
1/2

February 2, 2004

The management of memory for resources in 16-bit
Windows

devblogs.microsoft.com/oldnewthing/20040202-00

Raymond Chen

In a previous entry I threatened to discuss the way resources were managed in 16-bit

Windows.

In 16-bit Windows, resources were not loaded until explicitly requested.

The FindResource function located the entry for the resource in the resource directory

and returned it in the form of a HRSRC.

The LoadResource function took that resource handle, allocated some movable memory

(HGLOBAL), and loaded the referenced resources off the disk into that memory.

The LockResource function took that global handle and locked it, returning a pointer to

the resource bytes themselves.

The UnlockResource function unlocked the global handle.

The FreeResource function freed the memory that had been allocated to hold the

resource.

Actually, it was more complicated than this. Additional bookkeeping ensure that if two

people tried to load the same resource, the same memory block got used for both, and the

FreeResource didn’t actually free the memory until the reference count went back to zero.

Actually, it was even more complicated than this. If the resource was marked

DISCARDABLE, then the memory wasn’t actually freed when the reference count dropped to

zero. Instead, the global handle was marked as discardable (GMEM_DISCARDABLE), so the

handle remained valid, but when the system came under memory pressure, the memory

behind the handle would get freed, and the next time you did a LoadResource, it would get

reloaded from disk.

So now you know what that DISCARDABLE keyword in resource files means. Or at least

what it used to mean. Win32 doesn’t do any of this; the DISCARDABLE flag is ignored but

remains for compatibility.

https://devblogs.microsoft.com/oldnewthing/20040202-00/?p=40783
https://devblogs.microsoft.com/oldnewthing/20040130-00/?p=40813


2/2

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

