
1/2

February 10, 2004

Answer to exercise: Pointer to member function cast
devblogs.microsoft.com/oldnewthing/20040210-00

Raymond Chen

Yesterday’s exercise asked you to predict and explain the codegen for the following fragment:

class Base1 { int b1; void Base1Method(); };
class Base2 { int b2; void Base2Method(); };
class Derived : public Base1, Base2
 { int d; void DerivedMethod(); };
class Derived2 : public Base3, public Derived { };
void (Derived::*pfnDerived)();
void (Derived2::*pfnDerived2();
pfnDerived2 = pfnDerived;

Well, the codegen might go something like this:

 mov ecx, pfnDerived[0] ; ecx = address
 mov pfnDerived2[0], ecx
 mov ecx, pfnDerived2[4] ; ecx = adjustor
 add ecx, sizeof(Base3) ; adjust the adjustor!
 mov pfnDerived2[4], ecx

Let’s use one of our fancy pictures:

p → Base3::b3

q → Base2::b2
Base1::b1
Derived::d

Just for fun, I swapped the order of Base1 and Base2. There is no requirement in the

standard about the order in which storage is allocated for base classes, so the compiler is

completely within its rights to put Base2 first, if it thinks that would be more efficient.

A pointer to member function for class Derived expects the “this” pointer to be at “q”. So

when we have a “p”, we need to add sizeof(Base3) to it to convert it to “q”, on top of whatever

other adjustment the original function pointer wanted. That’s why we add sizeof(Base3) to

https://devblogs.microsoft.com/oldnewthing/20040210-00/?p=40683
http://weblogs.asp.net/oldnewthing/archive/2004/02/09/70002.aspx

2/2

the existing adjustor to make a new combined adjustor.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

