
1/3

June 11, 2008

If you say that you don't care about something, you
shouldn't be upset that it contains garbage

devblogs.microsoft.com/oldnewthing/20080611-00

Raymond Chen

There are many situations where you pass a structure to a function,
and the function fills in

the structure with information you request.
In some cases, the function always fills in the

entire structure
(example: GlobalMemoryStatus).
In other cases, you tell the function

which bits of information you care about,
to save the function the effort of computing

something you weren’t
interested in anyway
(example: TreeView_GetItem).

In the latter case,
if you say that you aren’t interested in certain parts of the structure,
and

then you change your mind and start paying attention to them,
don’t be surprised if you find

that there’s nothing interesting there.
After all, you said you didn’t care.

For example, if you call TreeView_GetItem and set the
mask to TVIF_IMAGE |

TVIF_PARAM ,
this means that you want the function to set the
 iImage and lParam

members of the
 TVITEM structure and that you don’t care about the rest.
After the call

returns, the values of those two members are defined,
since you said that’s what you wanted,

and the remainder of the output fields are undefined.
They might contain useful information,

they might contain garbage,
you’re not supposed to care since you said that you didn’t.

Why might fields you said you didn’t care about still contain
information (correct or

incorrect)?
It might be that the value is so easy to compute that checking
whether the value

should be set takes more work than actually
setting it!
In such a case, the function might

choose to set the value even
if you didn’t say that you needed it.

On the other hand, the value might be an artifact of a translation
layer:
You pass a structure

saying, “I’m interested in two out of the four
members.”
The function in turn calls a lower

lever function with a different
structure, saying, “I’m interested in two out of the five

members
of this different structure.”
After the call returns, the middle-man function converts

the lower-level
structure to the higher-level structure.
Sure, it may also “convert” stuff that

was never asked for,
but you said you weren’t interested, so they just get garbage.
In other

words, the function you’re calling might be defined like this:

https://devblogs.microsoft.com/oldnewthing/20080611-00/?p=21983

2/3

// The pinfo parameter points to this structure

struct FOOINFO {

DWORD dwInUse;

DWORD dwAvailable;

DWORD dwRequested;

DWORD dwDenied;

};
// The dwMask parameter can be a combination of these values

#define FOOINFO_INUSE 0x0001

#define FOOINFO_AVAILABLE 0x0002

#define FOOINFO_REQUESTED 0x0004

#define FOOINFO_DENIED 0x0008

BOOL GetFooInfo(FOOINFO *pinfo, DWORD dwMask);

Now, the GetFooInfo function might just be a middle
man that talks to another component

to do the real work.

// lowlevel.h

struct LOWLEVELSTATS {

DWORD dwUnitSize;

DWORD dwUnitsInUse;

DWORD dwUnitsAvailable;

DWORD dwUnitsRequested;

DWORD dwUnitsGranted;

DWORD dwTotalRequests;

};
// The dwMask parameter can be a combination of these values

#define LLSTATS_UNITSIZE 0x0001

#define LLSTATS_INUSE 0x0002

#define LLSTATS_AVAILABLE 0x0004

#define LLSTATS_REQUESTED 0x0008

#define LLSTATS_GRANTED 0x0020

#define LLSTATS_REQUESTS 0x0040

BOOL GetLowLevelStatistics(LOWLEVELSTATS *pstats, DWORD dwMask);

The resulting GetFooInfo function merely
translates the call from the application into a

call to
the GetLowLevelStatistics function:

3/3

BOOL GetFooInfo(FOOINFO *pinfo, DWORD dwMask)

{

LOWLEVELSTATS stats;

DWORD dwLowLevelMask = LLINFO_UNITSIZE;

if (dwMask & FOOINFO_INUSE)

 dwLowLevelMask |= LLSTATS_INUSE;

if (dwMask & FOOINFO_AVAILABLE)

 dwLowLevelMask |= LLSTATS_AVAILABLE;

if (dwMask & FOOINFO_REQUESTED)

 dwLowLevelMask |= LLSTATS_REQUESTED;

if (dwMask & FOOINFO_DENIED)

 dwLowLevelMask |= LLSTATS_REQUESTED | LLSTATS_GRANTED;

if (!GetLowLevelStats(&info;stats, dwLowLevelMask))

 return FALSE;

// Convert the LOWLEVELSTATS into a FOOINFO

pinfo->dwInUse = stats.dwUnitSize * stats.dwUnitsInUse;

pinfo->dwAvailable = stats.dwUnitSize * stats.dwUnitsAvailable;

pinfo->dwRequested = stats.dwUnitSize * stats.dwUnitsRequested;

pinfo->dwDenied = stats.dwUnitSize *

 (stats.dwUnitsRequested - stats.dwUnitsGranted);

return TRUE;

}

Notice that if you ask for just FOOINFO_DENIED ,
you still get the dwRequested as a side

effect,
since computing the number of requests that were denied
entails obtaining the total

number of requests.
On the other hand, you also get garbage for dwInUse
since the call to

GetLowLevelStats didn’t ask
for LLSTATS_INUSE , but the code that converts
the

LOWLEVELSTATS to a FOOINFO doesn’t
know that and converts the uninitialized garbage.

But since you said that you didn’t care about the dwInUse
member, you shouldn’t be upset

that it contains garbage.

You now know enough to answer
this person’s question.

(Note of course that I’m assuming we are not returning
uninitialized garbage across a

security boundary.)

Raymond Chen

Follow

http://groups.google.com/groups?selm=EE986462-D73B-4E9B-969A-1C9E9F2D071E@microsoft.com
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

