
1/1

October 11, 2005

Thread affinity of user interface objects, part 2: Device
contexts

devblogs.microsoft.com/oldnewthing/20051011-10

Raymond Chen

Last time, we discussed briefly the thread affinity rules that govern window handles.

Device contexts (DCs) also have a certain degree of thread affinity. The thread that calls

functions such as GetDC must also be the one that calls ReleaseDC, but as with window

handles, during the lifetime of the DC, any thread can use it. If you choose to use a DC in a

multi-threaded manner, it’s your responsibility to coordinate the consumers of that device

context so that only one thread uses it at a time. For example, to host windowless controls

across multiple threads, the host obtains a DC on the host thread, then asks each control in

sequence to draw itself into that DC. Only one control draws into the DC at a time, even if the

control happens to be on a different thread.

The thread affinity of DCs is much more subtle than that of window handles, because if you

mess up and release a DC from the wrong thread, things will still seem to be running okay,

but the window manager’s internal bookkeeping will be messed up and you may get a bad DC

from GetDC a little later down the line.

Next time, the remaining user interface elements.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/20051011-10/?p=33823
http://msdn.microsoft.com/library/en-us/gdi/devcons_4esj.asp
http://msdn.microsoft.com/library/en-us/gdi/devcons_66hv.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

