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We can take our computation of the interval between two moments in time and combine it

with the trick we developed for using the powers of mathematics to simplify multi-level

comparisons to reduce the amount of work we impose upon the time/date engine.

static void PrintAge(DateTime bday, DateTime asof) 
{ 
// Accumulate years without going over. 
int years = asof.Year - bday.Year; 
if (asof.Month*32 + asof.Day < bday.Month*32 + bday.Day) years--; 
DateTime t = bday.AddYears(years); 
// Accumulate months without going over. 
int months = asof.Month - bday.Month; 
if (asof.Day < bday.Day) months--; 
months = (months + 12) % 12; 
t = t.AddMonths(months); 
// Days are constant-length, woo-hoo! 
int days = (asof - t).Days; 
SC.WriteLine("{0} years, {1} months, {2} days", 
             years, months, days); 
} 

Observe that we avoided a call to the AddYears  method (which is presumably rather

complicated because years are variable-length) by replacing it with a multi-level comparison

to determine whether the ending month/day falls later in the year than the starting

month/day. Since no month has 32 days, a multiplier of 32 is enough to avoid an overflow of

the day into the month field of the comparison key.
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