
1/2

January 16, 2008

Use WM_WINDOWPOSCHANGING to intercept window
state changes

devblogs.microsoft.com/oldnewthing/20080116-00

Raymond Chen

The WM_WINDOWPOSCHANGING message is sent early in the
window state changing process,

unlike
 WM_WINDOWPOSCHANGED ,
which tells you about what already happened.
A crucial

difference (aside from the timing)
is that you can influence the state change
by handling the

WM_WINDOWPOSCHANGING message
and modifying the WINDOWPOS structure.

Here’s an example that prevents the window from being resized.

BOOL OnWindowPosChanging(HWND hwnd, WINDOWPOS *pwp)

{

 pwp->flags |= SWP_NOSIZE;

 /* Continue with default handling */

 return FORWARD_WM_WINDOWPOSCHANGING(hwnd, pwp, DefWindowProc);

}

HANDLE_MSG(hwnd, WM_WINDOWPOSCHANGING, OnWindowPosChanging);

Before the WM_WINDOWPOSCHANGING message was invented,
programs had to enforce

window size constraints
inside their WM_SIZE and WM_MOVE handlers,
but since those

messages are sent after the change is complete,
the result was flicker as the window changed

to one size,
then the WM_SIZE handler resized it to a better size.
Intercepting the window

size change in WM_WINDOWPOSCHANGING
allows you to enforce constraints before the sizing

happens, thereby
avoiding flicker.

The WM_WINDOWPOSCHANGING and
 WM_WINDOWPOSCHANGED pair of messages is just one

example
of the more general *CHANGING / *CHANGED pattern.
(Other examples are

WM_STYLECHANGING / WM_STYLECHANGED
and LVN_ITEMCHANGING / LVN_ITEMCHANGED .)

The *CHANGING half is sent before
the change takes place, and as a general rule,
you can

change the parameters of the notification to enforce some
type of constraint.
After you return

from the *CHANGING notification,
the actual change takes place, and then you receive a

*CHANGED to indicate that the change is complete.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20080116-00/?p=23803
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

