
1/2

September 20, 2006

Don't forget to unregister your window classes when
your DLL shuts down dynamically

devblogs.microsoft.com/oldnewthing/20060920-07

Raymond Chen

If your DLL is unloaded dynamically, you need to make sure you have unregistered your

window classes. (You can tell whether the DLL_PROCESS_DETACH is due to a dynamic unload

or whether it’s due to process termination by checking the lpReserved parameter to your

DllMain function.) If you forget to unregister your window classes, all sorts of bad things

can happen:
First, if you registered any of those classes as a CS_GLOBALCLASS , then people

will still be able to create a window of that class by passing its class name to the

CreateWindowEx function (or any other function that leads to CreateWindowEx). Since

your DLL is no longer in memory, the moment it receives a window message (like, say,

WM_NCCREATE), the process will crash since the window procedure has been unloaded. This

manifests itself in crashes with the instruction pointer in no-man’s land—these are typically

not easy to debug, and the Windows error reports that are generated by these crashes won’t

even be assigned to your DLL since your DLL is long gone.
Second, even if you registered the

classes as private classes, you are still committing namespace pollution, leaking the class into

a namespace that you no longer own. If another DLL gets loaded at the same base address as

your DLL (thereby receiving the same HINSTANCE , it inherits this dirty namespace. If that

DLL wants to register its own class that happens to have the same name as the class you

leaked, its call to RegisterClassEx will fail with ERROR_CLASS_ALREADY_EXISTS . This

typically leads to the DLL failing to initialize or (if the problem is not detected) an attempt to

create a window of that class creating instead a window of your leaked class, with a

window procedure whose address now resides somewhere in the middle of this new DLL.

This is even worse than an instruction pointer in no-man’s land; instead, control goes to a

random instruction in the new DLL and probably will manage to execute for a little while

before finally keeling over. What’s worse, not only does the crash not get reported against

your DLL (which is no longer in memory), but it gets erroneously reported against the new

DLL since it is the new DLL’s code that was executing when the crash finally occurred.

Congratulations, you just created work for somebody you never met. Those poor victims are

going to be scratching their heads trying to figure out how control ended up in the middle of

a totally random function with completely nonsense values on the stack and in the registers.

Third, the namespace you pollute can be your own. Suppose you registered a class as a

CS_GLOBALCLASS , then your DLL gets unloaded and you forget to unregister the class.

https://devblogs.microsoft.com/oldnewthing/20060920-07/?p=29663

2/2

Later, your DLL gets reloaded, but due to changes in the virtual address map, it gets loaded

at a new address. Now your DLL attempts to re-register its CS_GLOBALCLASS classes, and

the call fails with ERROR_CLASS_ALREADY_EXISTS . If you’re lucky, your DLL detects the

error and fails to load, resulting in missing functionality. If you’re unlucky, you fail to detect

the error and succeed the load anyway. Then the code that did the LoadLibrary will try to

create a window with that class, but instead of getting your DLL’s window class (which failed

to register), it gets the window class left over by that first copy of your DLL! Since that DLL

no longer exists, you get a crash with the instruction pointer off in no-man’s land.
This is not

a purely theoretical problem. The shell common controls library contained this bug of

neglecting to unregister all its classes when dynamically unloaded, and we had to issue a

hotfix because the crashes caused by it were actually occurring on real users’ machines. Don’t

be the one responsible for having to issue a hotfix for your product. Unregister your classes if

the process is going to continue running after your DLL unloads. Because it’s the right thing

to do.

(Now, you might notice that this goes against the rule of not calling out to other DLLs during

your DLL_PROCESS_ATTACH . The solution for this is to have a “cleanup” function that people

must call before calling FreeLibrary on your library to balance the “initialization” function

that they had to call to register your control classes. On the other hand, if you failed to plan

ahead for this, such as the shell common control did with its InitCommonControlsEx

function without a matching UninitCommonControls function, then you have to decide

between the lesser of two evils.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

