
1/2

April 15, 2005

Tweaking our computation of the interval between two
moments in time

devblogs.microsoft.com/oldnewthing/20050415-52

Raymond Chen

We can take our computation of the interval between two moments in time and combine it

with the trick we developed for using the powers of mathematics to simplify multi-level

comparisons to reduce the amount of work we impose upon the time/date engine.

static void PrintAge(DateTime bday, DateTime asof)
{
// Accumulate years without going over.
int years = asof.Year - bday.Year;
if (asof.Month*32 + asof.Day < bday.Month*32 + bday.Day) years--;
DateTime t = bday.AddYears(years);
// Accumulate months without going over.
int months = asof.Month - bday.Month;
if (asof.Day < bday.Day) months--;
months = (months + 12) % 12;
t = t.AddMonths(months);
// Days are constant-length, woo-hoo!
int days = (asof - t).Days;
SC.WriteLine("{0} years, {1} months, {2} days",
 years, months, days);
}

Observe that we avoided a call to the AddYears method (which is presumably rather

complicated because years are variable-length) by replacing it with a multi-level comparison

to determine whether the ending month/day falls later in the year than the starting

month/day. Since no month has 32 days, a multiplier of 32 is enough to avoid an overflow of

the day into the month field of the comparison key.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20050415-52/?p=35893
http://blogs.msdn.com/oldnewthing/archive/2005/04/14/408106.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/04/13/407835.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

