
1/4

May 21, 2007

Don't be helpless: I don't know anything about MFC
modal loops, but unlike some people, I'm not afraid to
find out

devblogs.microsoft.com/oldnewthing/20070521-00

Raymond Chen

Commenter Tom Grelinger asks via the Suggestion Box:

If I have a modal CDialog that is visible and usable to the user.
Let’s say I receive an event
somewhere else in the program
and I call DestroyWindow on the modal CDialog from within
the event.
I notice that the OnDestroy is called on the CDialog,
but DoModal never exits until a
WM_QUIT is posted to the modal’s message pump.
What are the pitfalls to this?
Unfortunately,
there is really no way to avoid this situation.

I’m not sure what the question is, actually.
The question as stated is “What are the pitfalls to

this?”
but he answered that in his own question:
The pitfall is that “DoModal never exits until

a WM_QUIT is
posted to the modal dialog’s message pump.”

I’m going to assume that the question really is,
“Why doesn’t destroying the window work?”

with the follow-up question,
“What is the correct way to dismiss a modal dialog?”

The first problem with this question is that it assumes that I know
what a CDialog is.
From

its name, I’m going to assume that this
is an MFC class for managing a dialog box.
But you

don’t even have to know that to answer the first
reformulated question operating only from

Win32 principles:
 DestroyWindow is not how you exit a modal dialog.
You exit a modal

dialog with EndDialog .
The DestroyWindow technique is for modeless
dialogs.

But let’s look at the question another way,
which is my point for today:
You have the MFC

source code.
Don’t be afraid to read it.
Especially since I don’t use MFC personally;
I don’t

even know the basic principles of application design with MFC.
I work in straight Win32.
As

a result,
I don’t know the answer off the top of my
head, but fifteen minutes reading the MFC

source code quickly reveals
the reason why destroying the window doesn’t work.

Watch me as I go and find out the answer.
It’s nothing you can’t already do yourself.

https://devblogs.microsoft.com/oldnewthing/20070521-00/?p=26783
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#430296

2/4

The
 CDialog::DoModal method
calls CWnd::RunModalLoop to run the dialog loop.
If you

look at CWnd::RunModalLoop ,
you can see the conditions under which it will exit the modal

loop.
Here’s the code with irrelevant details deleted.
(They’re irrelevant because they have

nothing to do with how the
modal loop exits.)

int CWnd::RunModalLoop(DWORD dwFlags)

{

 ... preparatory work ...

 // acquire and dispatch messages until the modal state is done

 for (;;)

 {

 ... code that doesn't break out of the loop ...

 // phase2: pump messages while available

 do

 {

 // pump message, but quit on WM_QUIT

 if (!AfxGetThread()->PumpMessage())

 {

 AfxPostQuitMessage(0);

 return -1;

 }

 ... other code that doesn't break out of the loop ...

 if (!ContinueModal())

 goto ExitModal;

 ... other code that doesn't break the loop ...

 } while (::PeekMessage(pMsg, NULL, NULL, NULL, PM_NOREMOVE))

 }

ExitModal:

 m_nFlags &= ~(WF_MODALLOOP|WF_CONTINUEMODAL);

 return m_nModalResult;

}

There are only two ways out of this loop.
The first is the receipt of a WM_QUIT message.
The

second is if CWnd::ContinueModal decides that
the modal loop is finished.
The commenter

already mentioned the quit message aspect to the
modal loop, so that just leaves

CWnd::ContinueModal .

The CWnd::ContinueModal method is very simple:

BOOL CWnd::ContinueModal()

{

 return m_nFlags & WF_CONTINUEMODAL;

}

Therefore, the only other way the loop can exit is if somebody
clears the

WF_CONTINUEMODAL flag.
A little grepping shows that there are only three places where this

flag is cleared.
One is in CPropertyPage , which is a derived class
of CDialog and

therefore isn’t relevant here.
(I’ll ignore CPropertyPage in future searches.)
The second is

in the line above right after the label
 ExitModal .
And the third is this method:

3/4

void CWnd::EndModalLoop(int nResult)

{

 // this result will be returned from CWnd::RunModalLoop

 m_nModalResult = nResult;

 // make sure a message goes through to exit the modal loop

 if (m_nFlags & WF_CONTINUEMODAL)

 {

 m_nFlags &= ~WF_CONTINUEMODAL;

 PostMessage(WM_NULL);

 }

}

This method is called in only one place:

void CDialog::EndDialog(int nResult)

{

 if (m_nFlags & (WF_MODALLOOP|WF_CONTINUEMODAL))

 EndModalLoop(nResult);

 ::EndDialog(m_hWnd, nResult);

}

Following the money one last step,
the CDialog::EndDialog method is called
from four

places in CDialog .
It’s called from CDialog::HandleInitDialog and

CDialog::InitDialog if some catastrophic error
occurs during dialog initialization.
And

it's called from CDialog::OnOK
and CDialog::OnCancel in response to the
user clicking

the OK or Cancel buttons.

Notice that the CDialog::EndDialog method is not
called when somebody forcibly

destroys the dialog from
the outside.

That's why destroying the dialog window doesn't break the modal loop.
If you want to break

out of the modal loop, your only choices are
to post a quit message or call

CWnd::EndModalLoop ,
either directly or indirectly (via CDialog::EndDialog ,
for

example).

Notice that the MFC modal loop obeys the convention on quit messages
by re-posting the

quit message when it breaks out of the modal loop.
(Though it really should have posted the

wParam from
the quit message rather than just posting zero.)

The workaround therefore is not to destroy the dialog with
 DestroyWindow (something you

should have known
not to do a priori since that's not how you exit
modal dialog boxes) but

rather by calling
 CDialog::EndDialog , passing a result code that
lets the caller of

CDialog::DoModal know that
the dialog box exited under unusual circumstances.

This took me fifteen minutes to research and a little over an hour to
write up.
All this work to

answer a question that you should have been able
to answer yourself with a little elbow

grease.
You're a smart person.
Have confidence in yourself.
You can do it.
I know you can.

4/4

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

