
1/2

June 23, 2008

Just because you're using a smart pointer class doesn't
mean you can abdicate understanding what it does

devblogs.microsoft.com/oldnewthing/20080623-00

Raymond Chen

It’s great when you have a tool to make programming easier,
but you still must understand

what it does or you’re
just replacing one set of problems with another set of more subtle

problems.
For example, we discussed earlier the importance of knowing
when your

destructor runs.
Here’s another example, courtesy of my colleague Chris Ashton.
This was

posted
as a Suggestion Box entry,
but it’s pretty much a complete article on its own.

https://devblogs.microsoft.com/oldnewthing/20080623-00/?p=21883
http://blogs.msdn.com/oldnewthing/archive/2004/05/20/135841.aspx
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#515856


2/2

I came across an interesting bug this weekend
that I’ve never seen described anywhere else,
I
thought it might be good fodder for your blog.

What do you suppose the following code does?

CComBSTR bstr;

bstr = ::SysAllocStringLen(NULL, 100);


a. Allocates a BSTR  100 characters long.
b. Leaks memory and,
if you’re really lucky,
opens the door for an insidious memory

corruption.

Obviously I’m writing here,
so the answer cannot be A. It is, in fact, B.

The key is that CComBSTR  is involved here,
so operator=  is being invoked.
And
operator= , as you might recall,
does a deep copy of the entire string,
not just a shallow copy

of the BSTR  pointer.
But how long does operator=  think the string is?
Well, since BSTR
and LPCOLESTR  are equivalent
(at least as far as the C++ compiler is concerned),
the
argument to operator=  is an LPCOLESTR  –
so operator=  naturally tries to use the
wcslen  length of the string,
not the SysStringLen  length.
And in this case, since the

string is uninitialized,
 wcslen  often returns a much smaller value than
 SysStringLen
would.
As a result, the original 100-character string is leaked,
and you get back a buffer that can
only hold, say, 25 characters.

The code you really want here is:

CComBSTR bstr;

bstr.Attach(::SysAllocStringLen(NULL, 100));


Or:

CComBSTR bstr(100);


I’m still a big fan of smart pointers
(surely the hours spent finding this bug
would have been
spent finding memory leaks
caused by other incautious programmers),
but this example gives
pause –
 CComBSTR  and some OLE calls just don’t mix.

All I can add to this story is an exercise:
Chris writes,
“Since the string is uninitialized,

wcslen  often returns a much smaller value than
 SysStringLen  would.”
Can it possibly

return a larger value?
Is there a potential read overflow here?

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

