
1/2

January 2, 2008

You know the answer: Window destruction
devblogs.microsoft.com/oldnewthing/20080102-00

Raymond Chen

The following request for assistance came in from a customer,
and given what you know

about window destruction,
you should eventually be able to figure it out yourself once all the

pieces are in place,
though it takes some time for all the clues to be revealed.

We are hitting this exception in our program.
This is urgent; please give it priority attention.

0006f6ac kernel32!InterlockedCompareExchange+0xc

0006f6ec comctl32!CImageListBase::IsValid+0x2a

0006f6fc comctl32!HIMAGELIST_QueryInterface+0x2c

0006f714 comctl32!ImageList_GetBkColor+0x1b

0006f724 comctl32!TV_HasTransparentImage+0x1c

0006f744 comctl32!TV_SelectItem+0x1a

0006f7d4 comctl32!TV_DeleteItemRecurse+0x12a

0006f85c comctl32!TV_DeleteItemRecurse+0x58

0006f87c comctl32!TV_DeleteItem+0x8c

0006f89c comctl32!TV_DestroyTree+0x90

0006f900 comctl32!TV_WndProc+0x2e7

0006f92c USER32!InternalCallWinProc+0x23

0006f9a4 USER32!UserCallWinProcCheckWow+0x14b

0006fa00 USER32!DispatchClientMessage+0xda

0006fa28 USER32!__fnDWORD+0x24

0006fa54 ntdll!KiUserCallbackDispatcher+0x2e

0006fa58 USER32!NtUserDestroyWindow+0xc

0006faac comctl32!_RealPropertySheet+0x307

0006fac0 comctl32!_PropertySheet+0x45

0006fad0 comctl32!PropertySheetW+0xf

0006fbc4 abc!Wizard::ModalExecute+0x17c

0006fc50 abc!RunWizard+0x564

0006fcac abc!Start+0x185

0006fd70 abc!ABCEntryW+0x2b9

0006ff5c abc!wmain+0x7db

0006ffa0 abc!__tmainCRTStartup+0x10f

0006ffac kernel32!BaseThreadInitThunk+0xe

0006ffec ntdll!_RtlUserThreadStart+0x23

https://devblogs.microsoft.com/oldnewthing/20080102-00/?p=23953

2/2

The proximate problem is that the treeview control is trying
to use an imagelist that is no

longer valid,
probably because it has already been destroyed.
If you look at the stack, you can

see that the treeview
control is being destroyed.
You might infer this from the function

named
 TV_DestroyTree ,
or if you look at the parameters, which I removed from the
stack

trace for brevity, you would see that
the message is WM_DESTROY .

The next step in unwinding the problem is figuring out
who destroyed the imagelist while it

was still in use.
The customer shared their source code, and a little bit
of spelunking revealed

that it was this function
which destroyed the imagelist:

void

XYZPage::OnDestroy()

{

 if (m_hImageList)

 {

 ImageList_RemoveAll(m_hImageList);

 ImageList_Destroy(m_hImageList);

 }

}

Now all the clues to the puzzle have been laid out on the table.
Use your fantastic powers of

deduction to see where the customer
went wrong.
To refresh your memory, you might want

to read
this old blog entry.

(And now that you’ve seen and understood this problem,
in the future you can jump from the

stack trace directly to the
conclusion,
thereby exhibiting your psychic debugging powers.)

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2005/07/26/443384.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

