
1/2

January 2, 2007

Why can't I GetProcAddress for CreateWindow?
devblogs.microsoft.com/oldnewthing/20070102-04

Raymond Chen

Occasionally, I’ll see people having trouble trying to GetProcAddress for functions like

CreateWindow or ExitWindows . Usually, it’s coming from people who are trying to write

p/invoke signatures, for p/invoke does a GetProcAddress under the covers. Why can’t you

GetProcAddress for these functions?

Because they’re not really functions. They’re function-like macros:

#define CreateWindowA(lpClassName, lpWindowName, dwStyle, x, y,\
nWidth, nHeight, hWndParent, hMenu, hInstance, lpParam)\
CreateWindowExA(0L, lpClassName, lpWindowName, dwStyle, x, y,\
nWidth, nHeight, hWndParent, hMenu, hInstance, lpParam)
#define CreateWindowW(lpClassName, lpWindowName, dwStyle, x, y,\
nWidth, nHeight, hWndParent, hMenu, hInstance, lpParam)\
CreateWindowExW(0L, lpClassName, lpWindowName, dwStyle, x, y,\
nWidth, nHeight, hWndParent, hMenu, hInstance, lpParam)
#ifdef UNICODE
#define CreateWindow CreateWindowW
#else
#define CreateWindow CreateWindowA
#endif // !UNICODE
#define ExitWindows(dwReserved, Code) ExitWindowsEx(EWX_LOGOFF, 0xFFFFFFFF)

In fact, as you can see above CreateWindow is doubly a macro. First, it’s a redirecting

macro that expands to either CreateWindowA or CreateWindowW , depending on whether

or not you are compiling UNICODE . Those are in turn function-like macros that call the real

function CreateWindowExA or CreateWindowExW . All this is handled by the compiler if

you include the winuser.h header file, but if for some reason you want to

GetProcAddress for a function-like macro like CreateWindow , you’ll have to manually

expand the macro to see what the real function is and pass that function name to

GetProcAddress .

Similar remarks apply to inline functions. These functions can’t be obtained via

GetProcAddress because they aren’t exported at all; they are provided to you as source

code in the header file.

https://devblogs.microsoft.com/oldnewthing/20070102-04/?p=28533

2/2

Note that whether something is a true function or a function-like macro (or an inline

function) can depend on your target platform. For example, GetWindowLongPtrA is a true

exported function on 64-bit Windows, but on 32-bit Windows, it’s just a macro that resolves

to GetWindowLongA . As another example, the Interlocked family of functions are

exported functions on the x86 version of Windows but are inlined functions on all other

Windows architectures.

How can you figure all this out? Read the header files. That’ll show you whether the function

you want is a redirecting macro, a function-like macro, an inline function, an intrinsic

function, or a proper exported function. If you can’t figure it out from the header files, you

can always just write a program that calls the function you’re interested in and then look at

the disassembly to see what actually got generated.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

