
1/2

April 18, 2005

What is the HINSTANCE passed to CreateWindow and
RegisterClass used for?

devblogs.microsoft.com/oldnewthing/20050418-59

Raymond Chen

One of the less-understood parameters to
the CreateWindow function
and
the

RegisterClass function
is the HINSTANCE (either passed as a parameter
or as part of
the

WNDCLASS structure).

The window class name is not sufficient to identify the class uniquely.
Each process has its

own window class list,
and each entry in the window class list consists of an instance handle

and a class name.
For example, here’s what the window class list might look like if a
program

has two DLLs, both of which register a class name “MyClass”,
passing the DLL’s handle as the

HINSTANCE .

HINSTANCE Class name

1. USER32.DLL Static

2. USER32.DLL Button

3. USER32.DLL Listbox

4. USER32.DLL Combobox

5. USER32.DLL Edit

6. A.DLL MyClass

7. B.DLL MyClass

When it comes time to create a window, each module then passes
its own HINSTANCE when

creating the window,
and the window manager uses the combination of the instance handle

and the class name to look up the class.

CreateWindow("MyClass", ..., hinstA, ...); // creates class 6

CreateWindow("MyClass", ..., hinstB, ...); // creates class 7

CreateWindow("MyClass", ..., hinstC, ...); // fails

https://devblogs.microsoft.com/oldnewthing/20050418-59/?p=35873
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/windows/windowreference/windowfunctions/createwindow.asp
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/windowclasses/windowclassreference/windowclassfunctions/registerclass.asp
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/windowclasses/windowclassreference/windowclassstructures/wndclass.asp

2/2

This is why it is okay if multiple DLLs all register a class
called “MyClass”; the instance

handle is used to tell them apart.

There is an exception to the above rule, however.
If you pass the CS_GLOBALCLASS flag

when registering
the class, then the window manager will ignore the instance handle
when

looking for your class. All of the USER32 classes are registered
as global. Consequently, all of

the following calls create the
USER32 edit control:

CreateWindow("edit", ..., hinstA, ...);

CreateWindow("edit", ..., hinstB, ...);

CreateWindow("edit", ..., hinstC, ...);

If you are registering a class for other modules to use in
dialog boxes, you need to register as

CS_GLOBALCLASS ,
because as we saw earlier
the internal CreateWindow call performed

during dialog
box creation to create the controls
passes the dialog’s HINSTANCE as the

HINSTANCE parameter.
Since the dialog instance handle is typically the DLL that is
creating

the dialog
(since
that same HINSTANCE is used to look up the template),
failing to register

with the CS_GLOBALCLASS flag
means that the window class lookup will not find the class

since it’s registered under the instance handle of the DLL that
provided the class, not the one

that is using it.

In 16-bit Windows, the instance handle did other things, too,
but they are no longer relevant

to Win32.

A common mistake is to pass the
 HINSTANCE of some other module
(typically, the primary

executable)
when registering a window class.
Now that you understand what the

HINSTANCE is used for,
you should be able to
explain the consequences of registering a class

with the wrong
 HINSTANCE .

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2005/03/30/403711.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/03/29/403298.aspx
http://www.experts-exchange.com/Programming/Programming_Platforms/Win_Prog/Q_20331499.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

