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2


3/22

Figure 1: Attack chain used to deploy the DodgeBox loader and MoonWalk backdoor.

DodgeBox analysis

DodgeBox, a reflective DLL loader written in C, showcases similarities to StealthVector in terms of concept but
incorporates significant improvements in its implementation. It offers various capabilities, including decrypting
and loading embedded DLLs, conducting environment checks and bindings, and executing cleanup procedures.
What sets DodgeBox apart from other malware is its unique algorithms and techniques.

During our threat hunting activities, we came across two DodgeBox samples that were designed to be
sideloaded by signed legitimate executables. One of these executables was developed by Sandboxie
(SandboxieWUAU.exe), while the other was developed by AhnLab. All exports within the DLL point to a single
function that primarily invokes the main function of the malware, as illustrated below:

void SbieDll_Hook() 

{

 if ( dwExportCalled ) 

 {

   Sleep(0xFFFFFFFF);

 }

 else



4/22

 {

   hSbieDll_ = hSbieDll; 

   dwExportCalled = 1; 

   MalwareMain(); 

 }

}

MalwareMain implements the main functionality of DodgeBox, and can be broken down into three main
phases:

1. Decryption of DodgeBox’s configuration

DodgeBox employs AES Cipher Feedback (AES-CFB) mode for encrypting its configuration. AES-CFB
transforms AES from a block cipher into a stream cipher, allowing for the encryption of data with different
lengths without requiring padding. The encrypted configuration is embedded within the .data section of the
binary. To ensure the integrity of the configuration, DodgeBox utilizes hard-coded MD5 hashes to validate both
the embedded AES keys and the encrypted configuration. For reference, a sample of DodgeBox's decrypted
configuration can be found in the Appendix section of this blog. We will reference this sample configuration
using the variable Config in the following sections.

2. Execution guardrails and environment setup

After decrypting its configuration, DodgeBox performs several environment checks to ensure it is running on its
intended target.

Execution guardrail: Argument check

DodgeBox starts by verifying that the process was launched with the correct arguments. It scans the argv
parameter for a specific string defined in Config.szArgFlag. Next, it calculates the MD5 hash of the
subsequent argument and compares it to the hash specified in Config.rgbArgFlagValueMD5. In this case,
DodgeBox expects the arguments to include --type driver. If this verification check fails, the process is
terminated.

Environment setup: API Resolution

Afterwards, DodgeBox proceeds to resolve multiple APIs that are utilized for additional environment checks and
setup. Notably, DodgeBox employs a salted FNV1a hash for DLL and function names. This salted hash
mechanism aids DodgeBox in evading static detections that typically search for hashes of DLL or function
names. Additionally, it enables different samples of DodgeBox to use distinct values for the same DLL and
function, all while preserving the integrity of the core hashing algorithm.

The following code shows DodgeBox calling its ResolveImport function to resolve the address
of LdrLoadDll, and populating its import table.

// ResolveImport takes in (wszDllName, dwDllNameHash, dwFuncNameHash) 

sImportTable->ntdll_LdrLoadDll = 

ResolveImport(L"ntdll", 0xFE0B07B0, 0xCA7BB6AC);



5/22

Inside the ResolveImport function, DodgeBox utilizes the FNV1a hashing function in a two-step process.
First, it hashes the input string, which represents a DLL or function name. Then, it hashes a salt value
separately. This two-step hashing procedure is equivalent to hashing the concatenation of the input string and
salt. The following pseudo-code represents the implementation of the salted hash:

dwHash = 0x811C9DC5;     // Standard initial seed for FNV1a 

pwszInputString_Char = pwszInputString; 

cchInputString = -1LL; 

do

 ++cchInputString; 

while ( pwszInputString[cchInputString] ); 

pwszInputStringEnd = (pwszInputString + 2 * cchInputString); 

if ( pwszInputString < pwszInputStringEnd ) 

{

 do  // Inlined FNV1a hash 

 {

   chChar = *pwszInputString_Char; 

   pwszInputString_Char = (pwszInputString_Char + 1); 

   dwHash = 0x1000193 * (dwHash ^ chChar); 

 }

 while ( pwszInputString_Char < pwszInputStringEnd ); 

}

v17 = &g_HashSaltPostfix;    // Salt value: CB 24 B4 BA 

do  // Inlined FNV1a hash, use previous hash as seed 

{

 v18 = *v17; 

 v17 = (v17 + 1); 

 dwHash = 0x1000193 * (dwHash ^ v18); 

}

while ( v17 < g_HashSaltPostfix_End );

A Python script to generate the salted hashes is included in the Appendix.

In addition to the salted hash implementation, DodgeBox incorporates another noteworthy feature in
its ResolveImport function. This function accepts both the DLL name as a string and its hash value as
arguments. This redundancy appears to be designed to provide flexibility, allowing DodgeBox to handle
scenarios where the target DLL has not yet been loaded. In such cases, DodgeBox invokes the LoadLibraryW
function with the provided string to load the DLL dynamically.

Furthermore, DodgeBox effectively handles forwarded exports and exports by ordinals. It
utilizes ntdll!LdrLoadDll and ntdll!LdrGetProcedureAddressEx when necessary to resolve the
address of the exported function. This approach ensures that DodgeBox can successfully resolve and utilize the
desired functions, regardless of the export method used.

Environment setup: DLL unhooking

Once DodgeBox has resolved the necessary functions, it proceeds to scan and unhook DLLs that are loaded
from the System32 directory. This process involves iterating through the .pdata section of each DLL, retrieving



6/22

each function’s start and end addresses, and calculating an FNV1a hash for the bytes of each function.
DodgeBox then computes a corresponding hash for the same function's bytes as stored on disk. If the two
hashes differ, potential tampering can be detected, and DodgeBox will replace the in-memory function with the
original version from the disk.

For each DLL that has been successfully scanned, DodgeBox marks the
corresponding LDR_DATA_TABLE_ENTRY by clearing the ReservedFlags6 field and setting the upper bit to 1.
This marking allows DodgeBox to avoid scanning the same DLL twice.

Environment setup: Disabling CFG

Following that, DodgeBox checks if the operating system is Windows 8 or newer. If so, the code verifies whether
Control Flow Guard (CFG) is enabled by calling GetProcessMitigationPolicy with
the ProcessControlFlowGuardPolicy parameter. If CFG is active, the malware attempts to disable it.

To achieve this, DodgeBox locates the LdrpHandleInvalidUserCallTarget function within ntdll.dll by
searching for a specific byte sequence. Once found, the malware patches this function with a simple jmp rax
instruction:

ntdll!LdrpHandleInvalidUserCallTarget: 

00007ffe`fc8cf070 48ffe0          jmp     rax 

00007ffe`fc8cf073 cc              int     3 

00007ffe`fc8cf074 90              nop

CFG verifies the validity of indirect call targets. When a CFG check
fails, LdrpHandleInvalidUserCallTarget is invoked, typically raising an interrupt. At this point, the rax
register contains the invalid target address. The patch modifies this behavior, calling the target directly instead of
raising an interrupt, thus bypassing CFG protection.

In addition, DodgeBox replaces msvcrt!_guard_check_icall_fptr
with msvcrt!_DebugMallocator<int>::~_DebugMallocator<int>, a function that returns 0 to disable
the CFG check performed by msvcrt.

Execution guardrail: MAC, computer name, and user name checks

Finally, DodgeBox performs a series of checks to verify if it is configured to run on the current machine. The
malware compares the machine’s MAC address against Config.rgbTargetMac, and compares the computer
name against Config.wszTargetComputerName. Depending on the Config.fDoCheckIsSystem flag,
DodgeBox checks whether it is running with SYSTEM privileges. If any of these checks fail, the malware
terminates execution.

3. Payload decryption and environment keying

Payload decryption

In the final phase, DodgeBox commences the decryption process for the MoonWalk payload DAT file. The code
starts by inspecting the first four bytes of the file. If these bytes are non-zero, it signifies that the DAT file has
been tied to a particular machine, (which is described below). However, if the DAT file is not machine-specific,
DodgeBox proceeds to decrypt the file using AES-CFB encryption, utilizing the key parameters stored in the

https://www.blackhat.com/docs/us-15/materials/us-15-Zhang-Bypass-Control-Flow-Guard-Comprehensively-wp.pdf


7/22

configuration file. In the samples analyzed by ThreatLabz, this decrypted DAT file corresponds to a DLL, which
is the MoonWalk backdoor.

Environment keying of the payload

After the decryption process, DodgeBox takes the additional step of keying the payload to the current machine.
It accomplishes this by re-encrypting the payload using the Config.rgbAESKeyForDatFile key. However, in this
specific scenario, the process deviates from the configuration file's IV (Initialization Vector). Instead, it utilizes
the MD5 hash of the current machine's GUID as the AES IV. This approach guarantees that the decrypted DAT
file cannot be decrypted on any other machine, thus enhancing the payload's security.

Loading the payload using DLL hollowing

Next, DodgeBox reflectively loads the payload using a DLL hollowing technique. At a high level, the process
begins with the random selection of a host DLL from the System32 directory, ensuring it is not on a blocklist
(DLL blocklist available in the Appendix section) and has a sufficiently large .text section. A copy of this DLL is
then created
at C:\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace\v4.0_4.0.0.0__<random
bytes from pcrt4!UuidCreate>\<name of chosen DLL>.dll. DodgeBox modifies this copy by
disabling the NX flag, removing the reloc and TLS sections, and patching its entry point with a simple return
1.

Following the preparation of the host  DLL for injection, DodgeBox proceeds by zeroing the PE headers, and
the IMAGE_DATA_DIRECTORY structures corresponding to the import, reloc, and debug directories of the
payload DLL. This modified payload DLL is then inserted into the previously selected host DLL. The resulting
copy of the modified host DLL is loaded into memory using the NtCreateSection
and NtMapViewOfSection APIs.

Once the DLL is successfully loaded, DodgeBox updates the relevant entries in the Process Environment Block
(PEB) to reflect the newly loaded DLL. To further conceal its activities, DodgeBox overwrites the modified copy
of the host DLL with its original contents, making it appear as a legitimate, signed DLL on disk. Finally, the
malware calls the entrypoint of the payload DLL.

Interestingly, if the function responsible for DLL hollowing fails to load the payload DLL, DodgeBox employs a
fallback mechanism. This fallback function implements a traditional form of reflective DLL loading
using NtAllocateVirtualMemory and NtProtectVirtualMemory.

At this stage, the payload DLL has been successfully loaded, and control is transferred to the payload DLL by
invoking the first exported function.

Call stack spoofing

There is one last technique employed by DodgeBox throughout all three phases discussed above: call stack
spoofing. Call stack spoofing is employed to obscure the origins of API calls, making it more challenging for
EDRs and antivirus systems to detect malicious activity. By manipulating the call stack, DodgeBox makes API
calls appear as if they originate from trusted binaries rather than the malware itself. This prevents security
solutions from gaining contextual information about the true source of the API calls.

DodgeBox specifically utilizes call stack spoofing when invoking Windows APIs that are more likely to be
monitored. As an example, it directly calls RtlInitUnicodeString, a Windows API that only performs string



8/22

manipulation, instead of using stack spoofing.

(sImportTable->ntdll_RtlInitUnicodeString)(v25, v26);

However, call stack spoofing is used when calling NtAllocateVirtualMemory, an API known to be abused
by malware, as shown below:

CallFunction( 

   sImportTable->ntdll_NtAllocateVirtualMemory,  // API to call 

   0,    // Unused

   6LL,  // Number of parameters 

   // Parameters to the API 

   -1LL, &pAllocBase, 0LL, &dwSizeOfImage, 0x3000, PAGE_READWRITE)

The technique mentioned above can be observed in the figures below. In the first figure, we can see a typical
call stack when explorer.exe invokes the CreateFileW function. The system monitoring tool, SysMon, effectively
walks the call stack, enabling us to understand the purpose behind this API call and examine the modules and
functions involved in the process.



9/22

Figure 2: Normal example of stack trace from explorer.exe calling CreateFileW.

In contrast, the next figure shows the call stack recorded by SysMon when DodgeBox uses stack spoofing to
call the CreateFileW function. Notice that there is no indication of DodgeBox’s modules that triggered the API
call. Instead, the modules involved all appear to be legitimate Windows modules.



10/22

Figure 3:  Stack trace of DodgeBox calling CreateFileW using the stack spoofing technique.

There is an excellent writeup of this technique, so we will only highlight some implementation details specific to
DodgeBox:

When the CallFunction is invoked, DodgeBox uses a random jmp qword ptr [rbp+48h] gadget
residing within the .text section of KernelBase.
DodgeBox analyzes the unwind codes within the .pdata section to extract the unwind size for the
function that includes the selected gadget.
DodgeBox obtains the addresses of RtlUserThreadStart + 0x21 and BaseThreadInitThunk +
0x14, along with their respective unwind sizes.
DodgeBox sets up the stack by inserting the addresses of RtlUserThreadStart +
0x21, BaseThreadInitThunk + 0x14, and the address of the gadget at the right positions, utilizing
the unwind sizes retrieved.
Following that, DodgeBox proceeds to insert the appropriate return address at [rbp+48h] and prepares
the registers and stack with the necessary argument values to be passed to the API. This preparation
ensures that the API is called correctly and with the intended parameters.
Finally, DodgeBox executes a jmp instruction to redirect the control flow to the targeted API.

Threat Attribution

In this section, we outline the different tactics, techniques, and procedures (TTPs) that were utilized as
indicators during our threat attribution process. Through the identification of these overlapping TTPs, we
attribute this activity to a China-based threat actor known as APT41. Our confidence level in this attribution is
medium.

Abuse of DLL sideloading

DLL sideloading is a technique commonly utilized by APT groups with links to China. Typically, this method
involves three essential components: a legitimate executable (EXE) file that is signed, a malicious DLL file, and
an encrypted data file. While the specific combination of the EXE and DLL files mentioned here has not been

https://labs.withsecure.com/publications/spoofing-call-stacks-to-confuse-edrs


11/22

publicly documented as being associated with APT41, the presence of these three components could indicate
the involvement of a group linked to China.

Targeted regions

Analysis of the telemetry available in VirusTotal reveals that DodgeBox samples have been submitted from both
Thailand and Taiwan. This observation aligns with previous instances of APT41 employing StealthVector in
campaigns primarily targeting users in the Southeast Asian (SEA) region.

Furthermore, during the monitoring of the attacker-controlled Google Drive account utilized for C2
communication, a spreadsheet containing the personal details of individuals from India was discovered. This
spreadsheet is publicly available from other sources, suggesting that the threat actor may have leveraged it to
identify potential additional targets.

Similarities between DodgeBox and StealthVector

During our analysis of DodgeBox, we noted a number of similarities with StealthVector. In this section, we
compare the code between variants of StealthVector uploaded to VirusTotal in 2021 and 2024, along with
DodgeBox.

Similarities in checksum and configuration decryption

Both StealthVector and DodgeBox perform an integrity check on their encrypted configurations. This verification
process consists of two essential steps. First, the hard-coded size of the configuration is validated, ensuring it
matches the expected size. Second, the hash of the configuration is verified to ensure its integrity. Once these
checks are successfully completed, the malware proceeds with decrypting the configuration.

StealthVector (2021)

Figure 4: StealthVector uses the CRC32 hashing algorithm and the ChaCha20 algorithm for decryption
(screenshot from TrendMicro).

Old variants of StealthVector use a CRC32 hashing algorithm for integrity checks and ChaCha20 for decryption
of the configuration.

StealthVector (2024)



12/22

Figure 5: StealthVector uses the CRC32 hashing algorithm and AES-CBC algorithm for decryption.

Newer variants of StealthVector use a CRC32 hashing algorithm, and AES-CBC for decryption.

DodgeBox

Figure 6: DodgeBox uses the MD5 hashing algorithm and AES-CFB algorithm for decryption.

DodgeBox uses an MD5 hashing algorithm for integrity checks, and AES-CFB for decryption of the
configuration.

Similarities in decrypted configuration format

These similarities encompass various aspects such as guardrails, payload filenames, sizes and offsets, as well
as cryptographic secrets. Both the original StealthVector and DodgeBox configurations also incorporate
checksums for their encrypted payloads.

StealthVector (2021)



13/22

Figure 7: Configuration extracted from the 2021 variant of StealthVector.

The configuration extracted from the 2021 variant of StealthVector reveals several similarities with the 2024
variant of StealthVector and DodgeBox.

StealthVector (2024)

Figure 8: Configuration extracted from the 2024 variant of StealthVector.

The configuration extracted from the 2024 variant of StealthVector reveals several similarities with the 2021
variant of StealthVector and DodgeBox.



14/22

DodgeBox

Figure 9: Configuration extracted from DodgeBox.

The configuration extracted from DodgeBox reveals several similarities with the 2024 and 2021 variant of
StealthVector.

Similarities in environment keying

Both StealthVector and DodgeBox perform environment keying by decrypting then re-encrypting the bundled
payload.

StealthVector (2021)

TrendMicro’s report did not document StealthVector utilizing environment keying.

StealthVector (2024)



15/22

Figure 10: 2024 variant of StealthVector performing environment keying, using a rolling XOR against the
computer name.

The updated version of StealthVector employs the first four bytes of the payload
(rgbDecryptedData_In_Out) to check whether the payload has been keyed. If the payload has not been
previously keyed, StealthVector proceeds to key it using the computer name of the target machine.

This keying process involves a rolling XOR operation to encode the payload, followed by re-encryption using
AES. In the analyzed sample, StealthVector sets the first four bytes of the payload to 0x90909090, serving as
an indicator that the payload has been successfully keyed.

DodgeBox



16/22

Figure 11: DodgeBox uses a technique called environment keying, where it uses the hash of the machine's
GUID as the AES Initialization Vector (IV).

DodgeBox employs the first four bytes of the payload (pFileData) to determine whether it has been keyed. If
the payload has not been previously keyed, DodgeBox decrypts the payload using the AES IV from its
configuration. DodgeBox then proceeds to re-encrypt it using the MD5 hash of the target machine's
MachineGUID as the new AES IV.

In the given sample, DodgeBox sets the first four bytes of the payload to 0x000000ED. This non-zero value
serves as an indicator that the payload has indeed been keyed and should be decrypted with the new AES IV.

Similarities in disabling CFG

All three samples exhibit remarkably similar logic in their approach to patching CFG. This similarity extends to
the use of identical byte patterns for locating the LdrpHandleInvalidUserCallTarget function, as well as applying
the same patch in this function.

StealthVector (2021)



17/22

Figure 12: Code from the 2021 variant of StealthVector disabling CFG (screenshot from TrendMicro).

The code extracted from the 2021 variant of StealthVector showcases the disabling of CFG with striking
similarity to all three samples.

StealthVector (2024)

Figure 13: Code from the 2024 variant of StealthVector, disabling CFG.

The code extracted from the 2024 variant of StealthVector showcases the disabling of CFG with striking
similarity to all three samples.

DodgeBox



18/22

Figure 14: Code from DodgeBox disabling CFG.

The code extracted from DodgeBox showcases the disabling of CFG with striking similarity to all three samples.

Similarities in the use of DLL Hollowing

All three samples exhibit the capability to load bundled payloads through DLL hollowing. Notably, the 2024
version of StealthVector shares an identical list of blocklisted DLLs with DodgeBox. 

To Be Continued

DodgeBox is a newly identified malware loader that employs multiple techniques to evade both static and
behavioral detection. Based on a combination of known TTPs, potential countries targeted, and similarities with
StealthVector, we have attributed this activity to the China-based nation state threat actor APT41 with moderate
confidence. In our journey through Part 1 of this series, we analyzed the technical details surrounding
DodgeBox, and its similarities with StealthVector. In Part 2, we will analyze the MoonWalk backdoor - which is
dropped by DodgeBox.

Indicators Of Compromise (IOCs)

MD5 Filename Description
0d068b6d0523f069d1ada59c12891c4a Music.zip ZIP archive containing DodgeBox samples.
b3067f382d70705d4c8f6977a7d7bee4 taskhost.exe Original Sandboxie signed binary.
d72f202c1d684c9a19f075290a60920f Sbiedll.dll DodgeBox DLL sideloaded by taskhost.exe.

294cc02db5a122e3a1bc4f07997956da Sbiedll.dat
Encrypted payload DLL that decrypts to the
MoonWalk backdoor.

393065ef9754e3f39b24b2d1051eab61 Atstrust.dll
DodgeBox DLL which is sideloaded by an
undetermined AhnLab executable.

bcac2cbda36019776d7861f12d9b59c4 Atstrust.dat
Encrypted payload DLL that decrypts the
MoonWalk backdoor.

f062183da590aba5e911d2392bc29181 AppRouted.dll 2024 StealthVector loader.

https://undefined/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2


19/22

MD5 Filename Description

4141c4b827ff67c180096ff5f2cc1474 AppRouteing.dll
Encrypted shellcode and payload DLL that
decrypts to CobaltStrike.

bc85062de0f70afd44bb072b0b71a8cc N/A 2024 StealthVector loader
72070b165d1f11bd4d009a81bf28a3e5 mscms.dll 2024 StealthVector loader

f0953ed4a679b987a2da955788737602 roboform-

x64.dll
2024 StealthVector loader

MITRE ATT&CK Framework

Tactic ID Technique Description

Defense
Evasion T1574.002

Hijack
Execution
Flow: DLL
Side-Loading

DodgeBox samples are designed to be executed by DLL
sideloading.

Defense
Evasion T1480 Execution

Guardrails

DodgeBox terminates execution if specific arguments are not
provided.

DodgeBox contains capabilities to restrict execution to machines
with specific MAC addresses, computer names, and user names.

Defense
Evasion T1480.001

Execution
Guardrails:
Environmental
Keying

DodgeBox keys the encrypted payload to a machine, using a
machine’s GUID.

Defense
Evasion T1027

Obfuscated
Files or
Information

DodgeBox uses AES-CFB to encrypt strings, configurations, and
bundled payloads.

Defense
Evasion T1027.007

Obfuscated
Files or
Information:
Dynamic API
Resolution

DodgeBox uses salted FNV1a hashes to dynamically resolve APIs.

Defense
Evasion T1620 Reflective

Code Loading DodgeBox reflectively loads payload DLLs, utilizing DLL hollowing.

Defense
Evasion T1106 Native API

DodgeBox uses Windows Native APIs
like NtCreateFile, LdrLoadDll, and NtAllocateVirtualMemory, as
opposed to their Win32 counterparts.

Defense
Evasion T1562.001

Impair
Defenses:
Disable or
Modify Tools

DodgeBox utilizes stack spoofing when calling APIs to evade
security software monitoring.

DodgeBox performs a scan within its own address space to detect
any alterations, such as hooks or debugger breakpoints. If it
identifies any signs of modification, DodgeBox takes action to
restore the original code from disk, effectively undoing any
unauthorized changes made to its code.

Appendix

An example decrypted configuration of DodgeBox is shown in the figure below.



20/22

The Python implementation of DodgeBox’s salted FNV1a hash is shown below.



21/22

def fnv1a_salted(data, salt, seed_value=0x811c9dc5): 

   _data = data + salt 

   _hash = seed_value 

   prime = 0x01000193 

   for byte in _data:

       _hash ^= byte

       _hash *= prime

       _hash &= 0xFFFFFFFF

   return _hash

# ntdll in utf-16 

ntdll = b"n\x00t\x00d\x00l\x00l\x00" 

salt = b"\xba\xb4\x24\xcb" 

print(hex(fnv1a_salted(ntdll, salt)))  # 0xfe0b07b0 

ldrloaddll = b"LdrLoadDll" 

print(hex(fnv1a_salted(ldrloaddll, salt)))  # 0xca7bb6ac

DodgeBox’s list of blocklisted DLLs is shown below.

advapi32.dll

bcrypt.dll

bcryptprimitives.dll

cfgmgr32.dll

combase.dll

cryptbase.dll

cryptsp.dll

dhcpcsvc.dll

dhcpcsvc6.dll

dnsapi.dll

FWPUCLNT.DLL

gdi32.dll

gdi32full.dll

iertutil.dll

imm32.dll

IPHLPAPI.DLL

kernel.appcore.dll

kernel32.dll

KernelBase.dll

locale.nls

msvcp_win.dll

msvcrt.dll

mswsock.dll

NapiNSP.dll

nlaapi.dll

nsi.dll

ntdll.dll



22/22

ntmarta.dll

oleaut32.dll

OnDemandConnRouteHelper.dll

pnrpnsp.dll

powrprof.dll

apphelp.dll

profapi.dll

rasadhlp.dll

rpcrt4.dll

rsaenh.dll

sechost.dll

SHCore.dll

shell32.dll

shlwapi.dll

sspicli.dll

ucrtbase.dll

urlmon.dll

user32.dll

userenv.dll

webio.dll

win32u.dll

windows.storage.dll

winhttp.dll

wininet.dll

winnlsres.dll

winnsi.dll

winrnr.dll

winsta.dll

ws2_32.dll

wshbth.dll

wtsapi32.dll


