
1/2

February 1, 2005

How to detect programmatically whether you are running
on 64-bit Windows

devblogs.microsoft.com/oldnewthing/20050201-00

Raymond Chen

To detect programmatically whether your 32-bit program is running on 64-bit Windows, you

can use the IsWow64Process function.

Do not do as some people do and hard-code the list of 64-bit processors. You’d think that

after the hard-coded list of 64-bit processors changed the first time (when x64 was added to

ia64), people would have learned their lesson.

But how do you detect programmatically from your 64-bit process whether you are running

on 64-bit Windows? Easy.

BOOL Is64BitProcessRunningOn64BitWindows()
{
return TRUE;
}

The fact that your 64-bit program is running at all means that you are running on 64-bit

Windows! If it were a 32-bit machine, your program wouldn’t be able to run.

It’s like asking the question, “Is the power on?” If there were no power, your program

wouldn’t be able to ask the question.

Of course, if you want a single source code base that can be compiled both as a 32-bit

program and as a 64-bit program, you have a tiny amount of work to do.

https://devblogs.microsoft.com/oldnewthing/20050201-00/?p=36553
http://geekswithblogs.net/khanna/archive/2004/07/14/8374.aspx

2/2

BOOL Is64BitWindows()
{
#if defined(_WIN64)
return TRUE; // 64-bit programs run only on Win64
#elif defined(_WIN32)
// 32-bit programs run on both 32-bit and 64-bit Windows
// so must sniff
BOOL f64 = FALSE;
return IsWow64Process(GetCurrentProcess(), &f64) && f64;
#else
return FALSE; // Win64 does not support Win16
#endif
}

I threw in a branch for 16-bit programs if you’re crazy enough to be still writing 16-bit

Windows programs.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

