
1/2

June 29, 2004

The difference between thread-safety and re-entrancy
devblogs.microsoft.com/oldnewthing/20040629-00

Raymond Chen

An operation is “thread-safe” if it can be performed from multiple threads safely, even if the

calls happen simultaneously on multiple threads.

An operation is re-entrant if it can be performed while the operation is already in progress

(perhaps in another context). This is a stronger concept than thread-safety, because the

second attempt to perform the operation can even come from within the same thread.

Consider the following function:

int length = 0;
char *s = NULL;
// Note: Since strings end with a 0, if we want to
// add a 0, we encode it as "\0", and encode a
// backslash as "\\".
// WARNING! This code is buggy - do not use!
void AddToString(int ch)
{
 EnterCriticalSection(&someCriticalSection);
 // +1 for the character we're about to add
 // +1 for the null terminator
 char *newString = realloc(s, (length+1) * sizeof(char));
 if (newString) {
 if (ch == '\0' || ch == '\\') {
 AddToString('\\'); // escape prefix
 }
 newString[length++] = ch;
 newString[length] = '\0';
 s = newString;
 }
 LeaveCriticalSection(&someCriticalSection);
}

This function is thread-safe because the critical section prevents two threads from attempting

to add to the string simultaneously. However, it is not re-entrant.

https://devblogs.microsoft.com/oldnewthing/20040629-00/?p=38643

2/2

The internal call to AddToString occurs while the data structures are unstable. At the point of

the call, execution re-enters the start of the function AddToString, but this time the attempt

to realloc the memory will use a pointer (s) that is no longer valid. (It was invalidated by the

call to realloc performed by the caller.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

