
1/3

February 4, 2008

DLL forwarding is not the same as delay-loading
devblogs.microsoft.com/oldnewthing/20080204-00

Raymond Chen

As I noted earlier,
when you
create a forwarder entry in an export table,
the corresponding

target DLL is not loaded until somebody
links to the forwarder entry.
It looks like
some

people misread this statement to suggest some sort of
delay-loading
so I’m going to state it

again with an example in mind in the
hopes of clearing up any confusion
(and risking

creating more confusion than I clear up).

Suppose that you have a DLL called A.DLL that has a forwarder
entry to B.DLL :

; A.DEF

EXPORTS

 Dial = B.Call

 Pour

 Refill

This specifies that if somebody wants the function Dial
from A.DLL , they will actually get

the function
 Call from B.DLL .
The delay-load-like behavior is that B.DLL is not
loaded

until somebody asks for the Dial function.

I will use the notation DLLNAME!FunctionName to mean
“the function FunctionName

from the DLL named
 DLLNAME .”
This is the notation used by the ntsd debugger.

Consider this program:

POURME.EXE

Imports from A.DLL

 Pour

 Refill

The POURME program will not result in B.DLL
being loaded since it never links to

A!Dial .
Of course A.DLL will get loaded because the program
wants the functions

A!Pour and A!Refill .
This is the “delay-load-like behavior” I mentioned in the original

entry:
If you don’t call a function that forwards to B.DLL ,
then B.DLL won’t get loaded.

Alternative, you could have used this method to do the forwarding:

https://devblogs.microsoft.com/oldnewthing/20080204-00/?p=23593
http://blogs.msdn.com/oldnewthing/archive/2006/07/19/671238.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/07/19/671238.aspx#685293

2/3

; A2.DEF

EXPORTS

Dial

Pour

Refill

/* a2.c */

// Forward Dial to B!Call

HRESULT Dial()

{

return Call();

}

This pseudo-forwarder is not a forwarder in the linker sense;
it is an attempt to emulate

linker forwarding in code.
Now let’s look at the corresponding alternate POURME program:

POURME2.EXE

Imports from A2.DLL

 Pour

 Refill

Even though POURME2 doesn’t call A2!Dial ,
the file B.DLL will nevertheless be loaded

when
 POURME2 runs because A2.DLL contains
a dependency on B.DLL in its own import

table:

; dump of headers of A2.DLL

Imports from B.DLL

 Call

Loading A2.DLL will cause B.DLL to be
loaded since B.DLL is listed as one of A2 ‘s

dependencies.

Commenter bruteforce got off on the wrong foot by calling the above
mechanism a delay-

loading feature.

I tried to take advantage of the delay-loading feature
described above for the forwarder DLLs…

The mechanism is not delay-loading and I never said that it was.
The quasi-delay-load

behavior is that a forwarded-to DLL is not
loaded until somebody links to it.
The term delay-

loading typically is used to apply to delaying the
load of a module until a function in that

module is called.
But import resolution happens at load time, not run time.

Commenter bruteforce tried to create a forwarder to a nonexistent
function, and then tried to

link to the forwarder DLL.
As we saw above, this triggers an attempt to resolve the forward
by

loading the forwarded-to DLL and looking for the function.
If this fails, then the original

import request is declared to have
failed.
This all happens as part of the import resolution

process.
And as we saw many years ago,
Win32 fails a module load if an import cannot be

resolved.
Since the forwarder cannot be resolved, the load fails.
Import forwarding

http://blogs.msdn.com/oldnewthing/archive/2003/09/16/54938.aspx

3/3

functionality is completely unsuitable for
functions whose presence you wish to detect and

respond to at runtime.
As with all imports, an import failure is considered a fatal error.
If you

want delay-loading, then you need to do delay-loading.
Forwarding is not delay-loading.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

