
1/2

April 16, 2008

Raymond’s reading list: The Mythical Man-Month, The
Design of Everyday Things, and Systemantics

devblogs.microsoft.com/oldnewthing/20080416-00

Raymond Chen

The first two of these books are probably on everybody else’s reading list, but I’m going to

mention them anyway since I consider them required reading for managers and designers.

(Note: Links may be sponsored.)

The Mythical Man-Month is over 30 years old, but the lessons contained therein are as true

now as they were back in 1975, such as what is now known as Brooks’ law: Adding

manpower to a late software product makes it later.

I much preferred the original title for The Design of Everyday Things, namely, The

Psychology of Everyday Things, but I’m told that booksellers ended up mistakenly filing the

book in the psychology section. Once you’ve read this book, you will never look at a door the

same way again. And you’ll understand the inside joke when I say, “I bet it won an award.”

The third book is the less well-known Systemantics: How Systems Work and Especially

How They Fail. The book was originally published in 1978, then reissued under the slightly

less catchy title, Systemantics: The Underground Text of Systems Lore, and re-reissued

under the completely soul-sucking title The Systems Bible. I reject all the retitling and

continue to refer to the book as Systemantics.

Systemantics is very much like The Mythical Man-Month, but with a lot more attitude. The

most important lessons I learned are a reinterpretation of Le Chatelier’s Principle for

complex systems (“Every complex system resists its proper functioning”) and the

Fundamental Failure-Mode Theorem (“Every complex system is operating in an error

mode”).

You’ve all experienced the Fundamental Failure-Mode Theorem: You’re investigating a

problem and along the way you find some function that never worked. A cache has a bug that

results in cache misses when there should be hits. A request for an object that should be there

somehow always fails. And yet the system still worked in spite of these errors. Eventually you

trace the problem to a recent change that exposed all of the other bugs. Those bugs were

always there, but the system kept on working because there was enough redundancy that one

https://devblogs.microsoft.com/oldnewthing/20080416-00/?p=22723
http://www.amazon.com/gp/product/0201835959?ie=UTF8&tag=tholneth-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201835959
http://en.wikipedia.org/wiki/Brooks'_law
http://www.amazon.com/gp/product/0385267746?ie=UTF8&tag=tholneth-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0385267746
http://www.amazon.com/gp/product/0671819100?ie=UTF8&tag=tholneth-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0671819100
http://www.amazon.com/gp/product/0961825103?ie=UTF8&tag=tholneth-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0961825103
http://www.amazon.com/gp/product/0961825170?ie=UTF8&tag=tholneth-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0961825170


2/2

component was able to compensate for the failure of another component. Sometimes this

chain of errors and compensation continues for several cycles, until finally the last protective

layer fails and the underlying errors are exposed.

That’s why I’m skeptical of people who look at some catastrophic failure of a complex system

and say, “Wow, the odds of this happening are astronomical. Five different safety systems

had to fail simultaneously!” What they don’t realize is that one or two of those systems are

failing all the time, and it’s up to the other three systems to prevent the failure from turning

into a disaster. You never see a news story that says “A gas refinery did not explode today

because simultaneous failures in the first, second, fourth, and fifth safety systems did not

lead to a disaster thanks to a correctly-functioning third system.” The role of the failure and

the savior may change over time, until eventually all of the systems choose to have a bad day

all on the same day, and something goes boom.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

