
1/2

January 16, 2008

Use WM_WINDOWPOSCHANGING to intercept window
state changes

devblogs.microsoft.com/oldnewthing/20080116-00

Raymond Chen

The WM_WINDOWPOSCHANGING message is sent early in the window state changing process,

unlike WM_WINDOWPOSCHANGED , which tells you about what already happened. A crucial

difference (aside from the timing) is that you can influence the state change by handling the

WM_WINDOWPOSCHANGING message and modifying the WINDOWPOS structure.

Here’s an example that prevents the window from being resized.

BOOL OnWindowPosChanging(HWND hwnd, WINDOWPOS *pwp)
{
 pwp->flags |= SWP_NOSIZE;
 /* Continue with default handling */
 return FORWARD_WM_WINDOWPOSCHANGING(hwnd, pwp, DefWindowProc);
}
HANDLE_MSG(hwnd, WM_WINDOWPOSCHANGING, OnWindowPosChanging);

Before the WM_WINDOWPOSCHANGING message was invented, programs had to enforce

window size constraints inside their WM_SIZE and WM_MOVE handlers, but since those

messages are sent after the change is complete, the result was flicker as the window changed

to one size, then the WM_SIZE handler resized it to a better size. Intercepting the window

size change in WM_WINDOWPOSCHANGING allows you to enforce constraints before the sizing

happens, thereby avoiding flicker.

The WM_WINDOWPOSCHANGING and WM_WINDOWPOSCHANGED pair of messages is just one

example of the more general *CHANGING / *CHANGED pattern. (Other examples are

WM_STYLECHANGING / WM_STYLECHANGED and LVN_ITEMCHANGING / LVN_ITEMCHANGED .)

The *CHANGING half is sent before the change takes place, and as a general rule, you can

change the parameters of the notification to enforce some type of constraint. After you return

from the *CHANGING notification, the actual change takes place, and then you receive a

*CHANGED to indicate that the change is complete.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20080116-00/?p=23803
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

