
1/2

March 25, 2008

What's the difference between int and INT, long and
LONG, etc?

devblogs.microsoft.com/oldnewthing/20080325-00

Raymond Chen

When you go through Windows header files, you’ll see types with names INT , LONG ,

CHAR , and so on. What’s the difference between these types and the uncapitalized ones?

Well, there isn’t one any more.
What follows is an educated guess as to the story behind these

types.
The application binary interface for an operating system needs to be unambiguous.

Everybody has to agree on how parameters are passed, which registers are preserved, that

sort of thing. A compiler need only enforce the calling convention rules at the boundary

between the application and the operating system. When a program calls another function

provided by that same program, it can use whatever calling convention it likes. (Not a true

statement but the details aren’t important here.) Therefore, a calling convention attribute on

the declarations of each operating system function is sufficient to get everybody to agree on

the interface.
However, another thing that everybody needs to agree on is the sizes of the

types being passed to those functions or used in structures that cross the

application/operating system boundary. The C language makes only very loose guarantees as

to the sizes of each of the types, so language types like int and long would be ambiguous.

One compiler might decide that a long is a 32-bit integer, and another might decide that

it’s a 64-bit integer. To make sure that everybody was on the same page, the Windows header

files defined “platform types” like INT and LONG with prescribed semantics that everybody

could agree on. Each compiler vendor could tweak the Windows header file to ensure that the

type definition for these platform types resulted in the value that Windows expected. One

compiler might use typedef long LONG another might use typedef __int32 LONG .

Okay, but this doesn’t explain VOID . Maybe VOID was added for the benefit of compilers

which didn’t yet support the then-new ANSI C standard type void ? Those older compilers

could typedef int VOID; and functions that were declared as “returning VOID ” would

be treated as if they returned an integer that was always ignored. Or maybe it was just added

to complete the set, who knows.

In the intervening years, most if not all compilers which target Windows have aligned their

native types with Windows’ platform types. An int is always a 32-bit signed integer, as is a

long . As a result, the distinction between language types and platform types is now pretty

https://devblogs.microsoft.com/oldnewthing/20080325-00/?p=23013

2/2

much academic, and the two can be used interchangeably. New Windows functions tend to

be introduced with language types, leaving platform types behind only for compatibility.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

